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Abstract Collapsible soils, particularly loessial 
soils, present significant geotechnical engineering 
hazards that should be carefully investigated before 
any construction can commence. However, it is gen-
erally difficult to estimate the collapse potential of 
soils based on the relative contributions of each of 
the numerous influencing factors. Therefore, the main 
objective of this study is to find a reliable method for 
predicting the collapse potential of loessial soils by 
using machine learning-based tools. In this regard, 
details of 766 performed oedometer test were gath-
ered from the published literature containing six vari-
ables for each data point including dry unit weight 
of soil, plasticity index, void ratio, degree of satura-
tion, inundation stress at which the oedometer test 
was conducted, and the collapse potential. Then, pre-
diction for the degree of collapsibility of loess was 
performed by employing three well-known super-
vised machine learning tools, namely Multi-Layer 

Perceptron Neural Network (MLPNN), Radial Basis 
Function Network (RBFN), and Naïve Bayesian Clas-
sifier (NBC), and outcomes were analyzed based on 
a comparative view. Simulation results indicate the 
superiority of MLPNN in estimating the degree of 
collapsibility of loess against other models in terms 
of performance error metrics and precision criterion.

Keywords Loess · Inundation · Collapse potential · 
Dataset · Machine learning · Prediction

1 Introduction

Loess is a widely-abundant collapsible soil with a 
microstructure of meta-stable characteristic (Pye 
1984; Jefferson et  al. 2005). Typically composed of 
wind-borne sediment, silt-sized particles, this type of 
soil has some unique physical and chemical charac-
teristics (Smalley 1995; Bell 2013).

In general, loess is highly porous, which results in 
a low dry density as well as low permeability (Kim & 
Kang 2013; Liu et  al. 2016; Yates et  al. 2018). Due 
to its relatively low shear strength, loess is suscepti-
ble to slope failure and other types of failure in con-
struction. Unless properly managed, loess is highly 
erodible and is susceptible to erosion and gullying. 
Combined with other factors, such as climate, these 
properties can greatly influence the behavior of loes-
sial soils in construction and other applications.
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Loess is most commonly found in arid and semi-
arid regions with low to moderate precipitation rates 
and strong winds, as these conditions are conducive 
to the formation and preservation of loess depos-
its (Li et al. 2020). Russia, the United States, China, 
Libya, Argentina, Australia and Iran are all known 
to have this type of soil (Follmer 1996; Zárate 2003; 
Zhangjian et al. 2007; Nouaouria et al. 2008; Karimi 
et al. 2009; Yates et al. 2018). Approximately 10 per-
cent of the surface of the earth is covered by loess (Li 
et al. 2020).

Having a macro-porous characteristic, loess pos-
sesses collapsing behavior especially under load-
ing or water inundation which results in construc-
tion problems (Yang 1989; Fredlund & Gan 1995; 
Munoz-Castelblanco et al. 2011). Loess can also col-
lapse when it becomes inundated due to the break-
down of particle connections (Giménez et  al. 2012; 
Wang et al. 2020). As a collapsible soil, construction 
on loess may make the foundation of the buildings 
extremely vulnerable to abrupt settlements, absolute 
and differential, upon saturation of the underlying 
soil.

As reported in the literature, construction on the 
base of loess layers have frequently ended in collaps-
ing events in many residential, commercial, and infra-
structural projects (Houston et  al. 1988; Derbyshire 
2001; Jefferson et  al. 2003; Sakr et  al. 2008; Rabbi 
et al. 2014).

In general, the potential of collapse refers to the 
change in the bulk volume of the soil under water 
inundation, and an experimental approach is used to 
evaluate this characteristic by compressing and inun-
dating undisturbed soil samples using an oedometer 
(ASTM 1996).

A number of studies have been dedicated to the 
effect of different soil parameters on the collapse 
potential. In general, it can be inferred from the 
reported results that numerous physical properties 
of the soil can affect its collapsibility. These param-
eters include the soil texture and its water content as 
well as dry density, Atterberg limits and void ratio 
(Mansour et  al. 2008; Bell 2013; Langroudi & Jef-
ferson 2013; Garakani et  al. 2015). Regarding the 
soil micro-structure, the mineral constituents and the 
number of macro and mini pores along with the bond-
ing material between them can significantly influence 
the collapse potential (Giménez et al. 2012; Liu et al. 
2016; Ma et al. 2017; Xie et al. 2018).

2  Background Review

Within the last two decade, several research papers 
have been published on the use of modern compu-
tational techniques such as artificial neural networks 
and machine learning methods to solve the problems 
related to the estimation of collapse potential of col-
lapsible soils.

As one of the earliest studies in this field, Juang 
& Elton (1997) applied neural network techniques 
on a dataset composed of the property and collapse 
potential data for a total of 1044 soil samples. Also, 
their approach for training employed three main tech-
niques, namely Naïve back-propagation (NBP), back-
propagation with momentum and adaptive learning 
rate, and Levenberg- Marquardt algorithm (LM). The 
results indicate that their trained network is capable 
of estimating the collapse potential of soils but since 
they did not focus on a particular soil type and their 
dataset contained different types of collapsible soil, 
the results of their research cannot be applied to a 
special soil type such as loess.

Furthermore, Basma & Kallas (2004) developed 
an artificial neural network-based model capable of 
soil collapsibility behavior prediction. Their proposed 
network was able to estimate the collapse potential of 
different soil types with different arrangements and 
pressure levels. This network includes six neurons 
as inputs consisting of six main soil properties of the 
samples.

Also, Habibagahi & Taherian (2004) utilized sev-
eral neural networks including Generalized Regres-
sion Neural Network (GRNN), Recurrent Neural Net-
work (RNN) and Back-Propagation Neural Network 
(BPNN) for collapse potential estimation. Their find-
ings indicate the significant influence of soil dry den-
sity on the collapse potential.

GRNN was also used, along with RBFN, to pre-
dict collapsibility potential of different types of soil 
(Zhang 2011). In comparison with RBFN and the 
experimental results, GRNN was found to have higher 
accuracy in estimating the collapse potential of soil.

The use of Multivariate Adaptive Regression 
Spline (MARS) and BPNN methods in collapse 
potential estimation were also examined by W. Zhang 
(2020). Both of these methods exhibit acceptable col-
lapsibility estimation capabilities.

Similarly, Salehi et  al. (2015) studied the col-
lapse potential of loess using MLPNN, RBFN and 
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Adaptive Neuro-Fuzzy Inference Systems (ANFIS). 
The MLPNN was shown to have high prediction 
capability through LM backpropagation technique. 
RBFN was also found to be closely accurate but esti-
mations by ANFIS were not just as promising.

Further, Uysal (2020) employed Gene Expression 
Programming (GEP) technique to estimate collaps-
ibility based on six soil parameters, namely the water 
content, dry unit weight, inundation stress, sand and 
clay contents, and the uniformity coefficient. The 
study also drew a comparison between the GEP-
based model and the previously-proposed regression-
based models.

In our opinion, the existing models proposed so far 
in the literature have two major flaws. The first prob-
lem is that most of the models were presented based 
on limited datasets, which usually pertain to a specific 
geographical area. The second issue is that the mod-
els are often presented based on data related to a wide 
range of collapsible soils, while the different types of 
collapsible soils possess different characteristics and 
the results cannot be generalized to them all. Thus, 
loessial soils have received insufficient attention in 
this case.

Hence, the purpose of this study is to represent a 
comparative perspective on well-known supervised 
machine learning tools including MLPNN, RBFN, 
and NBC and find a reliable model for estimating the 
collapse potential of loessial soils.

3  Analysis Methods

This section presents customizations of three super-
vised machine learning tools including MLPNN, 
RBFN, and NBC for estimating loess collapse poten-
tial. By considering the complexity of data points’ 
distribution and features of their behaviors, the tools 
named above were selected to investigate the effect of 
different classifier properties on results.

With the help of MLPNN, linear separation can 
be achieved in functions such as AND/OR. How-
ever, some of the functions, such as Exclusively-
OR (XOR), are not linearly separable. Thus, RBFN 
was chosen to handle such situations, employ-
ing radial functions. In fact, RBFN transforms 
the input values into a form, which can then be 
incorporated  into the network to  achieve linear 

separability. The reason for studying NBC’s per-
formance in current research, is to employ its high 
precision classification capability, considering con-
ditional independency and the probabilistic nature 
of the values of the features.

3.1  MLPNN

As a multi-layer perceptron neural network, MLPNN 
is categorized as a feed-forward network with activa-
tion thresholds. It is formed by at least three layers 
of processing nodes including an input layer, a hid-
den layer, and an output layer. Figure  1 illustrates a 
simplified MLPNN structure. Using this network, 
historical data are used for supervised learning aimed 
at mapping known inputs to outputs (Du & Swamy 
2013). It is important to note that, the trained network 
can then be used to estimate the unknown output 
through any set of given inputs.

In this model, each neuron calculates the weighted 
sum of all entries. This value is then subtracted from 
the neuron’s threshold value. The result is passed to 
an activation function, and finally, the neuron’s out-
come is achieved according to Eq.  (1) for n neurons 
(Du & Swamy 2013).

where i denotes the identification number of the input 
feature, which ranges from 1 to n, X and W are the 
value and weight of the input feature, respectively. A 
brief scheme of neuron is shown in Fig. 2.

(1)y =

n∑

i=1

WiXi + bias

Input 
layer

First 
hidden 
layer

Second 
hidden 
layer

Output 
layer

Fig. 1  A simple structure of MLPNN (Du & Swamy 2013)
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MLPNN uses the well-known learning algorithm, 
backpropagation, which was introduced in the 1980s. 
Backpropagation learns the set of weights iteratively 
using gradient descent technique to reduce errors and 
to enhance class prediction precision of the samples.

3.2  RBFN

As a feedforward neural network, RBFN is comprised 
of three main layers (Haykin 2010):

• Input layer consisting of sensory or source nodes 
acquiring data from the environment,

• Hidden layer which performs a nonlinear transfor-
mation on the inputs to obtain the feature space. In 
general, this layer is of high dimensions making it 
suitable only for unsupervised learning,

• Output layer trained in a linear supervised approach 
which ultimately conveys the network response to 
the input pattern.

In MLPNN, only linear separability is feasi-
ble whereas a function such as XOR is not linearly 
separable. RBFN uses the radial basis function as an 
activation function. Neurons’ outputs are inversely 
proportional to the distance from a location, e.g., 
the neuron center. The distance metric is usually 
a Euclidian norm; however, other metrics such as 
Minkowski  and Manhattan are commonly used. The 
output of the RBFN is a mapping approximation 
between input and output using a  linear combina-
tion of radially symmetric functions.

Accordingly, the kth output is given by Eq. (2) (Du 
& Swamy 2013):

where n is the number of inputs, k = 1, 2,… , m and m 
is the number of outputs. Additionally, the Gaussian 
function Φi(X) is defined as Eq. (3) (Haykin 2010).

where Ci and �i ≥ 0 are selected centers and widths, 
and ri ≥ 0.

3.3  NBC

NBC is a probabilistic mathematical classification 
tool based on the Bayes Theorem and the hypothesis 
of maximum posteriori. In this method, the values of 
attributes are assumed to be mutually independent 
known as “Class Conditional Independence”. This 
method is considered as “Naïve” as it is used to sim-
plify the calculation task. Class membership of the 
input pattern can be estimated using this method in a 
probabilistic way.

Consider a vector X =
(
x1,… , xn

)
 is a problem 

instance with n independent variables. NBC assigns 
probability depicted in Eq.  (4) to this instance for 
each class Ck (Murty and Devi 2011):

In such a case, conditional probability based on the 
Bayes theorem can be decomposed as Eq. (5) (Murty 
and Devi 2011):

3.4  Advantages and limitation of the considered 
models

Advantages and limitations of MLPNN, RBFN, and 
NBC are thoroughly examined and summarized in 
detail within Table  1. This table sheds light on the 
distinctive features and potential drawbacks of each 
model.

(2)yk(x) =

n∑

i=1

WkiΦi(X)

(3)Φi(X) = Φ
(
X − Ci

)
= Φ

(
ri
)
= exp

(
−

r2
i

2�2
i

)

(4)p
(
Ck|x1,… , xn

)

(5)p
(
Ck|X

)
=

p
(
Ck

)
p
(
X|Ck

)

p(X)

Summing 
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b
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Local
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y

Activatio

Weights

Fig. 2  A brief scheme of a neuron (Du & Swamy 2013)
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4  Data collection

In order to prepare the dataset, the results of 766 
oedometer tests conducted on undisturbed loess sam-
ples have been collected from the published litera-
ture as primitive raw data. Aside from the measured 
collapse potential and the inundation stress at which 
the test was conducted, 4 main soil parameters were 
collected for each sample including plasticity index, 
dry unit weight, void ratio, and degree of saturation. 
Listed in Table A-1 are the details of the compiled 
dataset, including references, sampling locations, and 
soil type for each reference based on the USCS.

Figure 3 illustrates the soil type distribution of all 
samples based on the USCS in the compiled data-
set. As shown, the dataset contains four types of soil 
including CL (clay with low plasticity), ML (silt with 
low plasticity), SM (silty sand), and ML-CL (clay 
with low plasticity combined with silt). As can be 
seen CL is the dominant soil type in the compiled 
dataset.

In addition, Fig. 4 provides a visual representation 
of the data, illustrating general trends. It is observed 

Table 1  Advantages and limitations of MLPNN, RBFN, and NBC (Bishop & Nasrabadi 2006; Du & Swamy 2013)

Model Advantages Limitations

MLPNN Can be applied to complex non-linear problems The extent to which each independent variable affects the 
dependent variable is not explicitly known

Works well with large input datasets Computation can be challenging and time-consuming
Provides quick predictions after training The model’s performance heavily relies on the quality of the 

training data. Generalization issues may arise if the model 
does not function properly

Achieves similar accuracy even with smaller datasets
RBFN RBFN performs computations efficiently, resulting in fast 

processing
The complexity of the RBFN increases as the number of 

neurons in the hidden layer grows
RBFN is particularly suitable for function approximation 

tasks, especially when the target surface exhibits regular 
peaks and valleys

The ordinary RBFN may encounter challenges in accurately 
modeling strongly nonlinear systems due to limitations in 
its structure and training algorithm

RBFN demonstrates robustness and tolerance when work-
ing with noisy input datasets

RBFN can be sensitive to the selection of appropriate param-
eters, such as the number and placement of radial basis 
functions, which can impact their performance

NBC NBC is simple to implement as the evaluation of condi-
tional probabilities is straightforward

The conditional independence assumption does not always 
hold in most situations, as features often exhibit some form 
of dependency

NBC is very fast since there are no iterations required, 
allowing for direct computation of probabilities

NBC faces the “zero probability problem” when encounter-
ing words in the test data for a particular class that are 
absent in the training data, resulting in zero class prob-
abilities

When the conditional independence assumption holds, 
NBC can provide excellent results

Fig. 3  Soil type classification of the dataset (Based on the 
USCS)
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Fig. 4  Influence of a Dry unit weight, b Void ratio, c Degree of saturation, d Plasticity index, e Inundation stress on collapse poten-
tial of the studied soil samples
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that as the degree of saturation and dry unit weight 
of the samples increase, the collapse potential of the 
samples decreases. Conversely, with an increase in 
the void ratio of the samples, the collapse potential 
shows an upward trend. However, when considering 
inundation stress and plasticity index, no clear corre-
lation can be identified.

These findings highlight the complex nature of 
the collapse potential, indicating the need for more 
advanced tools and methodologies for analysis. 
Therefore, in this study, machine learning tools were 
used to provide a deeper understanding and improved 
prediction of collapse potential.

A summary of basic statistics is presented in 
Table  2, including maximum, minimum, average, 
standard deviation (SD), and coefficient of variation 
(CV) of the considered variables.

Based on the information presented in the table, it 
can be inferred that a majority of the samples exhibit 
a low dry unit weight. Additionally, the majority of 
the samples have a comparatively high void ratio as 
a result of the elevated average value of this param-
eter (0.76), which can be attributed to the porous 
characteristics of loess. The table also indicates that 
the degree of saturation is relatively low, which is 
expected for loess deposits found in arid areas. The 
table also demonstrates that the samples are com-
posed of soils with low plasticity, as indicated by the 
low value of the plasticity index.

Given the comprehensive information regarding 
soil parameters and inundation stresses, this dataset 
can be considered highly comprehensive and rep-
resentative, as the values of different variables span 
across a wide range without being limited to specific 
ranges.

5  Model Preparation

In order to prepare the models, the primitive raw 
data were preprocessed before being fed as input to 
the models. During the preprocessing of the data, a 
number of different techniques were applied, includ-
ing cleaning, integration, reduction, and transforma-
tion, based on necessity. These techniques were used 
to handle the following situations:

• Noise removal, outlier handling, missing values, 
and inconsistencies correction,

• Merging data gathered from various sources into a 
coherent data store,

• Reducing data size by aggregating or eliminating 
redundancies,

• Normalizing data in some specific ranges or inter-
vals to enhance accuracy and overall performance.

Preprocessed data containing 634 samples were 
then ready for feeding into the models.

As part of the preparation of the MLPNN and 
RBFN, the data samples were randomly divided into 
three parts including 70% as training data, 11% as 
validation data, and 19% as test data. In order to pre-
pare NBC, the first two parts were combined and fed 
into the model as training data (81% of the data), and 
the last part was kept as test data (19% of the data).

In order to prepare MLPNN, a two-hidden-layer 
feed-forward network with 10 sigmoid neurons in the 
hidden layer and linear output neurons was selected, 
and it was trained for 21 epochs. The MLPNN was 
trained with the Levenberg–Marquardt (LM) back-
propagation algorithm except when there is not 
enough memory. In that case, scaled conjugate gra-
dient backpropagation will be employed. It should be 
noted that, in the preparation of the model, 5 features 
(including plasticity index, dry unit weight, void ratio, 

Table 2  Statistical 
Evaluation of soil 
parameters in the dataset

Variable Unit Min Max Avg SD CV (%)

Dry unit weight (KN/m3) 12.10 19.20 14.72 2.21 15.01
Void ratio – 0.32 1.18 0.76 0.13 17.10
Degree of saturation (%) 0.00 93.00 36.31 23.01 63.37
Plasticity index (PI) – 1.60 27.30 9.32 4.29 46.03
Inundation stress (kPa) 5.00 3700.00 359.65 364.08 101.23
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degree of saturation, and inundation stress) were con-
sidered as input parameters while the collapse poten-
tial was considered as target or output parameter. In 
addition, the validation data was used to stop training 
process in case the network gets overfitted.

For the preparation of the RBFN, both input 
and output parameters were the same as those for 
MLPNN. Accordingly, a network with a maximum 
of 100 neurons was trained, and the spread of RBFs 
was set to 1.0. Additionally, during the training pro-
cess, 10 neurons were incrementally added between 
displays.

To prepare the NBC, the collapse potential val-
ues of the samples were classified as targets into five 
different classes, 1–5, according to Table  3 (ASTM 
1996).

After classifying the samples as inputs, NBC 
with normal (Gaussian) distribution parameters was 
defined for the train data. As a key point, NBC used 
the same input parameters as MLPNN and RBFN, but 
its output parameter was the labeled class of collaps-
ibility rather than collapse potential. For the purpose 
of testing the performance of the model, the NBC 
was applied to the test data.

6  Evaluation of the Performance of the Proposed 
Models

In order to assess the performance of the models, it 
is important to note that the output of MLPNN and 
RBFN is the collapse potential of soil samples, which 
is a continuous variable ranging from 0 to more than 
10. NBC, however, generates the degree of collaps-
ibility of the samples (In accordance with Table  3), 
which is an integer ranging from 1 to 5.

Due to the fact that the outputs of the MLPNN 
and RBFN are continuous values, it is, therefore, 
necessary to use appropriate performance indices to 
evaluate their performances such as  R2, RMSE, and 
MAE. The output of NBC, however, is not merely a 
number, but a class, which makes other criteria such 
as “Precision” more appropriate for evaluating its 
performance.

The performance indices are error functions gener-
ally defined as the absolute subtraction of targets and 
model outputs. Learning functions iteratively attempt 
to reduce error values through techniques such as gra-
dient descent. In general, the closer the outputs are 
to the targets, the more accurate the model will be. 
Thus, for some indices, such as  R2, high values indi-
cate better performance of the model, while for other 
indices, such as RMSE and MAE, lower values indi-
cate better performance. As mentioned previously, 
three popular error indices are  R2, MAE, and RMSE 
as defined by Eqs. (6–8).

where n is the number of outputs, and 
outputavg = 1∕n

∑n

i=1
outputi.

Based on the MLPNN and RBFN predictions, 
Fig. 5 shows the actual values of collapse potential as 
well as the predicted values for the test dataset (19% 
of data). Figure 5 illustrates that most of the predicted 
values of collapse potential by MLPNN and RBFN 
are in close agreement with the actual values of col-
lapse potential.

Accordingly, Table 4 presents the calculated MAE, 
 R2, and RMSE for all training, validation, and test 
datasets for the MLPNN and RBFN.

In Table 4, it can be seen that the models perform 
differently for training and validation datasets due to 
the random subdivision process. Based on this table, 

(6)R2 = 1 −

∑n

i=1

�
targeti − outputi

�2

∑n

i=1

�
targeti − outputavg

�2

(7)MAE =

∑n

i=1
��outputi − targeti

��
n

(8)RMSE =

�∑n

i=1

�
outputi − targeti

�2

n

Table 3  Collapse potential labels (Based on ASTM, (1996))

Collapse Potential Degree of Specimen Collapse Class 
Number

0 None 1
0.1–2.0 Slight 2
2.1–6.0 Moderate 3
6.1–10.0 Moderately severe 4
 > 10 Severe 5
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the prediction performance is better for validation set 
than the training set in terms of the predefined indi-
ces. In the context of the test and validation dataset, 
the high performance of the models can be considered 
as an indication of their generalization capabilities, 
as discussed by Cabalar et al. (2012). Regarding the 
comparison between MLPNN and RBFN, it is evi-
dent that MLPNN performs better across all datasets.

In order to compare the performance of RBFN and 
MLPNN with NBC, the outputs had to be homoge-
nized. Accordingly, Table  3 was once more used to 

classify the output values of collapse potential for 
each sample predicted by MLPNN and RBFN.

After classifying the predicted collapse potential 
values by MLPNN and RBFN, the actual class of soil 
samples (degree of collapsibility) as well as the pre-
dicted class based on MLPNN, RBFN, and NBC are 
shown in Fig. 6.

Table  5 shows confusion matrix of predicted 
classes performed by the used models. A confusion 
matrix is a widely common performance measure-
ment for machine learning techniques which sum-
marizes a table of the number of actual and predicted 
classes yielded by a prediction model. The rows in 
this table indicate the number of samples predicted 
in each class using three different models, includ-
ing MLPNN, RBFN, and NBC. Additionally, the 
columns indicate the amount of data for each actual 
class. The diagonal cells in the confusion matrix were 
bolded to visually indicate where the model’s predic-
tions aligned with the actual classes.

In the next step, the Precision criterion was 
selected as an appropriate criterion to compare the 
performance of the three mentioned models in pre-
dicting the degree of collapsibility of samples.

Precision is a machine learning evaluation met-
ric that measures the proportion of correct pre-
dictions among all predictions made by a model. 
In other words, it is an indicator of how accurate 
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Fig. 5  Comparison of actual collapse potential values with predicted values based on MLPNN and RBFN models

Table 4  The calculated performance indicators for MLPNN 
and RBFN models

Dataset Performancein-
dicator

MLPNN RBFN

Training R2 0.882 0.754
MAE 1.251 2.612
RMSE 1.653 1.874

Validation R2 0.957 0.868
MAE 0.522 0.753
RMSE 0.867 1.512

Test R2 0.904 0.841
MAE 1.109 1.263
RMSE 1.119 1.731
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Fig. 6  Comparison of the predicted class of collapsibility by MLPNN, RBFN, and NBC with the actual class for the test dataset

Table 5  Confusion 
matrix of predicted classes 
performed by the used 
models

The diagonal cells in 
the confusion matrix 
were bolded to visually 
indicate where the model’s 
predictions aligned with the 
actual classes

Model Actual class

Class 1 (none) Class 2 
(slight)

Class 3 
(moder-
ate)

Class 4 
(moderately 
severe)

Class 5 
(severe)

Predicted class
Class 1 (none) MLPNN 0 0 0 0 0

RBFN 0 0 0 0 0
NBC 0 0 0 0 0

Class 2 (slight) MLPNN 2 33 2 0 0
RBFN 2 31 4 0 0
NBC 2 31 4 0 0

Class 3 (moderate) MLPNN 0 9 44 0 0
RBFN 0 12 41 0 0
NBC 0 12 41 0 0

Class 4 (moderately severe) MLPNN 0 1 3 12 0
RBFN 0 0 4 13 0
NBC 0 0 4 13 0

Class 5 (severe) MLPNN 0 0 0 1 13
RBFN 0 0 0 0 13
NBC 0 0 0 0 13
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a model is at making correct predictions. Alterna-
tively, precision is the percentage of correct pre-
dictions that are actually borne out by the model. 
Precision can be calculated by knowing the number 
of true positive predictions (TP) and false positive 
predictions (FP) made by the model. It is then pos-
sible to calculate Precision in the following manner 
(Powers 2020):

In order to evaluate the performance of the men-
tioned models using Precision, the actual degree of 
collapsibility was compared to the predicted degree 
of collapsibility by MLPNN, RBFN, and NBC, and 
if the predictions matched, the prediction was con-
sidered TP, whereas if not, they were considered FP. 
Figure  7 shows the calculated Precision values for 
each model.

In this figure, it can be seen that the MLPNN 
correctly predicted the degree of collapsibility of 
loess in 86.6% of samples (104 samples from 120) 
which is a high accuracy level.

7  Conclusion

In this paper, a comparative classification and pre-
diction of the collapse potential of loessial soils 
was conducted using three well-known supervised 

(9)Precision =
TP

(TP + FP)

machine learning approaches, namely MLPNN, 
RBFN, and NBC. The preprocessed data utilized 
in this study comprised 634 samples with 5 input 
features including dry unit weight, plasticity index, 
void ratio, degree of saturation, and inundation 
stress, along with an output parameter named col-
lapse potential. By using the same train, validation, 
and test data for the MLPNN and RBFN, it was 
determined that both models are capable of predict-
ing the collapse potential of loess when consider-
ing the aforementioned input parameters. MLPNN, 
however, had better performance than RBFN in 
predicting collapse potential of loess based on low 
calculated performance indices (RMSE, MAE, and 
 R2). Furthermore, by utilizing the Precision crite-
rion and confusion matrix, MLPNN was proven to 
be more accurate than RBFN and NBC in predict-
ing the degree of collapsibility of loessial soils. 
To conclude, MLPNN performed well when used 
to predict the level of collapsibility of loess, or in 
other words when classifying the level of potential 
collapse risk of loess based on ASTM (1996).
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