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Abstract Soil stabilization using additives is con-
sidered as one of the sustainable alternative tech-
niques to deal with acute material shortages. Criti-
cally reviewing the contemporary works on soil 
stabilization would help practitioners and researchers 
to comprehend the merits and demerits of each sta-
bilization method, influential parameters, and asso-
ciated constraints. Furthermore, the critical analysis 
might aid the authorities to develop standard proto-
cols about the use of various additives for soil stabi-
lization, which would persuade the industry person-
nel to adopt sustainable practices. This paper presents 
a methodical review of the present soil stabilization 
methods under five key areas namely, underlying 
chemistry, the influential factors, performance indica-
tors, economic and environmental aspects, and indus-
trial perspectives. Findings of the review indicate that 
cement-based stabilizers perform well irrespective 
of soil type and curing conditions, on the contrary, 
lime-based stabilizers require appropriate tempera-
ture and pH for strength development. The degree of 
stabilization depends mainly on soil type, compaction 
level, and curing type and condition. Most of the soils 
treated with different additives exhibited a reduction 
in plasticity index, and maximum dry density against 
stabilizer dosage irrespective of soil type. The typi-
cal values of unconfined compressive strength and 

California bearing ratio of inorganic and organic 
soils except for peat, treated with a 5% dosage of all 
common types of stabilizers, fall in between 700 and 
1,500  kPa and 30–60%, respectively. Cement and 
cementitious blends exhibited better cost-to-strength, 
energy-to-strength, and  CO2 emission-to-strength 
ratios for soils with low plasticity whereas lime-
blended stabilizers seemed effective for high-plastic 
soils.

Keywords Soil stabilization · Cement · Lime · 
Geopolymer · Mechanical properties

Abbreviations 
GW  Well graded gravel
SC  Clayey sand
SP  Poorly graded sand
SM  Silty sand
CL  Inorganic clay of low plasticity
CH  Inorganic clay of high plasticity
ML  Inorganic silt of low plasticity
MH  Inorganic silt of high plasticity
OL  Organic silts and clay of low plasticity
OH  Organic silts and clay of high plasticity
Pt  Peat, muck, and other highly organic soils
OPC  Ordinary Portland cement
RHA  Rice husk ash
CKN  Cement kiln
FLA C  Fly ash—class C
FLA F  Fly ash—class F
PHP  Phosphogypsum
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ESP  Eggshell powder
LME  Lime
BFSC  Blast furnace slag cement
HL  Hydrated lime
SL  Slurry lime
QL  Quick lime
MDD  Maximum dry density
OMC  Optimum moisture content
UCS  Unconfined compressive strength
CBR  California bearing ratio
MR  Modulus of resilience
C  CaO
S  SiO2
A  Al2O3
F  Fe2O3
SEM  Scanning electron microscope
XRD  X-ray diffraction

1 Introduction

Present road construction projects often suffer 
from material shortage due to an inadequate sup-
ply of quality materials (Dawson et al. 1995; Huang 
et  al. 2007). Historically, road construction materi-
als are being extracted from natural mineral deposits 
(Terashi and Juran 2000; Huang et al. 2007). Height-
ened environmental laws have prevented exploitation 
of natural mineral deposits, which in turn has led to 
inadequate material production (Mohajerani et  al. 
2020; Nunes et al. 1996). Alternatively, quality mate-
rials are being transported from other regions. Trans-
port charges, however, contribute to the escalation in 
material cost (Asgari et al. 2015; Pongsivasathit et al. 
2019; Prusinski and Bhattacharja 1999; Terashi and 
Juran 2000). Besides, exploiting natural minerals 
and transporting materials are considered extremely 
impactful to the environment and unsustainable (Bal-
aguera et al. 2018; Dawson et al. 1995; Rocha et al. 
2021). Construction projects have been thereby shift-
ing from conventional practices to cost-effective and 
innovative strategies. Soil stabilization is one such 
technique, widely deployed in road construction pro-
jects, which treats in-situ soil to enhance its inherent 
properties to make it suitable for construction.

Stabilization improves the engineering proper-
ties of soil including dry density, swelling poten-
tial, plasticity, Unconfined Compressive Strength 
(UCS), California Bearing Ratio (CBR), Modulus 

of Resilience (MR), and permeability (Halsted et al. 
2008; Teerawattanasuk and Voottipruex 2019) of 
weak in-situ soils either by mechanical means or 
by chemical means by adding and blending foreign 
agents or by both (Afrin 2017; Firoozi et  al. 2017; 
Zumrawi 2015). In mechanical stabilization, granu-
lar materials are blended and consolidated to remove 
excessive amounts of air and/or water, and thus form 
a well-graded and compacted soil stratum (Hicks 
2002). When inherited properties of soil are exten-
sively incompatible with construction, mechanical 
stabilization alone may not be sufficient to achieve 
the required standard properties for construction 
(Afrin 2017). In such circumstances, foreign addi-
tives are traditionally added to in-situ soil to improve 
soil properties (Degirmenci et al. 2007; Firoozi et al. 
2017; Halsted et  al. 2008; Petry and Little 2002). 
These additives chemically react with soil constitu-
ents to enhance the engineering properties of in-situ 
soil.

Table  1 summarizes the stabilization methods 
that deployed alternative additives to enhance engi-
neering properties of various geotechnical elements. 
Commonly, mechanical stabilization accompanied 
by chemical stabilization was found to be effective 
in improving weak soils (Gomes Correia et al. 2016; 
Ikeagwuani and Nwonu 2019). Particularly, the prob-
lematic soils require a chemical stabilizer to enhance 
strength and reduce swell-shrink behavior. On the 
other hand, chemical stabilization could poten-
tially harm the workmen during construction and 
may cause a detrimental impact on the environment 
(Phummiphan et al. 2016). From economic and eco-
logical perspectives, recent studies have shown that 
deploying industrial by-products and agro-wastes as 
additives is beneficial. Detailed advantages and disad-
vantages of the use of mechanical and chemical sta-
bilization methods are presented in Table 2. To select 
the best stabilization method, engineering knowledge, 
and experience are vital since there are no stringent 
standards that govern the application of various sta-
bilization techniques. Nelson et al. (2015) list the fol-
lowing as decisive factors based on which engineers 
may choose the appropriate stabilization method; the 
expansive nature of soil, the chemical composition of 
the soil, the reactivity of soil, design of active zone, 
the presence of undesirable chemical substances, het-
erogeneity of soil profile and hydraulic conductivity 
and soil fracturing.
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1.1  Mechanical Stabilization

Soils with poor grading or containing fine particles 
with high plasticity may be improved by mechanical 
stabilization (Hicks 2002). During mechanical stabili-
zation, other granular materials with better gradation 
are blended with in-situ soil to alter their particle size 
distribution. The mix is compacted and densified by 
applying compaction energy using rollers, rammers 
and vibrators (Afrin 2017). With the addition of gran-
ular particles, internal friction is improved in soil, 
which contributes to the increase in shear strength 
(Hicks 2002). Mechanical stabilization may result in 
a change in the plasticity properties of the mix (Hicks 
2002). Ultimately, the stability of mechanically stabi-
lized soil greatly depends on the inherent properties 
of the blended soils (Afrin 2017).

1.2  Chemical Stabilization

Traditionally, weak in-situ soils are blended with 
chemically active compounds including cement, lime, 
Fly Ash (FA), and rice husk ash (RHA) (Arulrajah 
et al. 2018; Basha et al. 2005; Degirmenci et al. 2007; 
Firoozi et al. 2017; Halsted et al. 2008; Petry and Lit-
tle 2002; Yaghoubi et al. 2019) to improve mechani-
cal and durability characteristics. Besides, non-tradi-
tional stabilizers including phosphogypsum, cement 
kiln, eggshell powder (ESP), Silica Fume (SF), Blast 

Furnace Slag Cement (BFSC) and Metakaolin (MK) 
have been deployed in the recent past to treat weak 
soils (Bellum et  al. 2020; Dave et  al. 2020; Degir-
menci et al. 2007; Eisa et al. 2021; Miller and Azad 
2000; Oluwatuyi et al. 2018). FA, SF and BFSC are 
industrial by-products used alone or together with 
cement/lime to stabilize soils (Arulrajah et al. 2018; 
Ebrahim Asghari-Kaljahi and Mansouri 2020). MK 
is the calcined form of clay. Agro-wastes include 
Bagasse Ash (BA), Olive Fly Ash (OFA), Parawood 
Ash (PAW), ESP and RHA. Table 3 summarizes the 
oxide compositions of stabilizers determined using 
X-ray fluorescence (XRF).  SiO2 and CaO constitute 
significant components of most stabilizers Cement 
and lime blended stabilizers have been commonly 
used in soil stabilization (Pongsivasathit et al. 2019; 
Prusinski and Bhattacharja 1999), which are often 
deployed to treat soils with a high fraction of clay. 
The primary factors that determine the degree of 
chemical reactions are chemical composition, mor-
phology, and fineness of the additives (Singh et  al. 
2015). The rich  SiO2 and  Al2O3 content and the 
desired Si/Al ratio in FA and MK make them popular 
in geopolymer applications (Duxson et al. 2007; Van 
Jaarsveld et al. 1997). RHA and SF contain a signifi-
cant amount of  SiO2 that enables them to be used as 
silica suppliers in geopolymerization. FA and bottom 
ash are found to be effective pozzolans in instituting 
cementitious reactions. The rich Ca content in BFSC, 

Table 2  Comparison of advantages and disadvantages between mechanical and chemical soil stabilization methods

Advantages Disadvantages

Mechanical Easy to perform Requires more energy to execute
Does not require skilled workmanship Frequent and systematic tests are required to ensure the 

quality
Can be validated with simple laboratory tests Poor execution may lead to an inhomogeneous structure
Does not release pollutants that are detrimental to the 

environment
Application to expansive soil is critical

Can be easily applied to non-critical soils Cannot attain the maximum benefit without chemical 
additives

Chemical Simple laboratory tests can be used to verify the degree of 
stabilization

Can be harmful to the workers

Provide room to utilize municipal or industrial or agro 
wastes

Potentially harmful to water bodies and soil

Applicable irrespective of soil type Environmental agents can seriously influence the results
Usually requires in small amounts Sulphates and organic matter can cause adverse effects
Depends on gradual chemical reaction after initial blend-

ing
Sometimes cost-prohibitive depending on the degree of 

required stabilization
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ESP, phosphogypsum and cement kiln is found to 
contribute to the formation of the C–A–S–H phase 
and hence strength enhancement (Temuujin et  al. 
2009; Yip et al. 2005). The FA, BFSC and RHA were 
discovered to exhibit a great degree of reactivity due 
to their smaller sizes (Ke et al. 2015; Provis and Van 
Deventer 2009). The amorphous or semi-crystalline 
that exist in MK, SF, BFSC and FA could be another 
reason for higher reactivity as they can dissolve easily 
in alkaline conditions (Bassani et al. 2019). Another 
critical factor in chemical stabilization is particle 
shape. MK particles are of platy shape that leads to 
rheological issues and hence increase water demand 
(Li et al. 2010). The spherical shape of FA particles 
improves the workability of the mix and provides 
strong and durable binding (Duxson et  al. 2007; Jit-
sangiam et al. 2021).

According to Unified Soil Classification System 
(USCS), soils containing more than 50% particles 
passing through the No. 200 sieve (finer than 75 μm) 
are classified as silt–clay materials ("ASTM D2487, 
Standard Practice for Classification of Soils for Engi-
neering Purposes (Unified Soil Classification Sys-
tem)," 2017). The presence of extensive amounts of 
clay with high plasticity brings about an increase in 
activity (ratio between plasticity index and clay frac-
tion in soil). During moisture changes, highly active 
clays exhibit extensive swell and shrink behavior. 
This is due to the electrostatic charges carried by 
clay particles that attract water molecules to form 
adsorbed and double-layer of water around them. The 
surrounding water causes substantial expansion and 
contraction in the soil during moisture level changes. 
The  Ca2+ present in cement or lime-based stabilizers 
retard the formation of double-layer and hence con-
tribute to controlling excessive volume changes in 
soil (Halsted et al. 2008; Prusinski and Bhattacharja 
1999). A thorough understanding of the underlying 
chemistry behind all these processes is beneficial for 
designing soil stabilization.

Reviewing the existing literature, the authors found 
that chemical and mechanical combined stabilization 
has been widely explored in the published litera-
ture. However, no methodical state-of-the-art review 
is available on soil stabilization for road construc-
tion that covers underlying chemistry, parameters 

influencing the stabilization process, improvements 
in engineering properties and economic and environ-
mental benefits.

1.3  Review Method

The literature reviewed in this paper was selected by 
employing keyword combinations including, soil sta-
bilization, pavement, soil stabilizers and engineering 
properties in Web of Science and Scopus platform 
journals from 1986 to 2023. A total of 155 publica-
tions that covered the intended scope of the review 
were screened out, which comprised of 154 soil-sta-
bilizer combinations. Figure 1 depicts the statistics of 
the reviewed literature. Figure 1a–c show the details 
of the treated soils, additives, and the classification 
of additives. More than 75% of the soil stabilization 
studies were conducted on fine-grained soils with low 
to high plasticity. Fat clay (CH) had been explored 
extensively followed by Lean clay (CL). From the 
perspectives of stabilizers, studies that deployed 
cement blended stabilization dominated with 35% fol-
lowed by that of hydrated lime blended with 22%.

1.4  Review Objective and Scope

From the identified literature, this comprehensive 
review intends to cover details of underlying chemi-
cal reactions that occur during soil stabilization with 
different types of stabilizers, the factors influencing 
stabilization, variation in performance indicators with 
stabilizer dosage, and economic and environmental 
comparison between different types of stabilizers. It 
is envisioned that this review would provide practi-
tioners and researchers with a comprehensive under-
standing of the stabilization process of different types 
of soils with various types of stabilizers. Further, 
the presented information would assist authorities to 
make decisions regarding soil stabilization.

The review gives more focus on the soil stabiliza-
tion process practiced in tropical weathered countries. 
The associated parameters and conditions that are 
imperative for soil stabilization in tropical conditions 
are therefore appraised.

1.5  Organization of the Paper

The presentation of a methodical review on soil 
stabilization in this paper is organized as follows. 

Fig. 1  Statistics of the reviewed literature selected from Web 
of Science platform journals from 1986 to 2023

◂
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Section 2 elaborates on the details of chemical reac-
tions that occur during the application of traditional 
soil stabilizers. In addition, a brief review of non-
traditional soil stabilizers and their stabilization 
potential are also discussed. Section  3 discusses the 
influential parameters that affect the degree of soil 
stabilization and their impact on the soil stabilization 
process. Section  4 presents performance parameters 
used to measure the degree of stabilization and their 
variations with the quantity of stabilizers. Section  5 
details the economic and environmental comparisons 
between various stabilizers used in soil stabilization. 
In Sect. 6, industrial perspectives on the use of addi-
tives have been explored. Sections 7 and 8 summarize 
the key findings from published literature and the way 
forward, respectively.

2  Soil stabilizers and Stabilization Mechanism

This section describes the underlying mechanisms 
and chemical reactions behind soil stabilization with 
cement, lime, FA, and RHA. Furthermore, a brief 
review of the evolution of non-traditional stabilizers 
in soil stabilization is presented.

2.1  Cement in Soil Stabilization

Conventionally, ordinary Portland cement (OPC), 
which adheres to British Standard–12, is used in 
soil stabilization ("BS 12: Specification for Portland 
cement," 1996). OPC reportedly contains the follow-
ing chemical compounds required for stabilization; 
tricalcium silicate  (C3S), dicalcium silicate  (C2S), tri-
calcium aluminate  (C3A), and tetracalcium alumino-
ferrite  (C4AF), where C, A, F, and S simply denote 
CaO,  Al2O3,  Fe2O3, and  SiO2, respectively (Barnes 
and Bensted 2001; Dunuweera and Rajapakse 2018; 
Thiery et  al. 2007). These components react with 
water and soil at various phases during stabilization 
to alter the properties of in-situ soil.

2.1.1  Chemistry and Mechanism of Cement 
Stabilization

Four distinct chemical processes occur in the fol-
lowing order when OPC is added to in-situ soil 
containing clay, namely; cation exchange, particle 
restructuring, cementitious hydration, and pozzolanic 

reaction (Halsted et  al. 2008; Prusinski and Bhat-
tacharja 1999). All these chemical processes assist in 
gradual changes in properties of in-situ soil.

2.1.1.1 Cation Exchange and  Reduction in  Plas‑
ticity In clay, two types of crystalline patterns are 
formed; one is a silica sheet formed by silicon-oxygen 
tetrahedron units, and the second is a gibbsite (alu-
mina)/brucite (magnesia) sheet produced by octahe-
dral units (Das 2008). By repeatedly stacking silica/
alumina/magnesia sheets, various clay minerals are 
formed (Das 2008; Halsted et  al. 2008). Due to the 
inherent atomic configuration, clay minerals carry 
negative charges on their surfaces and positive charges 
at edges. To neutralize charges, they attract water via 
two mechanisms; one is directly attracting water mol-
ecules by forming hydrogen bonds and the second is 
attracting cations which in turn attract water mole-
cules (Das 2008; Halsted et al. 2008). The electrically 
attracted water surrounds clay particles and forms a 
double layer, which holds responsible for the plasticity 
property of clay. Cations vary in terms of their affinity 
for attraction, which contributes to the change in the 
thickness of the double layer (Das 2008). OPC is an 
excellent calcium-based additive; when blended with 
clay,  Ca2+ is of lower affinity for attraction and tends 
to replace  Na+ or  K+, which are of a higher affinity 
for attraction (Halsted et al. 2008; Prusinski and Bhat-
tacharja 1999). This exchange of cations leads to a 
reduction in the thickness of the double e layer, and 
hence loss of plasticity (Halsted et al. 2008; Prusinski 
and Bhattacharja 1999). Figure 2 illustrates the change 
in double-layer thickness when  Ca2+ replace monova-
lent  Na+. However, adsorbed water remains unaffected 
due to cation exchange (Das 2008).

2.1.1.2 Particle Restructuring and  Shear Strength 
Improvement Clay particles generally form a paral-
lel structural orientation; each particle carries nega-
tive charges at surfaces and positive charges at edges 
(Das 2008). When cement is added, cations in cement 
induce a random edge-to-surface attraction of clay 
particles that activates the flocculation of clay parti-
cles (Halsted et al. 2008; Prusinski and Bhattacharja 
1999). With the deposition of cement particles, floccu-
lated clay particles then form weak bonds at the edge 
surface that result in agglomeration (Halsted et  al. 
2008; Prusinski and Bhattacharja 1999). Flocculation 
followed by agglomeration institutes the formation of 
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granular particles from clay particles (Firoozi et  al. 
2017). Produced granular particles with improved tex-
ture assist to increase internal friction, and hence shear 
strength.

2.1.1.3 Cementitious Hydration and  Soil Particle 
Binding The typical mineralogical composition of 
OPC is as follows; 55–65% of  C3S, 15–25% of  C2S, 
8–14% of,  C3A, and 8–12% of  C4AF (Aïtcin 2016; 
Barnes and Bensted 2001; Dunuweera and Rajapakse 
2018; Zumrawi 2015). Less than 5% gypsum (cal-
sulfatephate dehydrate, CSH2 , where S denotes  SO3) 
is also added to OPC to retard the early hardening 
of cement due to the active reaction of  C3A (Aïtcin 
2016). Each constituent in OPC reacts with water at 
different degrees and at different times. The chemical 
reaction between the constituents of OPC and water 
is called hydration, which is accountable for the set-
ting and hardening of cement paste. The  C3S phase 
in OPC first reacts with water and contributes to ini-
tial setting and early strength development followed 
by  C2S (Barnes and Bensted 2001). These hydration 
reactions of  C3S and  C2S under ambient conditions 
form C–S–H  (C3S2H3) and are given in Eqs. (1) and 
(2) as follows (Hoover and Ulm 2015; Prusinski and 
Bhattacharja 1999).

Tricalcium silicate  (C3S) hydration

Dicalcium silicate  (C2S) hydration

where H refers to  H2O. The release of hydrated lime 
(HL) from both reactions maintains a pH level of 
about 12.5 in mortar and concrete systems (Bell 1996; 
Prusinski and Bhattacharja 1999). The solubility of 

(1)2C3S + 6H → C3S2H3 + 3HL

(2)2C2S + 4H → C3S2H3 + HL

silica and alumina increases significantly with an 
increase in pH greater than 12 ("ORN31, A guide 
to the structural design of bitumen surfaced roads in 
tropical and sub-tropical countries," 1993). At higher 
pH levels greater than 12, due to the higher solubility 
of silica and alumina, pozzolanic reactions of cement 
will be accelerated. If in-situ soil is of high plastic-
ity, a significant fraction of  Ca2+ is exhausted during 
cation exchange to reduce plasticity, thereby forma-
tion of hydrated lime will decrease that in turn will 
reduce pH levels and hence retard pozzolanic reac-
tions. For such highly plastic soils, cement alone may 
not be sufficient for stabilization. Additional  Ca2+ 
required for cation exchange is supplied by adding a 
fraction of lime to the soil at the start of stabilization, 
which helps to compensate for the loss in pH value 
of the soil ("ORN31, A guide to the structural design 
of bitumen surfaced roads in tropical and sub-tropical 
countries," 1993).

C3A, among all the components present in OPC, 
is highly reactive (Barnes and Bensted 2001). The 
hydration reaction of  C3A in the absence of sulphate 
ions institutes rapid hardening of motor/concrete, a 
phenomenon referred to as ‘flash-set’, so concrete 
loses its slump swiftly (Aïtcin 2016; Barnes and 
Bensted 2001). In the presence of sulphate ions, 
the hydration of  C3A is more retarded and it slowly 
forms ettringite ( C6AS3H32 ) that temporarily blocks 
its early hydration and hardening (Aïtcin 2016; 
Firoozi et al. 2017). Sulphate ions in OPC are sup-
plied by gypsum. Equations (3–5) describe the two 
types of hydration reactions of  C3A with and with-
out sulphur (Aïtcin 2016; Firoozi et al. 2017).

Tricalcium aluminate  (C3A) hydration in the 
absence of sulphate

Fig. 2  Change in double-
layer water due to cation 
exchange
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Tricalcium aluminate  (C3A) hydration in the pres-
ence of sulphate

Once gypsum in OPC is fully consumed, sulphate 
content in the solution drops below a critical value. 
Further hydration transforms ettringite into monosul-
phoaluminate ( C4ASH12 ) as follows

The hydration of the ferrite phase in OPC is like 
that of  C3A. When sulphate the level drops, meta-
stable iron substituted  AFm phases form. When the 
temperature rises, meta-stable  AFm phases decom-
pose into  C3AH6–C3FH6. The corresponding chemi-
cal reactions are given in Eqs. (8–10) (Aïtcin 2016; 
Firoozi et al. 2017).

Provided that sufficient water is available, com-
plete hydration will occur to form C–S–H and 

(3)2C3A + 27H → C4AH19 + C2AH8

(4)C4AH19 + C2AH8 → 2C3AH6 + 15H

(5)C3A + 3CSH2 + 26H → C6AS3H32

(6)C6AS3H32 + 2C3A + 4H → 3C4ASH12

(7)C3A + HL + 12H → C4AH13

(8)C4AF + 3CSH2 + 27H → C3AF ⋅ 3CSH32 + HL

(9)
2C

4
AF + C

3
AF ⋅ 3CS ⋅ H

32
+ 6H

→ 3[C
3
AF ⋅ CS ⋅ H

12
] + 2HL

(10)C4AF + 2HL + 10H → C3AH6 − C3FH6

C–A–H, which will bind soil particles together. This 
process will turn flocculated particles into large 
soil grains, and hence the gradation of soil will 
improve (Halsted et  al. 2008; Prusinski and Bhat-
tacharja 1999). The availability of water depends on 
the water-to-cement ratio adopted for stabilization 
(Barnes and Bensted 2001; Ribeiro et al. 2016).

2.1.1.4 Pozzolanic Reaction As described earlier, 
cementitious hydration forms HL, which elevates pH 
levels. S and A present in clay are thoroughly soluble 
at high pH levels. When pH increases S and A dissolve 
easily from clay lattice. Released S and A enter reac-
tion with HL to initiate secondary soil stabilization. 
These reactions are referred to as secondary cementi-
tious reactions or pozzolanic reactions; typically take 
place at a slower rate for an extended period. The poz-
zolanic reactions are governed by Eqs. (11) and (12).

The timeline of the soil stabilization process with 
cement (OPC) additive is shown in Fig.  3. It is a 
series of overlapping chemical reactions between 
clay minerals and OPC constituents. An uninter-
rupted supply of required constituents and condi-
tions are to be guaranteed to achieve the targeted 
soil properties. As OPC contains S, soil stabiliza-
tion with cement is independent of the constituents 
of the soil (Asgari et al. 2015).

(11)HL + S → C-S-H

(12)HL + A → C-A-H

Fig. 3  Timeline of events 
occurring during soil stabi-
lization using cement (not 
to scale)
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2.1.2  Selection of Cement Stabilizer Dosage

The quantity of cement (OPC) to be blended with 
soil should be sufficient to the supply required chemi-
cal components to support the reactions described 
in Eqs.  (1–12). As pointed out earlier, the clay min-
eral composition, especially the ones with mono-
valent cations (Ex. Montmorillonite) consumes a 
large amount of cement for initial cation exchange. 
The remaining portion of cement will involve in the 
cementitious hydration reaction and will contribute 
to strength development. It is therefore recommended 
that the minimum cement dosage used for stabiliza-
tion should be more than the quantity absorbed dur-
ing initial ion exchange reactions ("ORN31, A guide 
to the structural design of bitumen surfaced roads in 
tropical and sub-tropical countries," 1993). Table  4 
details soil types along with plasticity, and respec-
tive cement dosages, and resulted in UCS of stabi-
lized soils reported in numerous studies. The general 
trend shows that when plasticity increases, the opti-
mum amount of cement required for soil stabiliza-
tion increases. Cement stabilization improves UCS 
of non-plastic, coarse-grained soils and soils with 
low plasticity to be in the range of 3,000–4,800 kPa 
for cement dosage less than 10%. Highly plastic soils 
and peat showed moderate to low improvement in 
the UCS compared to non-plastic or low plastic soils 
when cement dosage was increased.

2.2  Lime in Soil Stabilization

Lime supplied in the following forms is effective for 
soil stabilization; hydrated lime (HL), slurry lime 

(SL), and quicklime (QL) (Hicks 2002). Hydrated 
lime is in fine powder form whereas slurry lime is a 
semi-liquid mixture (Hicks 2002). Quicklime is pro-
duced by the calcination of limestone at elevated 
temperatures (Kumar et  al. 2007). Quicklime reacts 
with water to create hydrated lime and release a sub-
stantial amount of heat during the reaction (Firoozi 
et al. 2017). Hydrated lime absorbs  CO2 and becomes 
 CaCO3. The reactions of the limestone cycle are 
given in Eqs. (13–15).

Soil stabilization using lime undergoes almost 
similar reaction phases to what cement stabilization 
does except for hydration reactions.  Ca2+ present in 
lime gradually replaces monovalent cations in clay, 
which modifies diffused hydrous double-layer around 
clay particles (Bell 1996). The reduction in double-
layer escalates attraction between clay particles and 
thus attracts clay particles form flocs. On the other 
hand, available HL provides highly alkaline condi-
tions in which S and A are highly soluble. Released S 
and A from clay minerals enter a pozzolanic reaction 
with HL to form C–S–H and C–A–H, as described in 
Eqs. (11 and 12).

It should be noted that, during lime stabilization, 
due to the absence of cement clinker components 
including  C3S,  C2S,  C3A, and  C4A, primary cemen-
titious hydration reactions that were prominent in 

(13)CaCO3⇆DC + CO2

(14)C + H → HL

(15)HL + CO2 → CaCO3 + H

Table 4  Cement dosages used for diverse types of soils

Reference Soil type, USCS Plasticity index OPC dosage, % UCS, kPa

Chew et al. (2004) CH 52 5–50 20–500
Basha et al. (2005) CL 13 4–8 80–320
Sariosseiri and Muhunthan (2009) ML, SP-SM and ML-CL 3.2–13.6 2.5–10 207–4737
Praticò et al. (2012) CH 6–32 2–6 700–1200
Kalantari and Prasad (2014) Pt 0 15–50 140–730
Cong et al. (2014) CL 18 10–80 80–4807
Asgari et al. (2015) CL 9 3–7 1500–3200
Ribeiro et al. (2016) SM NP 10–13 2000–6800
Ho et al. (2017) SP NP 8 3000
Pongsivasathit et al. (2019) GW, SP, and CL NP and 19 3–11 900–4000
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cement stabilization would not occur. Instead, a sec-
ondary cementitious reaction such as the pozzolanic 
reaction would take place. Pozzolanic reactions take 
place at slower rates over a long period; therefore, the 
rate of strength gain in lime-stabilized soils is lesser 
than that in cement stabilization (Bell 1996; Hicks 
2002; Sariosseiri and Muhunthan 2009). For the 
occurrence of these reactions, there should be ample 
supply of required lime, clay minerals, and other poz-
zolanic material, and higher alkaline levels (Kassim 
and Chern 2018). Low temperature, low soil pH, and 
organic matter present in soil are believed to impede 
the progress of pozzolanic reactions (Hicks 2002).

As described earlier, a fraction of added lime is 
first adsorbed by clay minerals until the affinity of the 
soil for lime is satisfied (Bell 1996). This amount of 
lime exhausted in the initial cation exchange might be 
determined by the Initial Consumption of Lime (ICL) 
test stipulated in BS 1924–1 ("BS 1924–1: Hydrau-
lically bound and stabilized materials for civil engi-
neering purposes. Sampling, sample preparation and 
tests of materials before treatment," 2018). Rogers 
et al. (1997) have also prosed a method to determine 
ICL which was later deployed by researchers (Consoli 
et al. 2014). The remaining lime component enters a 
pozzolanic reaction to develop strength characteris-
tics in stabilized soil. The amount of lime to be added 
to the soil for stabilization therefore should exceed 
the minimum levels that are expected to be exhausted 
in cation exchange (Al-Mukhtar et al. 2010; "ORN31, 
A guide to the structural design of bitumen surfaced 
roads in tropical and sub-tropical countries," 1993).

Respective lime dosages deployed for different 
soil types and the resulting UCS reported in numer-
ous studies are detailed in Table  5. Hydrated lime 
and quicklime were used alternatively depending on 

the application. The soils with high plasticity showed 
significant improvement in UCS when stabilized with 
lime. Also, a study reported that an extremely alka-
line environment might retard the lime stabilization 
process, which could be controlled by adding some 
acids (Mishra et al. 2019).

2.3  Non-traditional Soil Stabilization

2.3.1  Fly Ash in Soil Stabilization

FA is an industrial by-product created by the combus-
tion of coal, chiefly used as a reinforcing material in 
bricks, concrete, and pavements (Bhattacharjee and 
Kandpal 2002; Fly Ash Facts for Highway Engi-
neers 2003; Ramaji 2012; Sutcu et al. 2019). Out of 
four classes of FA products, classes C and F gained 
attention to be used in the soil stabilization process. 
 SiO2 +  Al2O3 +  Fe2O3 content by weight in classes 
C and F is more than 70% and between 50 and 70%, 
respectively ("ASTM C618, Standard Specification 
for Coal Fly Ash and Raw or Calcined Natural Poz-
zolan for Use in Concrete," 2019). While class C can 
be used as a stand-alone cementitious material due 
to its rich CaO content, class F needs the addition of 
other cementing agents such as cement and lime (Fly 
Ash Facts for Highway Engineers 2003).

The chemical reactions that occur during soil sta-
bilization using FA resemble the reactions that occur 
during soil stabilization using cement/lime. Initially, 
the monovalent cations are replaced with  Ca2+ to 
reduce plasticity (Christopher et  al. 2000). Cementi-
tious and pozzolanic reactions during soil stabiliza-
tion with FA can be represented by Eqs. (14), (11), 
and (12) occur in the given order (Arman and Mun-
fakh 1972; Tastan et al. 2011). Pozzolanic reactions in 

Table 5  Lime dosages used for diverse types of soils

Reference Soil type, USCS Plasticity index Lime type Lime content, % UCS, kPa

Kassim and Chern, (2018) CH and MH 24–43 Ca(OH)2/CaO 3–12 30–190
Bell (1996) MH, CH, and ML 14–47 93.85% Ca(OH)2 + 5.00%  CaCO3 2–10 21–1598
Praticò et al. (2012) CH 6–32 Ca(OH)2 2–6 700–1200
Asgari et al. (2015) CL 9 96% Ca(OH)2 + 1.5%  CaCO3 3–9 400–1200
Al-Mukhtar et al. (2010) CH 180 94% Ca(OH)2 + 6%  CaCO3 2–20 1800–6000
Cuisinier et al. (2011) ML 12.7 90.8 Ca(OH)2/CaO 1.5–3 –
Olinic and Olinic (2016) ML-CL 24.9–34.2 CaO 2–8 –
Mishra et al. (2019) ML 11 CaO 0.5–10 450–1060
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FA are slow, and happen over a long period (Ahmaru-
zzaman 2010). Class C FA produces more C–S–H 
and C–A–H than class F due to its higher CaO con-
tent (> 20% by weight) (Sridharan et  al. 1997). A 
combination of lime and FA is commonly used in soil 
stabilization, which exhibits similar performance to 
cement-stabilized soil ("ORN31, A guide to the struc-
tural design of bitumen surfaced roads in tropical and 
sub-tropical countries," 1993). Deploying FA in road 
construction is reported to reduce construction costs 
by 10–20% (Ahmaruzzaman 2010).

2.3.2  RHA in Stabilization

RHA is produced by burning rice husk at elevated 
temperatures of more than 600 °C (Singh and Singh 
2021). RHA has high pozzolanic content due to its 
rich silica concentration (Moayedi et al. 2019). Com-
pared to traditional additives, RHA has a signifi-
cantly low reaction time, which attracted researchers 
to study about deploying RHA for soil stabilization 
(Moayedi et  al. 2019). RHA is often applied along 
with cement or lime as it does not have cementitious 
components. A study by Rahgozar et al. examined the 
usage of RHA and OPC to treat clayey sand (Rahgo-
zar et  al. 2018). The stabilized soil sample with 6% 
RHA and 8% OPC, cured for 28-days yielded UCS 
and CBR almost 25 and 18 times more than those of 
the values for untreated soil, respectively. A similar 
study by Basha et al. (2005) found that 15–20% RHA 
and 6–8% OPC were the optimum amounts to reduce 
the plasticity of residual soil to improve strength char-
acteristics. A study reported that treating lateritic 
soil with high doses of RHA yielded considerable 
improvements compared to lime and cement (Rah-
man 1986).

2.3.3  SF in Stabilization

Silica fume is an industrial by-product in the manu-
facturing of silicon and silicon alloy (Lewis 2018; 
Türköz et  al. 2021). Annually, 2.5 million tons of 
SF is produced worldwide (Lewis 2018). A study 
by Ahmad et  al. claimed that peat treated with SF 
produced slightly better UCS than the ones treated 
with OPC (Ahmad et  al. 2021a, b). Researchers 
found that adding SF to expansive clays improved 
strength characteristics while reducing the plastic-
ity index (Phanikumar and Ramanjaneya Raju 2020; 

Singh et  al. 2020). In geopolymer application, SF is 
deployed to supply silica as it contains a substantial 
amount of silica. Due to the amorphous structure, SF 
easily dissolves in an alkaline medium that promotes 
chemical reactions (Bassani et al. 2019). SF particles 
are spherical and with comparatively higher surface 
area, which improves the workability of the mix and 
provides more contact surface for chemical reactions 
(Türköz et al. 2021).

2.3.4  Coal Bottom Ash in Stabilization

As a result of the combustion of pulverized coal in 
thermal power plants, coal bottom ash (CBA) is gen-
erated as a residue (Hashemi et  al. 2019). Approxi-
mately 8.5 million tons of CBA are annually gener-
ated across the globe (Hashemi et  al. 2018; Ranjbar 
and Kuenzel 2017). The presence of silica and alu-
mina in CBA improved strength characteristics such 
as UCS, and CBR, and reduced the shrink and swell 
potential of expansive black cotton soil (Navagire 
et  al. 2022). Deploying coal bottom ash partially to 
replace OPC is a cost-effective and environmentally 
friendly option. However, the application of CBA 
possesses certain limitations as the resultant prop-
erties of stabilized soil vary, and the processing is 
complicated. Also, the existence of toxic heavy met-
als such as Ni, Cd, Zn, and Pb might cause harm to 
human beings and the environment, unless it is rightly 
handled (Hashemi et al. 2019; Zhou et al. 2022).

2.3.5  Geopolymer Technology

Production of cement, lime, FA, and RHA is con-
sidered energy-intensive, which emits harmful sub-
stances like  CO2 into the environment (Durastanti and 
Moretti 2020; Imbabi et al. 2012; Ivanov et al. 2015; 
Mayooran et  al. 2017; Moretti et  al. 2019; J. Zhang 
et  al. 2014a, b). To mitigate detrimental impacts on 
environment, sustainable practices such as replacing 
conventional additives with non-traditional ones have 
gained considerable attention in pavement construc-
tion (Consoli et al. 2020). Tingle and Santoni (2003) 
evaluated the usage of twelve non-traditional addi-
tives including acid, enzymes, lignosulfonate, petro-
leum emulsion, polymers, and a tree resin in clay soil 
stabilization. Soils stabilized with Lignosulfonate and 
polymers produced better UCS, but others exhibited 
trivial strength improvements. Importantly, most of 
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the stabilized samples with said additives showed 
inferior performance against moisture increment.

A study reported that additive is the prime contrib-
utor to stabilization cost (Rocha et al. 2021). Accord-
ingly, in the recent past, employing waste material 
for soil stabilization has been recognized as an envi-
ronmentally friendly and economically advantageous 
strategy (Anupam et  al. 2013; Imtiaz and Lovell 
1992; Zhang 2013). ESP and fibers are some of the 
potential cost-effective replacements (Consoli et  al. 
2020; Rahgozar et  al. 2018; Saldanha et  al. 2021; 
Sharma et al. 2015).

ESP contains a substantial amount of calcium 
carbonate  (CaCO3), which could be exploited to 
establish cementitious bonds during soil stabiliza-
tion (Amaral et  al. 2013; Lechtanski 2000). Consoli 
et  al. (2020) explored the usage of quicklime and 
hydrated lime derived from eggshell residues for soil 
stabilization. The authors claimed that the mechanical 
properties of stabilized soil improved with the accu-
mulation of eggshells. A similar study by Saldanha 
et  al. (2021) revealed that eggshell limes have ade-
quate physical–chemical–mineralogical character-
istics required for soil stabilization. The study also 
found that deploying eggshell limes significantly 
reduced environmental impacts. Oluwatuyi et  al. 
(2018) investigated using ESP and OPC to stabilize 
lateritic soil for highway construction. The results of 
the study revealed that CBR and UCS values of ESP 
and OPC stabilized soil were better than the soils 
stabilized with OPC or ESP alone. A similar study 

by Maduabuchi and Obikara (2018) investigated the 
potential of OPC and ESP mix for lateritic soil sta-
bilization. Accumulation of ESP in this mix was 
found to reduce plasticity and Maximum Dry Density 
(MDD), whereas Optimum Moisture Content (OMC) 
and CBR increased.

Geopolymer technology and bio-cementation are 
two noteworthy strategies to be mentioned as long 
as state-of-the-art soil stabilization techniques are 
concerned (Chung et  al. 2021; Consoli et  al. 2020; 
Gowthaman et  al. 2021; Maduabuchi and Obikara 
2018; Naveed et al. 2020; Oluwatuyi et al. 2018). In 
the geopolymer technique, aluminosilicate precur-
sors are activated using alkali activators to form an 
inorganic binder that agglomerates soil grains (Davi-
dovits 1991b). The chemical reactions that occur 
during geopolymer formation are given in Eqs. (16) 
and (17) (Davidovits 1991a; Khale and Chaudhary 
2007; Reddy et al. 2016; Singh 2018). Firstly, alumi-
nosilicate precursors release  Al3+ at highly alkaline 
conditions that subsequently form AlO−

4
 tetrahedra, 

which attracts group I cations to balance charges 
(Duxson et  al. 2007; Khale and Chaudhary 2007). 
These react with  SiO2 tetrahedra and give an amor-
phous three-dimensional polymeric chain (Davidovits 
1991b; Duxson et  al. 2007; Khale and Chaudhary 
2007). Equation  (16) explains the formation of the 
intermediate form of geopolymer precursor from the 
synthesization of silica and alumina in the presence 
of NaOH solution. Equation (17) describes the forma-
tion of a geopolymer chain consisting of Polysialate 
(-Si–O-Al-O-) bonds.

(16)

(17)



15Geotech Geol Eng (2024) 42:1–42 

1 3
Vol.: (0123456789)

Geopolymer technology uses RHA/FA, MK, and 
ESP as precursor materials and NaOH (caustic soda)/
Na2SiO3 as an alkali activator (Davidovits and Saw-
yer 1985; Poorveekan et  al. 2021). In addition, the 
available CaO in ESP and  SiO2 in RHA contribute to 
the formation of C–S–H under the presence of NaOH, 
and hence institute strength development in stabilized 
soil (Amaral et al. 2013; Moayedi et al. 2019). Some 
studies have deployed  Na2SiO3 and NaOH together 
as activators (Mashri et  al. 2020; Shekhawat et  al. 
2019). Phummiphan et al. (2016) examined the stabi-
lization potential of marginal lateritic soil using high 
calcium FA-based geopolymer with alternative ratios 
of  Na2SiO3 and NaOH as alkali activators. The study 
revealed that at a  Na2SiO3: NaOH ratio of 50:50, 
the maximum 90-day UCS was obtained. A similar 
study reported that 3–5% OPC and 4–8% FA-based 
geopolymer improved the mechanical characteristics 
of marginal lateritic soil (Teerawattanasuk and Voot-
tipruex 2019). Tan et  al. (2021a, b) treated CH-type 
soil with fly ash as a precursor and KOH as an alka-
line activator, and further reinforced it with coir fiber. 
The authors concluded that the stabilized specimens 
exhibited improved strength parameters and failure 
strain. A similar study was conducted on the same 
soil with coir fiber coated with linseed oil and tur-
pentine oil (Tan et al. 2021a, b). Treated fibers were 
found to improve compressive strength and post-peak 
stress behavior. Further, the microstructural analy-
sis revealed the formation of A–S–H and C–S–H 
gel, which improved the interaction between the coir 
fiber surface and the geopolymer matrix. The appli-
cation potential of soil stabilization with geopolymer 
technology, however, remains unevaluated for road 
construction.

2.3.6  Bio‑cementation

Bio-cementation process harnesses bacteria contain-
ing active urease enzymes (Gowthaman et  al. 2021; 
Jia He et  al. 2020; Naveed et  al. 2020). Soil is sub-
jected to cultivated bacteria, a solution of urea, and 
calcium chloride. Bacterial action decomposes 
urea into carbonate and ammonium ions as given in 
Eq. (18) (Gowthaman et al. 2021). Supplied  Ca2+ and 
produced carbonate ions form  CaCO3 mineral within 
the soil framework as shown in Eq. (19) (Gowthaman 
et al. 2021). The bacteria cells attached to the aggre-
gate surfaces provide nucleation to the formed  CaCO3 

mineral and institute crystal growth between adjacent 
soil particles, which results in the cementation of par-
ticles (Mujah et al. 2017).

2.3.7  Nanomaterial in Soil Stabilization

By adding nanoparticles as a foreign substance, the 
soil structure at the atomic level can be manipulated 
(Ghasabkolaei et  al. 2017). Due to the high specific 
surface area, the nanoparticles actively engage in 
reactions with clay minerals, ions and organic matter 
(Ghasabkolaei et al. 2017; Zhang 2007). These reac-
tions have a profound influence on the physical and 
chemical characteristics of treated soil (Kacha and 
Shah 2021; Zhang 2007). Researchers have explored 
the use of a variety of nanomaterial additives to sta-
bilize weak soils including nano-silica, nano-alumina, 
carbon nanotube and nanofiber, and colloidal silica 
(Alipour et al. 2022; Alsharef et al. 2016; Gallagher 
and Mitchell 2002; Zhang 2007). Alipour et  al. 
(2022) conducted studies on deploying nano-alumina 
and nano-silica to treat problematic soil. The authors 
concluded that nano-alumina reduced swelling poten-
tial in stabilized samples more than nano-silica did. 
From the strength perspective, nano-silica stabi-
lized samples outperformed nano-alumina treated 
samples. A study incorporated carbon nanotube and 
nanofiber into clayey sand (Alsharef et  al. 2016). A 
clear decrease in hydraulic conductivity was observed 
when the composition of carbon nanotube and 
nanofiber increased as they filled the pores between 
the soil particles. A marginal change in the plasticity 
index was observed. A similar reduction in hydrau-
lic conductivity was reported by Persoff et  al. when 
colloidal silica was used to treat sand (Persoff et  al. 
1999). Incorporating colloidal silica in loose sand 
was found to mitigate the risk of liquefaction (Gal-
lagher and Mitchell 2002). By adding nanoparticles 
as a foreign substance, the soil structure at the atomic 
level can be manipulated. The existence of nanomate-
rials might alter the physical and chemical character-
istics of treated soil due to significantly high specific 
surface area (Kacha and Shah 2021). Alipour et  al. 
(2022) conducted studies on deploying nano-alumina 

(18)H2N-CO-NH2 + 2H2O →urease CO2−
3

+ 2NH+

4

(19)Ca2+ + CO2−
3

→ CaCO3 ↓
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and nano-silica to treat problematic soil in Iran. The 
authors concluded that nano-alumina contributed bet-
ter to reducing swell potential. Meanwhile, the pres-
ence of nano-silica improved strength.

3  Parameters Influencing Soil Stabilization

The success of soil stabilization depends on param-
eters including soil type, the amount of organic mat-
ter present in the soil, sulphates and sulphide com-
position of the soil, state of compaction, moisture 
content, the temperature during stabilization, and 
curing (Maclean and Lewis 1963; Sherwood 1993). 
Appropriate control of these factors would contribute 
to steer strength development in stabilized soils, and 
to achieve desired levels of physical and mechanical 
characteristics (Afrin 2017; Sherwood 1993).

3.1  Soil Type

Soil is characterized by its particle size distribu-
tion and plasticity properties into granular soils/
coarse-grained soils and cohesive soils/fine-grained 
soils ("ASTM D2487, Standard Practice for Clas-
sification of Soils for Engineering Purposes (Uni-
fied Soil Classification System)," 2017; Das 2007; 
"M145‐91, Classification of soils and soil‐aggre-
gate mixtures for highway construction purposes," 
2012). Generally, granular soils require a relatively 
large amount of additives at the initial stages of 
stabilization to fill considerably large voids pre-
sent between soil particles (Maclean and Lewis 
1963). Strength development with the accumula-
tion of additives is guaranteed if the additive dos-
age exceeds the minimum dosage requirement for 
filling the voids. For fine-grained soils, strength 
development starts immediately as additives start 
cementing particles together from the beginning 
itself (Maclean and Lewis 1963). As per the ORN31 
standard, stabilizing soils with a uniformity coeffi-
cient below 5 is economically disadvantageous and 
the maintenance of such soil stabilization is highly 
expensive ("ORN31, A guide to the structural 
design of bitumen surfaced roads in tropical and 
sub-tropical countries," 1993).

The plasticity index is the widely accepted meas-
ure of soil expansion characteristics or swelling 
potential (Halsted et  al. 2008). Fine soils with a 

plasticity index of less than 10, generally respond 
well to cement stabilization, whereas lime stabili-
zation is effective if the plasticity index is greater 
than 10 (Hicks 2002; "ORN31, A guide to the struc-
tural design of bitumen surfaced roads in tropical 
and sub-tropical countries," 1993). For clays with 
extremely high swelling potential, a small fraction 
of lime is first added to eliminate dramatic volume 
changes (Croft 1967; Stocker 1972, 1974). There-
after, cement is added to improve the mechanical 
characteristics of soil (Prusinski and Bhattacharja 
1999).

Concisely, the particle size and plasticity index 
of the soil dictate the choice of appropriate additive 
type/s and the amount of additive to be added to sta-
bilize the soil concerned. Lime is particularly effec-
tive in reducing plasticity rapidly in high-plastic 
soils, whereas cement can perform well in all types 
of soils.

3.2  Presence of Organic Matter

The top layers of soil often constitute decomposed 
organic matter up to a depth of 1.5  m (Maclean 
and Lewis 1963; Sherwood 1993). The presence of 
organic matter in in-situ soil may react with a frac-
tion of  Ca2+ to form insoluble compounds, which 
limits the amount of available  Ca2+ for pozzolanic 
reactions (Tastan et  al. 2011). The organic matter 
in soil absorbs significantly large amounts of water, 
which can potentially reduce the available water for 
cementitious hydration reactions (Hampton and Edil 
1998). Thus, the presence of organic matter prevents 
stabilizers from developing desired strength charac-
teristics (Zumrawi 2015). Oliveira et al. (2012) found 
that an increase in organic matter caused an incre-
ment in compressibility characteristics. The influence 
of organic content in soil on its mechanical properties 
including UCS and MR was found to have a hyper-
bolic relationship (Tastan et al. 2011).

Maclean and Lewis (1963) proposed conducting 
diagnostic tests to detect the presence of organic mat-
ter in the soil. This test was performed by measur-
ing the pH value of in-situ soil one hour after adding 
10% OPC and water. A measured pH value less than 
12.1 indicated that organic matter present in soil was 
capable of preventing cement hardening (Maclean 
and Lewis 1963), which interpreted that cement sta-
bilization for that particular soil type was ineffective. 
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Ahmad et al. (2021a, b) recommended using OPC and 
filler materials to fill the voids in peat using cemen-
titious products. They also emphasized the need of 
deciding the stabilizer dosage in treating organic soil 
by considering the indexed properties and the pres-
ence of humus. Chen and Wang (2006) added extra 
admixture to overcome the issues of organic matter in 
cement-stabilized soft soil.

Organic soils contain less amount of clay particles 
and a substantial portion of humus. Soft organic soils 
of different types (Pt, OL, and OL-OH) were stabi-
lized using six different types of FA-class C and F, 
and OPC—type I (Tastan et  al. 2011). Pt-type soil 
attained lower UCS and MR values than the other 
two. The authors concluded that CaO content and 
CaO/SiO2 ratio in FA affected the increase in UCS 
and MR. Ahmad et al. (2021a, b) used a combination 
of SF and OPC to treat peat soil. UCS and CBR of 
the stabilized specimens improved with the stabilizer 
dosage and time. Strength characteristics improved 
with the increase in SF content in the mix. This was 
due to the development of compact and dense struc-
ture of peat. Morphological analysis conducted on 
the stabilized specimens revealed that the formation 
of C–S–H and C–A–H led to a dense peat matrix 
(Ahmad et al. 2023). Also, the strength development 
rate in SF stabilized specimens was more rapid than 
that of OPC. Stabilization of peat soil is challenging 
and consumes a lot of money, and requires additional 
stabilizer dosage to initiate the process (Ahmad et al. 
2021a, b). From the environmental perspective, par-
tially replacing OPC with lime, fly ash, kaolin, etc. is 
considered beneficial.

The amount of organic matter present in the soil 
is the key to fixing the stabilizer dosage. Grass-
land soils, high plasticity index soils, poorly drained 
soils, and lowland soils are susceptible to contain-
ing substantial amount of organic matter. Such soils 
need additional stabilizers or extra admixture to treat 
organic matter present in the soil.

3.3  Sulphates and Sulphides

Sulphate ions react with calcium-based additives 
to form ettringite ( C6AS3H32 ) and with additional 
hydration, ettringite is transformed into monosul-
phoaluminate ( 3C4ASH12 ) as given in Eqs.  (5) and 
(6) (Afrin 2017; Aïtcin 2016; Firoozi et  al. 2017). 

Produced compounds occupy larger volumes than the 
reactants. This expansive nature breaks the bonds in 
stabilized soil (Maclean and Lewis 1963). Sulphate 
content in the soil can be determined according to 
British Standard 1377–3 ("BS 1377–3—Methods of 
test for Soils for civil engineering purposes—Part 3: 
Chemical and electro-chemical tests," 1990).

Sulphides present in industrial by-products might 
be oxidized in the presence of water to form sulphu-
ric acid ( SH ). Cementitious hydration reactions form 
HL and C–S–H, which further reacts with SH to form 
gypsum ( CSH2 ) as shown in Eqs. (20) and (21).

Formed gypsum enters a similar reaction with 
cementitious products to form ettringite and monosul-
phoaluminate as shown in Eqs. (5) and (6).

If the pH of a system is high, ettringite can precipi-
tate when an adequate amount of sulphate, calcium, 
and alumina ions are available along with water (Diaz 
Caselles et al. 2020).The addition of lime or cement 
can release HL in the system, which can potentially 
increase the pH of the system (Celik and Nalbantoglu 
2013; Diaz Caselles et al. 2020). On the other hand, 
soils with significant amount of alumina and calcium 
ions are susceptible to the formation of ettringite and 
monosulphoaluminate. Therefore, the choice of addi-
tive requires considering the chemical composition of 
the soil and its contribution to the pH of the system to 
eliminate sulphate attack.

3.4  State of Compaction

Stabilized soil is compacted until it reaches MDD 
under OMC. For a particular soil sample, MDD and 
OMC can be determined according to the modified 
Proctor compaction test stipulated in British Stand-
ard 1377–4 ("BS 1377–4, Methods of test for—Soils 
for civil engineering purposes—Part 4, Compaction-
related tests," 1990). For each additive content, 5–6 
stabilized soil samples are to be cast with alternative 
moisture contents, and their corresponding dry den-
sities are measured. By plotting dry densities against 
moisture contents, MDD and OMC can be determined 
by choosing the highest density and respective mois-
ture content, respectively, for a designated additive 

(20)HL + SH → CSH2

(21)C3S2H3 + 3SH → 3CSH2 + S2H4



18 Geotech Geol Eng (2024) 42:1–42

1 3
Vol:. (1234567890)



19Geotech Geol Eng (2024) 42:1–42 

1 3
Vol.: (0123456789)

content ("BS 1377–4, Methods of test for—Soils for 
civil engineering purposes—Part 4, Compaction-
related tests," 1990). During cement stabilization, 
hardening reactions described in Eqs.  (1) and (2) 
start occurring immediately when water is added to 
the soil cum cement mix. The hardened soil–cement 
mix might require additional compaction energy to 
obtain the required MDD, also compaction may break 
the bonds formed during hardening that resulting in 
a loss of strength. To prevent compaction from being 
hindered by hardening, the cement-stabilized soil 
samples should be immediately compacted (Afrin 
2017; "ORN31, A guide to the structural design of 
bitumen surfaced roads in tropical and sub-tropical 
countries," 1993).

For cement-stabilized soils, generally, MDD 
decreases with the increase in cement content, how-
ever, OMC increases (Basha et  al. 2005; Pongsiva-
sathit et  al. 2019). A similar tendency in MDD and 
OMC was also reported in lime-stabilized soils 
(Asgari et al. 2015; Rahman 1986). On the contrary, 
in soil stabilized with cement and FA-based mix, 
with increasing FA content, MDD decreased initially 
and then increased (Degirmenci et  al. 2007; Zum-
rawi 2015). Basha et  al. (2005) reported that MDD 
decreased with increasing additive content includ-
ing cement, RHA, a mixture of 4% cement blended 
with RHA, and a mixture of 8% cement blended with 
RHA. OMC, however, increased in all cases. These 
variations in MDD could be attributed to the change 
in grain size distribution, specific gravity of soils and 
type of stabilizing agent (Nalbantoğlu 2004; Rah-
man 1986, 1987). Stabilized soils form large grains 
through the agglomeration process that consequently 
occupy larger spaces, which in turn increase voids 
between soil grains. An increase in the volume of 

voids contributes to a decrease in MDD. When the 
stabilizer is of high specific gravity, some soils have 
shown a decrease in MDD due to the agglomeration 
of grains initially. Continuous accumulation of stabi-
lizer will start filing the voids, which would reduce 
the volume of voids and consequently increase MDD. 
Decreased levels of MDD obtained in stabilized soils 
imply that lower levels of compaction are required 
to achieve designated MDD which eventually saves 
money spent on compaction (Muntohar and Hantoro 
2000).

Figure  4 illustrates a comparison of MDD and 
OMC variations between various soil types stabi-
lized with different stabilizing agents. MDD of most 
of the stabilized soils range between 1.2 and 1.8 Mg/
m3, and OMC values fall between 15 and 45%. With 
the increase in stabilizer dosage, all stabilizers except 
cement kiln and fly ash showed decreasing and 
increasing trends in MDD and OMC, respectively.

The MDD reduces with the increase in additive 
dosage for all typical stabilizers. Reduction in MDD 
could impact the strength characteristics of the stabi-
lized mix. The stabilizer dosage is therefore carefully 
manipulated to satisfy the standard requirements of 
each application. Backfills of retaining walls are ben-
efited from the reduction in MDD as the lateral pres-
sure exerted by the soil on the structures decreases.

3.5  Curing

Curing in stabilized soils is performed by maintain-
ing the required moisture levels and temperature to 
support cementitious reactions throughout the curing 
age (Mitchell and Hooper 1961). For cement-based 
stabilizers, cementitious hydration takes place imme-
diately to bind soil particles together, followed by 
pozzolanic reactions (Aïtcin 2016). For the other sta-
bilizers including, lime, RHA, FA, and ESP, pozzo-
lanic reactions slowly start occurring and continue for 
a long period (Bell 1996; Prusinski and Bhattacharja 
1999). ORN 31 standard recommends UCS tests to be 
done on samples sealed and moist-cured at 25 °C for 
7 days and soaked for 7 days, whereas CBR tests to 
be carried out on samples sealed and moist-cured at 
25  °C for 21  days and soaked for 7  days ("ORN31, 
A guide to the structural design of bitumen surfaced 
roads in tropical and sub-tropical countries," 1993).

Fig. 4  MDD and OMC variation in various soils stabilized 
with different stabilizer/s. GW, SM, SP, SC, OH, CH, CL, 
ML, and MH are standard USCS notations used to represent 
soil types. OPC ordinary Portland cement, RHA Rice husk ash, 
LME Lime, FLA C Fly ash, class C, FLA F Fly ash, class F, 
CKN Cement kiln dist, PHP Phosphogypsum and ESP Egg-
shell powder (Basha et al. 2005; Degirmenci et al. 2007; Mad-
uabuchi and Obikara 2018; Mishra et al. 2019; Muntohar and 
Hantoro 2000; Nath et al. 2017; Oluwatuyi et al. 2018; Pong-
sivasathit et al. 2019; Rahman 1986; Rimal et al. 2019; Zum-
rawi 2015)

◂
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3.5.1  Moisture Content

A sufficient amount of moisture is required during 
the soil stabilization process to support compaction 
and cementitious reactions (Afrin 2017). Compaction 
and stabilization are governed by OMC and water-
to-cement ratio, respectively (Zumrawi 2015). Both 
parameters are expressed in terms of the dry weight 
of the soil (Zumrawi 2015).

Granular soils may be stabilized with OMC 
obtained from the Proctor compaction test (Maclean 
and Lewis 1963). The mechanical characteristics 
of cement-stabilized soil greatly depend on the 
water-to-cement ratio (Miura et  al. 2001). Literature 
report a hyperbolic relationship between UCS and 
water-to-cement ratio (Chian et al. 2016; Cong et al. 
2014; Miura et  al. 2001) for various types of soils. 
However, a study by Ribeiro et  al. (2016) revealed 
that maximum UCS resulted when the optimum 
water-to-cement ratio was in the range of 1.0–1.5 for 
cement-stabilized silty-sand. Large UCS was attained 
for higher cement dosage irrespective of the water-
to-cement ratio. Moreover, the authors claimed that 
UCS developed faster due to the formation of disper-
sive bonds between sand grains when larger water-to-
cement ratios were adopted. However, the speed of 
curing did not guarantee maximum strength (Ribeiro 
et al. 2016).

For cement stabilization of cohesive soils, the rec-
ommended moisture content is 2% below the plas-
tic limit to yield high states of compaction and to 
obtain low water absorption in hardened soil–cement 
(Maclean and Lewis 1963). Asgari et al. (2015) found 
that the initial water-to-stabilizer ratio significantly 
affected the mechanical properties of stabilized CL-
type soil. For cement and lime-treated soils, three dif-
ferent initial water-to-stabilizer ratios were used; 2% 
less than OMC (dry side), OMC, and 2% more than 
OMC (wet side). Soils stabilized with dry side water 
yielded higher UCS than wet side. Lime stabiliza-
tion with hydrated lime or quicklime consumes water 
amounts to 20–30% of their self-weight (Hebib and 
Farrell 2003; Sherwood 1993). Soils with great water 
affinity such as clay and peat absorb plentiful water 
leaving insufficient water available for hydration reac-
tions (Hebib and Farrell 2003; Hicks 2002).

Appropriate moisture content is vital in attaining 
high strength characteristics. The amount of water 
to be added is dictated by parameters of compaction 

and stabilization. The OMC required for compac-
tion needs to be manipulated by accommodating the 
moisture requirements pertaining to soil plasticity and 
additive consumption.

3.5.2  Temperature

In the presence of elevated curing temperatures, 
higher degrees of hydration reaction take place, 
which expedite the release of HL required for poz-
zolanic reactions. The temperature rise and availabil-
ity of ample amount of HL accelerate the pozzolanic 
reaction, which promotes strength development in 
stabilized soils at both early and mature ages (Afrin 
2017; Rao and Shivananda 2005; Zhang et al. 2014a, 
b). George et  al. (1992) claimed that lime-stabilized 
soil at 50 °C resulted in more strength gain than that 
treated at lower temperatures. A similar influence of 
temperature on UCS of clay soil stabilized with lime 
has been reported by Bell (1996). Al-Mukhtar et  al. 
(2010) found that increasing the curing temperature 
from 20 to 50  °C multiplied the rate of pozzolanic 
reaction by six. Zhang et al. (2014a, b) claimed that 
higher curing temperatures not only yielded higher 
short-term UCS but also ultimate UCS in cement-
treated clay. In the published literature, the mechani-
cal characteristics of stabilized soils were evaluated 
at temperatures ranging between 20 and 50 °C, con-
sidering typical air temperature variations in different 
countries.

To capitalize on the positive impact provided by 
elevated temperatures, studies have recommended to 
carryout stabilization of soil with cement and poz-
zolanic additives such as Lime, FA, and RHA during 
warmer conditions for better results (Sherwood 1993). 
Also, the practical implications pertaining to elevated 
temperatures are another concern. On the other hand, 
carbonation might increase with the temperature rise, 
which needs to be dealt with appropriately.

3.5.3  Curing Age

According to the reviewed literature, typical curing 
ages set to monitor the change in properties of sta-
bilized soil are 3, 7, 14, 28, 56, and 91 days (Asgari 
et  al. 2015; Ho et  al. 2017; Latifi et  al. 2017; Olu-
watuyi et al. 2018; Phummiphan et al. 2016; Prusin-
ski and Bhattacharja 1999; Rahman 1987; Rimal et al. 
2019). Rarely researchers have tested the properties 
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of stabilized soils at 1  day or 180, 224, 300, and 
365 days (Kalantari and Prasad 2014; Lemaire et al. 
2013; Rimal et al. 2019; Zhang et al. 2014a, b). Fig-
ure  5 illustrates the UCS development over the cur-
ing age. In all the soil-stabilizer combinations, rapid 
strength development is visible for up to 28 days, the 
rate of strength gain decreases afterward and eventu-
ally, it attains an asymptotic relation with curing age. 
A study compared the effect of curing age in cement 
and lime-stabilized soils, and found that the most 
significant changes occurred after 1 h curing period, 
and subsequent changes were marginal (Christensen 
1969). In the initial stages of curing, cementitious 
hydration reactions are prominent in cement-based 
additives that contribute to rapid strength develop-
ment. Pozzolanic reactions occur after cementitious 
hydration reaction at slower rates, which contribute 
to slower strength gain. In soil stabilization using 
stabilizers such as lime, RHA, FA, and ESP, strength 
development is caused by pozzolanic reactions only 
that provide a slower strength gain. Eventually, at the 
exhaust of required inputs for pozzolanic reactions, 
strength gain becomes zero. Horpibulsuk et al. (2010) 
found that, with the increase in curing age, hydra-
tion reactions increased to form cementitious prod-
ucts. They filled pores between granular particles and 
reduced total pore volume. Reduction in pores conse-
quently contributed to an increase in strength.

For all types of additives, the strength development 
in stabilized soil has been significant up to 28  days 
from the treatment. Appropriate curing conditions are 

to be ensured during this period to guarantee that the 
stabilized soil attains the maximum possible strength.

3.5.4  Curing Types

Kalantari and Prasad (2014) explored the effect of 
types of curing including air curing, moist curing, 
and moist curing with a surcharge load of 10 kPa on 
cement-stabilized peat samples. The authors meas-
ured the UCS of cured samples under the above con-
ditions after curing periods of 28, 90, and 180 days, 
and found that moist curing with surcharge load 
resulted in the highest percent increase in UCS. Simi-
larly, a study by Ho et al. (2017) compared sealed (for 
91 days) and drying (sealed for 7 days and air-cured 
from  7th to  91st day) curing conditions for cement-
stabilized sand and concluded that drying curing 
conditions produced the highest UCS. Different types 
of curing mediums including distilled water and sea-
water have been used by researchers (Chian et  al. 
2016; Xiao et  al. 2014). Emarah and Seleem (2018) 
found that adding seawater to lime stabilization of 
highly expansive clay yielded a significant reduction 
in swelling potential and an improvement in com-
pression potential. Table 6 provides details of curing 
methods used for different soil types stabilized with 
various stabilizing agents. Figure 6 illustrates the var-
iation of UCS against curing age for different curing 
types.

Fig. 5  Variation in unconfined compressive strengths for dif-
ferent soil types and stabilizers with curing age. SM, OH, CH, 
CL, and MH are standard USCS notations used to represent 

soil types. OPC ordinary Portland cement, LME Lime, FLA C 
Fly ash, class C, ESP Eggshell powder, SH‑85 calcium-based 
powder additive
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3.6  Carbonation

In lime stabilization, HL or C could react with atmos-
pheric  CO2 to form  CaCO3, which is an insoluble 
content. Equations  (13) and (15) govern chemical 
reactions of the formation of  CaCO3. Similarly, in 
cement stabilization, cementitious hydration prod-
ucts including C–S–H and C–A–H formed at initial 
stages, are susceptible to carbonation, and their chem-
ical reactions are shown in Eqs. (22) and (23) (Gour-
ley and Greening 1999).

Other stabilizing agents including FA-class C, 
ESP, phosphogypsum, and cement kiln dust, which 
have rich C content also could potentially react with 
atmospheric  CO2 to form  CaCO3.

This early formation of  CaCO3 retards pozzolanic 
reaction and strength gain, which could potentially 
lead to premature failure of pavements. To prevent 
carbonation from occurring at the pre-stabilization 

(22)C-S-H + CO2 → CaCO3 + S + H

(23)C-A-H + CO2 → CaCO3 + A + H

Table 6  Summary of curing methods used in soil stabilization

Reference Soil type Stabilizing agent Curing method UCS, kPa

Kalantari and Prasad (2014) Pt OPC Air curing 130–725
Kalantari and Prasad (2014) Pt OPC Moist curing 30–325
Kalantari and Prasad (2014) Pt OPC Moist curing with surcharge 40–1100
Ho et al. (2017) SP OPC Sealed curing 2026–2990
Ho et al. (2017) SP OPC Air curing 2026–5518
Rezaeimalek et al. (2017) SP Liquid polymer Air curing 412–790
Rezaeimalek et al. (2017) SP Liquid polymer 4 days of air curing and moist curing 758–1330
Rezaeimalek et al. (2017) SP Liquid polymer 4 days air curing and heat at 100 °C 758–788
Hampton and Edil (1998) Pt BFSC and anhydrite Sealed curing 843–1095
Hampton and Edil (1998) Pt BFSC and anhydrite Moist curing with surcharge 988–1250

Fig. 6  Variation in unconfined compressive strengths for dif-
ferent curing types and soils with curing age. Pt and SP are 
standard USCS notations used to represent soil types; OPC 
ordinary Portland cement, LP Liquid polymer, A Air curing, M 

Moist curing, MS Moist curing with surcharge, S Sealed cur-
ing, AM Air curing and moist curing, and AH Air curing and 
heating at 100 °C (Ho et al. 2017; Kalantari and Prasad 2014; 
Rezaeimalek et al. 2017)
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stage, it is important to minimize the exposure of sta-
bilizing agents to air during manufacturing and stor-
ing processes. At post-stabilization, direct exposure 
of stabilized soil with air is to be curtailed by sealing 
it with polythene or a layer of water.

The carbonation effect can be quantified in sta-
bilized soil by measuring the pH of stabilized soil. 
The presence of HL and OPC will have a pH > 12.4, 
C–S–H and C–A–H will have a pH ranging from 11.0 
to 12.6 and  CaCO3 will have pH = 8.3 (Gourley and 
Greening 1999). Indicators including phenolphtha-
lein, phenol red, and dilute hydrochloric acid have 
been prescribed to detect the presence of C, HL, 
C–S–H, and C–A–H (Gourley and Greening 1999; 
Netterberg 1984).

Carbonation affects the durability of the stabi-
lized soil and hence promotes progressive strength 
reduction, which can lead to structural failure. Cal-
cium-rich additives are more susceptible to a higher 
degree of carbonation if exposed to air after stabili-
zation. Typical additives such as OPC and lime con-
tain significant amounts of calcium, and so do non-
traditional stabilizers including FA-class C, ESP, and 
phosphogypsum. This emphasizes the need for proper 
curtailment of stabilized soil with air.

4  Engineering Properties of Stabilized Soil

The performance of soil stabilization has been his-
torically evaluated through physical attributes includ-
ing Atterberg limits and density (Amaral et al. 2013; 
Miller and Azad 2000; Muntohar and Hantoro 2000; 
Nath et al. 2017; Zumrawi 2015); mechanical parame-
ters such as UCS, CBR, MR, indirect tensile strength, 
and Young’s modulus (Miller and Azad 2000; Mishra 
et al. 2019; Muntohar and Hantoro 2000; Oluwatuyi 
et  al. 2018; Pongsivasathit et  al. 2019; Praticò and 
Puppala 2012); swelling characteristics namely swell-
ing potential and swell pressure (Nalbantoğlu 2004; 
Zumrawi 2015), and durability aspects including 
resistance to loss in strength (Oluwatuyi et al. 2018). 
Limiting criterion of these properties are stipulated 
in different standards for various pavement applica-
tions (Hicks 2002; "ORN31, A guide to the struc-
tural design of bitumen surfaced roads in tropical and 
sub-tropical countries," 1993; "SCA/5—Standard 
Specifications for Construction and Maintenance of 
roads and bridges," 2009; "Standard Specifications 

for Transportation materials and Methods of Sam-
pling and Testing," 2015). Table  7 details the tests 
conducted to assess the performance of stabilized 
soil in numerous studies and the respective stand-
ards. Fundamentally, strength-related tests such as 
UCS, CBR, third point loading test, dynamic flexural 
loading, and resilient modulus are conducted on sta-
bilized soil samples compacted at MDD or to match 
minimum field requirements. Atterberg limits and pH 
tests are conducted to monitor the change in plastic-
ity and carbonation, respectively. Recently, advanced 
tests such as X-ray diffraction (XRD) analysis and 
Scanning Electron Microscope (SEM) are being con-
ducted to examine mineralogical and morphological 
characteristics.

4.1  Physical Attributes

After adding stabilizing agent, soil particles undergo 
cation exchange and particle restructuring through 
which soil plasticity and density change. The changes 
in plasticity and density can be measured by con-
ducting Atterberg limits and Proctor compaction 
tests, respectively. Density properties have already 
been discussed in Sect. 3.4. The Atterberg limits test 
is conducted according to ASTM D4318 ("ASTM 
D4318, Standard test methods for Liquid Limit, Plas-
tic Limit, and Plasticity Index of soils," 2005) stand-
ard to determine the consistency limits of stabilized 
soil. By estimating Liquid Limit (LL) and Plastic 
Limit (PL), Plasticity Index (PI) can be estimated by 
finding the difference between LL and PL.

Figure  7 shows Atterberg limits obtained for 
various soil types stabilized with different stabi-
lizing agents. Variation of LL with stabilizer dos-
age remains unchanged or decreases for all types of 
soils except OH, on the contrary PI decreased with 
the increase in stabilizer dosage in all soil types. As 
briefly noted earlier, when the stabilizing agent is 
added to soil, cations present that are of high affin-
ity to water are replaced with low-affinity ones in the 
stabilizer. The exchange of ions retards the ability of 
soil particles to attract and retain water around, which 
turns soils less plastic. The degree of change in plas-
ticity greatly depends on the type and amount of cati-
ons present in soil and stabilizing agents (Bell 1996; 
Miller and Azad 2000). An organic component pre-
sent in the OH soil type consumes a large amount of 
water, which might have contributed to the slight rise 
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in LL. Cement-based stabilizing agents are effective 
for soils with a PI less than 10, whereas lime stabili-
zation is effective for soils with a PI above 10 (Hicks 
2002; "ORN31, A guide to the structural design of 
bitumen surfaced roads in tropical and sub-tropical 
countries," 1993).

4.2  Mechanical Parameters

The structural stability of stabilized soils is assessed 
by determining their mechanical parameters. Histori-
cally, UCS (Amaral et  al. 2013; Asgari et  al. 2015; 
Bell 1996; Consoli et  al. 2020; Degirmenci et  al. 
2007; Latifi et  al. 2017), MR (Bhuvaneshwari et  al. 
2019; Ikechukwu et  al. 2021; Pongsivasathit et  al. 
2019; Solanki et  al. 2010; Tastan et  al. 2011) and 
CBR (Basha et al. 2005; Oluwatuyi et al. 2018; Pong-
sivasathit et al. 2019; Zumrawi 2015) have been pre-
dominantly used in the studies to assess improvement 

in mechanical parameters. In addition to these three, a 
few studies have used indirect tensile strength (Prat-
icò and Puppala 2012), third point loading (Pong-
sivasathit et  al. 2019), and Young’s modulus (Cong 
et  al. 2014; Sariosseiri and Muhunthan 2009) for 
evaluation.

Figure  8a shows the variation of UCS with sta-
bilizer dosage for diverse types of soil. Cement-
stabilized SC soil produced exceptionally well 
UCS as the readily available coarse grain in sand 
contributed to strength gain. For cement-based sta-
bilizers (OPC, cement kiln), improvement in UCS 
with stabilizer dosage was drastic for all soil types. 
For 5–15% stabilizer dosage, the UCS of most of 
the stabilized soil lay between 700 and 1500  kPa. 
When cement-blended stabilizers were added to 
the soil, cementitious hydration occurred immedi-
ately, which could be attributed to the initial rapid 
strength gain. The rate of strength gain declined 

Fig. 7  Variation of Liquid limit (LL) and plasticity index 
(PI) of different soil types with various stabilizer dosages. SC, 
ML, MH, CL, CH, and OH are standard USCS notations used 
to represent soil types; RHA Rice husk ash, LME Lime, OPC 
ordinary portland cement, FLA C Fly ash, class C, FLA F Fly 

ash, class F, CKN cement kiln dist, PHP phosphogypsum and 
ESP Eggshell powder (Degirmenci et  al. 2007; Maduabuchi 
and Obikara 2018; Miller and Azad 2000; Muntohar and Han-
toro 2000; Nath et al. 2017; Rahman 1986; Zumrawi 2015)
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Fig. 8  Variation of mechanical properties with various sta-
bilizer dosages. SC, SM, OH, CH, CL, ML, MH, and OH are 
standard USCS notations used to represent soil types; RHA 
Rice Husk Ash, LME Lime, FLA C Fly ash, class C, FLA F 
Fly ash, class F, CKN Cement Kiln dist and ESP Eggshell 
powder (Asgari et al. 2015; Basha et al. 2005; Bhuvaneshwari 

et al. 2019; Ikechukwu et al. 2021; Latifi et al. 2017; Muntohar 
and Hantoro 2000; Nalbantoğlu 2004; Nath et  al. 2017; Olu-
watuyi et al. 2018; Onyelowe et al. 2021; Praticò and Puppala 
2012; Rahman1986; Rimal et al. 2019; Jaritngam et al. 2014; 
Soltani et al. 2017; Tastan et al. 2011; Zumrawi 2015)
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thereafter. On the contrary, lime stabilization 
showed a steep increase in UCS up to 4% dosage 
and then began to decline for subsequent accumu-
lation in lime dosage. This phenomenon could be 
associated with the reduction in dry density of lime-
stabilized soils (Bell 1996). Stabilization of organic 
soil with high plasticity, with FA (class C/F) up to 
20% dosage achieved strengths less than 80  kPa. 
OPC and RHA mix stabilization showed a moderate 
improvement in UCS and reached a maximum UCS 
of 1,190 kPa at a dosage of 30%. Both RHA and FA 
entered a pozzolanic reaction with soil components 
at a slower rate, which improved the UCS of stabi-
lized soil at a steady rate. The presence of organic 
matter in OH-type soil maintained a lower pH value, 
which heavily retarded pozzolanic reaction and 
strength gain in FA-stabilized soil. UCS require-
ments stipulated in ORN 31 for stabilized road base 
(CB1), stabilized road base (CB2), and stabilized 
sub-base (CS) are 3,000–6,000, 1,500–3,000, and 
750–1,500  kPa, respectively ("ORN31, A guide to 
the structural design of bitumen surfaced roads in 
tropical and sub-tropical countries," 1993). SC and 
CL type soils stabilized with OPC at 5–10% dos-
age satisfied the minimum requirements for sta-
bilized road base (CB1). For stabilized sub-base, 
CL, CH, ML, and MH-type soils treated with the 
combination of OPC, RHA, SH85, CKN, and LMN 
at a dosage of 5–10% might be suitable. However, 
another CL-type soil required more than 20% dos-
age of the combination of OPC and RHA to satisfy 
the minimum requirements for stabilized sub-base. 
This might be attributed to the chemical composi-
tion of the soil that exhausted a substantial portion 
of additives in cation exchange. Organic soil treated 
with fly ash was unsuitable to be used for road 
pavements.

Figure  8b shows the CBR variation with stabi-
lizer dosage for diverse types of soils. CBR variation 
with stabilizer dosage resembles the trend observed 
in UCS variation. Coarse-grained soils stabilized 
with RHA, Lime, OPC, ESP, and OPC showed 
rapid improvements at the initial stage and gradu-
ally attained a saturated state. Lime stabilization, as 
explained earlier, increased and then declined due to 
the associated changes in dry density. Highly plas-
tic soils stabilized with lime or RHA did not show 
notable improvement in CBR values. A minimum 
CBR value recommended for subgrade and sub-base 

applications is 15% and 30%, respectively ("ORN31, 
A guide to the structural design of bitumen surfaced 
roads in tropical and sub-tropical countries," 1993). 
MH-type soil stabilized with RHA or lime could not 
satisfy the minimum requirements for the stabilized 
pavement. Mostly, sandy soils stabilized with OPC, 
lime, and ESP at a dosage of less than 5% satisfied 
the minimum requirements for sub-base and sub-
grade. Surprisingly, a CH-type soil too showed dras-
tic improvement in CBR. Sandy clay treated with an 
RHA dosage of more than 10% satisfied the minimum 
requirements for sub-base and subgrade.

The state-of-the-art world practices follow the 
mechanistic-empirical design of pavements, which 
assesses the performance of a pavement under 
repeated loading ("AASHTO Guide for Design of 
Pavement Structures," 1993). MR is one of the vital 
input parameters for the mechanistic-empirical design 
of pavements, which measures elastic characteris-
tics of subgrade incorporating nonlinear characteris-
tics (Fabiana et  al. 2011; Qubain et  al. 2000; Sabe-
rian et al. 2018). Figure 8c shows the change in MR 
with stabilizer dosage. Lime-stabilized soils showed 
a steep increase in MR even with small lime dosages. 
FA-based stabilizers showed a steady improvement 
in MR with higher stabilizer dosages. However, the 
final MR obtained at 30% stabilizer dosage was much 
less than that of lime (< 10%) stabilized soils. Due to 
higher CaO content, higher MR was observed in soil 
stabilized with FA–C compared to that of FA-F.

Young’s modulus variation with stabilizer dosage 
is illustrated in Fig. 8d. Young’s modulus of soil sta-
bilized with lime-based stabilizer increased with sta-
bilizer dosage up to 5–10% and thereafter showed a 
descending trend whereas cement-based stabilizer 
exhibited continuous improvement.

4.3  Swelling Potential and Swell Pressure

Figure  9 displays the variation in swelling potential 
with stabilizer dosage for fine-grained soils. In gen-
eral, swelling potential reduced with an increase in 
stabilizer dosage for all types of stabilizers. Lime-
based stabilizers showed a rapid reduction in swell 
potential during the initial stages of stabilization, 
compared to other stabilizers. This could be attributed 
to the abundantly available  Ca2+ in lime-based stabi-
lizers, which replaced cations that in turn reduce the 
affinity of clay particles toward water. This lowered 
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the water-attracting capacity of clay particles. There-
after, pozzolanic reactions occurred to form flocs in 
the treated soil, which eventually reduced both plas-
ticity and swelling potential. Cement–based stabiliz-
ers immediately started hydration reactions, which 
gradually formed granular particles. The formation of 
granular particles brought down plasticity and swell-
ing potential. Agglomeration of particles is the major 
factor in controlling the swell potential of clayey 
soils.

High swell potential corresponds to high swell 
pressure, which is exhibited by soil upon inunda-
tion. Excessive swell-shrink behavior exerts fatigue 
load on the structural elements and eventually leads 
to structural failure. Calcium-rich additives are 
observed to be effective in reducing the swell poten-
tial of high-plasticity soils. Also incorporating lime or 
RHA-based additives and other additives might work 
well in reducing swell potential. The determination of 
additive dosage should take account into the amount 
of additive exhausted in the initial cation exchange.

4.4  Durability Aspects

Durability tests are conducted if the stabilized soil is 
affected by the presence of moisture (Maclean and 

Lewis 1963). As per the standards, loss in strength 
between a soaked sample and the unsoaked sample 
is used to quantify durability ("BS 1924–1: Hydrau-
lically bound and stabilized materials for civil engi-
neering purposes. Sampling, sample preparation and 
tests of materials before treatment," 2018; "ORN31, 
A guide to the structural design of bitumen surfaced 
roads in tropical and sub-tropical countries," 1993). 
Studies have reported determining the ratio between 
UCS of samples that are cured under controlled con-
ditions for 7  days and soaked in water for another 
7  days, and samples continuously cured for 14  days 
under controlled conditions (Basha et al. 2005; Olu-
watuyi et al. 2018) to quantify the resistance to loss in 
strength. As per British standard, the recommended 
minimum resistance to loss in strength is 80% ("BS 
1924–1: Hydraulically bound and stabilized materi-
als for civil engineering purposes. Sampling, sample 
preparation and tests of materials before treatment," 
2018). Figure  10 depicts the variation of resistance 
to loss in strength with stabilizer dosage. Cement-
based stabilizers exhibited better durability properties 
with the increase in stabilizer dosage. However, an 
increase in RHA beyond 10% reduced the resistance 
of stabilized soil to loss in strength. Dosages between 

Fig. 9  Variation of swelling potential with various stabilizer 
dosages. CH, CL, and MH are standard USCS notations used 
to represent soil types; OPC ordinary Portland cement, RHA 
Rice Husk Ash, LME Lime, FLA C Fly ash, class C, FLA F 

Fly ash, class F, QARHA Quicklime activated RHA, HARHA 
Hydrated lime activated RHA and CARHA calcite activated 
RHA (Muntohar and Hantoro 2000; Nalbantoğlu 2004; 
Onyelowe et al. 2021; Soltani et al. 2017)
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5 and 20% satisfied the minimum requirement for 
considered stabilized soils.

5  Economic and Environmental Perspectives

The total cost incurs during soil stabilization includes 
raw material cost, transport cost, and in-place stabili-
zation cost. To assess the economic benefits, the total 

cost-to-strength ratio is estimated for each stabilizer 
as described in Eq. (24)

Energy consumption and Carbon dioxide emis-
sion are the two indicators that reveal the burden on 
the environment. For each stabilizer, the energy-to-
strength ratio and  CO2-to-strength ratio are computed 
as given in Eqs. (25) and (26).

(24)Cost - strength ratio =
Total cost incur in soil stabilization (USD)

UCS (in kPa)

(25)Energy - strength ratio =
Total energy consumed in soil stabilization (MJ/ton)

UCS (in kPa)

Fig. 10  Variation of resist-
ance to loss in strength with 
various stabilizer dosages. 
SM and CL are standard 
USCS notations used to 
represent soil types; OPC 
ordinary Portland cement, 
RHA Rice Husk Ash, and 
ESP Eggshell powder 
(Basha et al. 2005; Olu-
watuyi et al. 2018)

Table 8  The cost, energy 
consumption, and  CO2 
emission of materials 
used in soil stabilization 
(Amouzadeh Omrani and 
Modarres 2018; Aysha et al. 
2014; Chiaia et al. 2014; da 
Rocha et al. 2016; El-Attar 
et al. 2017; Ghavami et al. 
2021; Hu et al. 2020; Lenka 
et al. 2021; Meddah et al. 
2018; Poorveekan et al. 
2021; Rocha et al. 2021)

Price (USD/ton) Embodied energy 
(MJ/ton)

CO2 emis-
sion (kg/
ton)

Cement 118.40 4976.00 980.00
Water 0.32 5.74 0.32
Cement kiln dust 0.00 1760.00 964.30
Rice husk ash 0.00 353.50 157.00
Fly ash 0.00 33.48 3.55
Hydrated lime 95.72 978.75 125.25
NaOH 250.00 3528.00 630.00
ESP (grinding and heating) 1.80 792.00 60.00
Silica fume 0.00 36.00 28.00
Material transportation (1  m3/km) 4.00 1.25 5.18
In-place stabilization 3.34 15.00 1.13
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The cost, energy, and  CO2 emission of stabiliza-
tion materials and processes have been extracted from 
published literature and are detailed in Table 8.

Figure  11 depicts cost-strength, energy-strength 
and  CO2 emission-strength ratios estimated for sev-
eral types of soils and stabilizers. Cement-based sta-
bilizers, since producing higher UCS, show attractive 
cost-strength, energy-strength, and  CO2 emission-
strength ratios, and so are lime-stabilized soils. Silica 
fume too exhibited better ratios in treating peat soil. 
On the contrary, RHA and FA stabilizers exhibited 
poor ratios in all three categories. For high plastic 
soils, all ratios were better in lime-stabilized soils 
than in cement-stabilized soils. For coarse-grained 
soils with low plasticity, cement stabilization was 
effective.

(26)
CO2 emission - strength ratio =

Total CO2 emission in soil stabilization (kg/ton)

UCS (in kPa)

6  Industrial Application Perspectives

Construction industries have been traditionally using 
cement, lime, and fly ash to stabilize weak soils (Nel-
son et al. 2015). Recently, a transformation from tra-
ditional techniques to more sophisticated techniques 
has taken place, which accounts for sustainability 
aspects (Gomes Correia et  al. 2016). Incorporating 
sustainability perspectives in soil stabilization focuses 
on reducing carbon footprint, energy consumption, 
and extraction of natural resources while improving 
engineering characteristics of stabilized geotechnical 
elements cost-effectively. These multi-objective tasks 
often require comprehensive design, skilled person-
nel, and stringent monitoring mechanisms. This has 
become more crucial when non-traditional additives 

Fig. 11  The cost-strength, energy-strength and  CO2-strength 
ratios of various stabilized soils. SM, SC, ML, MH, CL, CH, 
and OH are standard USCS notations used to represent soil 
types; OPC ordinary Portland cement, RHA Rice Husk Ash, 
LME Lime, FLA C Fly ash, class C, FLA F Fly ash, class F, 

CKN Cement Kiln dist and ESP Eggshell powder (Ahmad 
et  al. 2021a, b; Asgari et  al. 2015; Basha et  al. 2005; Latifi 
et al. 2017; Nath et al. 2017; Oluwatuyi et al. 2018; Praticò and 
Puppala 2012; Rimal et al. 2019; Jaritngam et al. 2014)
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are deployed for stabilization as their properties and 
performance vary significantly.

Amidst the uncertainty involved with the use of 
non-traditional additives, industries have promoted 
the utilization of waste materials in soil stabilization 
to address economic and ecological aspects. Table 9 
details the additives commonly used in soil stabi-
lization and their annual global production. From 
the supply point of view, fly ash and BFSC can be 
considered as potential replacements for cement 
and lime. Since they both are waste products, they 
provide economic advantages too (Ikeagwuani 
and Nwonu 2019). On the other hand, the reuse of 
waste for soil stabilization helps to promote effec-
tive waste management. To sustain the merits of 
this practice, environmental impact assessment for 
the use of waste material is vital to ensure that the 
deployed waste material does not have any detri-
mental impact on the environment. However, the 
traditional additives edge out non-traditional addi-
tives in terms of cost/energy/emission to strength 
ratio.

Except for traditional additives, a comprehen-
sive standard guideline for the use of other additives 
is not available. This prevents the industry from 
choosing cost-effective and eco-friendly alternatives 
for soil stabilization. It is imperative to devise a 
comprehensive guide for the use of several types of 
soil stabilizers. Enormous work on the stabilization 

of several types of soils has been done and pub-
lished to date. These all can be gathered to develop 
a commonly accepted guideline for soil stabilization 
using several types of additives. This guide should 
incorporate potential threats to the environment due 
to the use of various types of additives and respec-
tive mitigation strategies.

7  Conclusions and Discussions

The review presented in this paper attempted to cover 
a wide spectrum of information on soil stabilization 
so that practitioners and researchers can compre-
hend the whole mechanism and processes behind the 
treatment of weak soils. This would benefit them by 
designing a cost-effective and eco-friendly soil stabi-
lization process. The key areas included in the review 
are the chemistry behind soil stabilization, the control 
factors influencing stabilization, performance indica-
tors, and economic and environmental aspects.

7.1  Chemistry Behind

The rate of change in physical and mechanical prop-
erties of stabilized soils is governed by rapid hydra-
tion and slower pozzolanic reactions. The quantity 
and type of ions present in soil are used to determine 
the type of stabilizing agent and dosage required for 

Table 9  Additives used in soil stabilization and the annual global production

Additive Type Annual world pro-
duction (in million 
tons)

Reference

Cement Traditional additive 4000.00 Sathiparan (2021)
Lime Traditional additive 424.00 Association (2022)
Fly ash Industrial by-products 900.00 Nodehi and Taghvaee (2022)
Blast furnace slag cement Industrial by-products 530.00 Arulrajah et al. (2016), Sharma and Sivapullaiah (2016)
Calcium carbide residue Industrial by-products 1.14 Arulrajah et al. (2016), Li et al. (2012)
Silica fume Industrial by-products 2.50 Lewis (2018), Türköz et al. (2021)
Red mud Industrial by-products 120.00 Zhang et al. (2010)
Rice husk ash Agricultural by-products 120.00 Jian He et al. (2013), Kizhakkumodom Venkatanaray-

anan and Rangaraju (2015)
Bagasse ash Agricultural by-products 0.08 Heniegal et al. (2020), Panich et al. (2019)
Oil Palm ash Agricultural by-products 12.00 Hawa et al. (2013), Thomas et al. (2017)
Eggshell powder Municipal waste 8.00 Sathiparan (2021), Shekhawat et al. (2019)
Metakaolin Natural aggregates 25.00 Hawa et al. (2013), Nkoumbou et al. (2009)
Glass powder Municipal waste 75.00 Abdollahnejad et al. (2017), Xiao et al. (2020)
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stabilization; especially  Ca2+ has predominant con-
trol over the reactions. Cement-based stabilizers per-
formed well irrespective of soil type and curing con-
dition, on the contrary, lime-based stabilizers required 
appropriate control of temperature and pH to facili-
tate pozzolanic reactions. Cement and cementitious 
blends are more suitable for soils with low plasticity 
(PI < 10%), whereas lime and lime blends perform 
well for soils with high plasticity (PI > 10%). Soil 
stabilization with most of the cement/lime blended 
stabilizers required stabilizer dosages below 10%. FA 
or RHA-based stabilization required dosages in the 
range of 10–30% for notable improvement.

7.2  Stabilization Control Factors

The primary factors that affect the degree of stabiliza-
tion are soil type (specifically the clay composition), 
organic matter present in the soil, compaction level, 
and curing. Cement or lime blended stabilizers por-
trayed a rapid strength gain for even small stabilizer 
dosages, but RHA and FA-based soil stabilization 
attained strength very slowly. The long-term strength 
development process occurs during curing. It is there-
fore recommended to administer the required mois-
ture level, temperature, duration of curing, and cur-
ing type to support pozzolanic reactions that promote 
strength enhancement in stabilized soils.

7.3  Stabilization Performance Parameters

The changes in physical attributes including Atter-
berg limits and MDD reported a reduction in PI and 
MDD with the increase in stabilizer dosage irrespec-
tive of soil type or stabilizer. Lime and cement-based 
stabilizers provided a substantial reduction in PI for 
even small dosages of less than 5%.

The mechanical performance of stabilized soil has 
been monitored by determining UCS, CBR, MR, and 
Young’s modulus. Cement-based stabilizers contin-
ued to improve with the accumulation of stabilizer 
dosage, however, lime-blended stabilizers showed 
a steep increase initially and then began to decline. 
For all types of stabilizers, typical values of UCS and 
CBR obtained for 5% dosage, fell in between 700 and 
1,500 kPa and 30–60%, respectively.

7.4  Economic and Environmental Aspects

Cement and cementitious blends exhibited better 
cost-strength, energy-strength, and  CO2 emission-
strength ratios for soils with low plasticity, whereas 
lime-blended stabilizers performed well for high plas-
tic soils. This implies that stabilizing soil with low 
plasticity with cement blended stabilizers and high 
plasticity with lime is economically and environmen-
tally advantageous. Silica fume can be considered 
a potential alternative to treat peat soil as it showed 
lower cost-strength, energy-strength, and  CO2 emis-
sion-strength ratios. Also, blending more than one 
stabilizer is recommended to achieve a balanced per-
formance in cost, energy, and emission aspects.

7.5  Practical Implications

Although soil stabilization is a cost-effective option 
to improve the engineering properties of in-situ soil, 
the execution of the stabilization process in the field 
requires attention to labour, machinery, and testing. A 
thorough geotechnical site investigation is inevitable 
to decide on the method of stabilization and to carry 
out the stabilization process successfully. In addition, 
a continuous and well-structured monitoring mecha-
nism is vital to ensure the performance and durability 
of the stabilized earth during the operation. Problem-
atic soils require the addition of chemical additives to 
moderate the engineering properties of the stabilized 
soil. The application of chemical additives needs pre-
caution and skilled personnel to prevent the workers 
from health hazards and to avoid heterogeneity in the 
outcome. Wastes such as fly ash, RHA, and BFSC 
are widely available across the world where coal-
fired power plants or agricultural fields are located, 
whereas SF, redmud, phosphogypsum, and cement 
kiln are only available where the specific industries 
are located. Also, the chemical composition of the 
waste drastically changes from place to place. This 
could affect the engineering properties of the stabi-
lized soil. It is, therefore, a systematic laboratory and 
field investigation is recommended, before applying 
the waste for soil stabilization. These variations may 
impact the dosage of additives required for a stabili-
zation task, and hence become cost prohibitive.
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8  Future Directions

Although ample studies have explored cement-based 
and lime-based stabilizers to improve soil proper-
ties, it is evident that a few areas remain yet to be 
explored. Some of them are given below.

• Further studies on the durability aspects of soil 
stabilization are required to examine the long-term 
performance perspectives.

• The application potential of geopolymer technol-
ogy for soil stabilization in road construction has 
not yet been thoroughly studied. It is notewor-
thy to mention that geopolymer technology that 
deploys cost-effective and eco-friendly materials 
are the need of the hour.

• Performance evaluation conducted on stabilized 
soils considered a few representative parameters to 
select appropriate stabilizers and dosages. A com-
prehensive optimization framework that covers 
mechanical, economic, and environmental aspects 
is hard to find in the published literature. Stud-
ies are required to establish such an optimization 
framework.
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