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Abstract  This study presents a comprehensive anal-
ysis of the capability of machine learning techniques 
in estimating the static liquefaction of sands contain-
ing plastic fines. In this regard, six methods, includ-
ing backpropagation multi-layer perceptron, support 
vector regression (SVR), lazy K-star (LKS), decision 
table, random forest, and M5, are employed to predict 
the static liquefaction of saturated clayey sand. Static 
liquefaction susceptibility of soil is measured using 
the brittle index. The dataset includes 114 uncon-
solidated undrained triaxial shear tests performed on 
saturated sand containing various amounts of plastic 
fines. Results indicate that all employed models pro-
vide satisfactory predictions, with correlation coef-
ficients ranging from 0.82 to 0.92 for testing set. 
Among all models, the SVR and LKS models make 
more accurate and reliable predictions. Furthermore, 
the significance of each input parameter is assessed 
through a series of sensitivity analyses, which shows 
that plasticity of fine particles, host sand gradation, 
and intergranular void ratio are more influential on 
static liquefaction. Additionally, some mathematical 
equations are presented for estimating the static lique-
faction potential.

Keywords  Static liquefaction · Machine learning · 
Brittle index · Sandy soil · Sensitivity analysis

1  Introduction

Soil liquefaction is a catastrophic flow failure of soil 
that causes severe damage to adjacent structures and 
can be set in by dynamic or monotonic undrained 
loading in saturated loose sandy soil. Liquefaction 
under undrained monotonic loading is called static 
liquefaction, accompanied by excessive positive pore 
pressure and low shear strength at high strains; con-
sequently, the mean effective stress approaches zero. 
An approach for assessing static liquefaction suscep-
tibility is to evaluate soil strain-softening behavior 
under undrained monotonic triaxial testing. For this 
purpose, the brittle index, IB, is defined as the ratio 
of post-peak loss of strength of a strain-softening soil, 
which can be calculated as follows (Bishop 1967):

As presented in Fig.  1, qp is the peak undrained 
shear strength (also known as the onset of static liq-
uefaction), and qss is the steady-state undrained shear 
strength. The brittleness index ranges from 0 to 1. 
Higher values of the brittle index reveal the suscepti-
bility to static liquefaction in soil. Therefore, in terms 
of undrained behavior, soils with IB = 1 are considered 

(1)IB =
qp − qss

qp
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full liquefied soils, while soils with IB = 0 are consid-
ered non-liquefied soils. Previous studies found that 
IB is a helpful benchmark for assessing static liquefac-
tion susceptibility (Keramatikerman et al. 2018; Sad-
rekarimi 2020; Talamkhani and Naeini 2021).

The occurrence of instabilities in some sites of 
sandy soils has drawn the attention of researchers 
toward its behavior (Ishihara 1993). The static liq-
ueafaction of saturated sands containing plastic fines 
was dominated by some soil characteristics, such as 
the fines content, the plasticity of fines fraction, sand 
gradation, and void ratio of soil. Through experimen-
tal studies, several researchers have found that fines 
content and void ratio influence the undrained behav-
ior of clayey sands in undrained monotonic triaxial 
tests (Georgiannou et al. 1990; Pitman et al. 1994; E 
Ovando-Shelley 1997; Bouferra and Shahrour 2004; 
Abedi and Yasrobi 2010; Naeemifar and Yasrobi 
2012). Indeed, Papadopoulou and Tika (2016) intro-
duced the plasticity of the clay particles as a depend-
ent factor in altering the undrained behavior of clayey 
sand. From the perspective of sand gradation, Rah-
man and Lo (2008) revealed a dependency between 
static liquefaction behavior and host sand gradation.

In the scale of analytical and theoretical studies, 
the static liquefaction of sandy soils has also been 
investigated. Almost all of them focused on predict-
ing the onset of liquefaction or the point in which soil 
exhibits an instable behavior at peak strength. A num-
ber of studies have employed mathematical equations 
derived from constitutive behavior models of sandy 
soils to predict the onset of liquefaction (Mróz et al. 
2003; Park and Byrne 2004; Rahman and Lo 2012; 
Buscarnera and Whittle 2013). These constitutive 
models for sand behavior rely on state parameters of 

sand which are affected by stress and density. Pre-
diction of the onset of static liquefaction using these 
constitutive models bears some challenges and limi-
tations: these models are defined for some specific 
sand and calibrating these models for other types of 
sandy soils, particularly sands with plastic fines, has 
its challenges, may cause errors and imprecisions.

Further, empirical methods based on in-situ tests, 
including standard penetration test (SPT) and cone 
penetration test (CPT), have also been used to evalu-
ate the triggering of static liquefaction (Stark and 
Mesri 1994; Olson and Stark 2002, 2003; Mesri 
2007). These methods rely on a correlation of static 
liquefaction with overburden stress and strength 
parameters obtained from CPT and SPT tests. Obvi-
ously, performing in-situ tests are the requirements of 
these methods, for which there are associated costs 
and resources.

To propose a solution for the demanding and incal-
ibrated methods of theoretical approaches and also 
the costly and time-consuming approaches of empri-
cal methods, Sadrekarimi (2020) conducted an ana-
lytical study to predict the onset of static liqueafac-
tion of sandy soils containing plastic and non-plastic 
fines. In his study, a series of correlations between 
normalized pore water pressure and the brittle index 
of sandy soils with different fines content and fines 
plasticity were performed to derive equations for esti-
mating the normalized pore water pressure at steady 
state. These analytical interpretations were therefore 
exempt from fines content and soil initial state.

Recently, considering the practical and efficient 
application of machine learning techniques in a 
wide range of engineering areas (Savvides and Papa-
drakakis 2021; Goodarzi et  al. 2021; Savvides and 

Fig. 1   Static liquefaction in 
monotonic triaxial test
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Papadopoulos 2022; Al Bodour et  al. 2022), this 
state-of-the-art approaches are being utilized to pre-
dict liquefaction susceptibility of soil (Muduli and 
Das 2014; Kohestani et  al. 2015; Atangana Njock 
et  al. 2020; Kumar et  al. 2021; Hanandeh et  al. 
2022). For static liquefaction assessment, Sabbar 
et  al. (2019) employed two types of artificial neu-
ral network models to predict the potential of static 
liquefaction of clean sands with the ratio of qss/qpeak 
(Fig. 1). They considered nine input parameters con-
cerning particle size and initial states of clean sand. 
The model they developed predicted the static lique-
faction of clean sand with reasonable accuracy with 
a root mean squared error of 0.17 for the testing set. 
It should be noted that the approach they adopted was 
only applicable to clean sands.

Considering the destructive impacts of static lique-
faction to the enviromental and human life, predicting 
the static liquefaction can prevent and cut these dam-
ages. Sandy soils containing plastic fines, as one of 
the susceptible soils to this hazard, neccesitates more 
attentions for further studies. Given that the current 
theoretical and empirical methods for assessing static 
liquefaction do not incorporate some influential fea-
tures and condition of soil in liquefaction potential, 
which have been demonstrated by previous experi-
mental studies, efficient and new approaches should 
be harnessed to resolve this inconsistency. Using 
machine learning as a means of predicting engineer-
ing properties and nonlinear mechanical behavior 
would be a useful solution to this problem. In order 
to extend the application of machine learning algo-
rithms, this study aims to evaluate the competency 
of six algorithms in predicting static liquefaction of 
saturated sands containing plastic fines. Further, a 
sensitivity analysis is also performed to determine the 
relative importance of each feature in static liquefac-
tion of sand with plastic fine.

2 � Methodology

2.1 � Dataset

The dataset contains 114 isotropic undrained mono-
tonic triaxial tests conducted on saturated sands con-
taining plastic fines that were compiled from previous 
studies (Lagunas 1992; Pitman et al. 1994; Bouferra 
and Shahrour 2004; Derakhshandi et  al. 2008; Md. 

Rahman 2009; Abedi and Yasrobi 2010; Naeemi-
far and Yasrobi 2012; Papadopoulou and Tika 2016; 
Chou et al. 2016; Talamkhani 2018). Based on the lit-
erature, eight parameters were introduced as the input 
parameters to the algorithms, which can be classified 
into three classes: (a) host sand characteristics; (b) 
plastic fines characteristics; (c) soil condition.

Sand is characterized in regards to its physical 
dimension and gradation. In this study, two char-
acteristics of sand, including the average grain size 
of host sand (D50) and the coefficient of uniformity 
of host sand (Cu), were incorporated into the input 
parameters.

Plastic fines were introduced to the algorithms 
using four input parameters consisting of the fines 
content (Fc), the liquid limit of clay fines (LL), the 
plasticity index of fines (PI), and the plasticity devia-
tion of fines (ΔPI). The parameter of ΔPI denotes the 
plasticity deviation from the A-line in Casagrande’s 
classification chart, which equation is as follows (Das 
2013):

Das and Khaled (2014) and Khan et  al. (2016) 
found that ΔPI is an influential parameter in predict-
ing the shear strength of clayey soil. Hence, in the 
present study, ΔPI was considered one of the input 
parameters that attributes to plastic fines. The plastic-
ity distribution of the fines fraction of the database is 
depicted in Fig. 2. A significant fraction (90%) of the 
fines is classified as clay, so a small proportion (10%) 
of the fines is plastic silt. Moreover, from the liquid 
limit point of view, only 36% percent have LL values 
greater than 50, classified as a high plasticity clay or 
silt, and the remaining are low plasticity fines.

Two decisive parameters associated with the con-
dition of soil, including the intergranular void ratio 
(eg) and the effective confining pressure (σ´c), were 
considered in this study. The parameter of eg is the 
void ratio concerning sandy soil containing fine par-
ticles, which is defined as follows (Thevanayagam 
1998):

where e is the global void ratio and Fc is the fines 
content. The idea of the intergranular void ratio pro-
poses that the fines occupy the voids created among 

(2)ΔPI = PI − 0.73(LL − 20)

(3)eg =
e + Fc

1 − Fc
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the sand grains, so the behavior of sand with a modest 
quantity of fines could be dictated by the intergran-
ular void ratio in preference to the global void ratio 
(Thevanayagam and Mohan 2000; Belkhatir et  al. 
2010, 2011).

On the other hand, the brittle index, IB, is used as the 
target. Figures 3 and 4 respectively depict the frequency 
histograms of input and target features throughout the 
dataset.

In order to validate the models, the dataset was 
divided into two subsets: the training set (70%) and the 
testing set (30%). The models were constructed first by 
learning from the training data; then, their performance 
was evaluated using the test data. Table  1 shows the 
statistical characteristics of both the input and target 
parameters of the training and testing sets.

2.2 � Overview of the Employed Methods

In the present study, six methods, such as backpropa-
gation multi-layer perceptron (BP-MLP), support vec-
tor regression (SVR), lazy K-star (LKS), decision table 
(DT), random forest (RF), and M5, were implemented 
to predict the brittle index of sand and plastic fine mix-
tures. Algorithms and mathematical features of the 
utilized methods are presented briefly in the following 
sections.

2.2.1 � Backpropagation Multi‑Layer Perceptron 
(BP‑MLP)

Artificial neural networks (ANN) is a high-reputed 
method for predicting engineering properties in the 
geotechnical field of study, which is derived from 
the biological neural network (McCulloch and Pitts 
1943). ANN architecture involves an input layer, one 
or more hidden layers, and one output layer. Each 
layer can include several neurons. Hidden layers con-
nected to the input and output layers using weighted 
connections are incorporated to achieve accurate 
predictions.

Backpropagation multi-layer perceptron (BP-MLP) 
is a type of ANN that consists of one or more hid-
den layers (Rumelhart et al. 1986). It is trained with 
a backpropagated algorithm to estimate the optimized 
cost function. The value of each neuron is computed 
using a sigmoid activation function from the con-
nected neurons in the previous layer. The activation 
function, g, is a sigmoid function for computing the 
hidden layer neurons, as follows:

(4)g(X) =
1

1 + e−X

Fig. 2   Plasticity distribu-
tion of fines portion within 
the database
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Fig. 3   Frequency of inputs in the dataset
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It is important to note that output is computed by 
a linear function with the last hidden layer. The pre-
dicted value is compared to the actual value in a back-
propagation procedure. If the mean squared error is 
greater than the desired error, the process is repeated 
until the mean squared error is optimized (Fu 1994).

2.2.2 � Support Vector Regression (SVR)

Support vector regression (SVR) is a linear or hyper-
plane method for regression problems to cope with 
complex non-linearity of numerical data, which is 
accompanied by using kernel functions (Vapnik 1995; 
Smola and Schölkopf 2004). In the SVR algorithm, 
first, an error limit, ϵ, is introduced, then the goal is to 
find a function that has at most a deviation ϵ from the 
target values while being as flat as possible. To put 
it another way, the sensitivity to error is not essential 

until it is lower than ϵ; but any deviation greater than 
this will be rejected. Having a loss function with 
error limit of ϵ, the optimization problem can be 
solved through a standard dualization technique using 
Lagrange multipliers (Smola and Schölkopf 2004).

In non-linear problems, a kernel function can be 
utilized to locate the data into a higher-dimensional 
feature space where linear regression is conducted. 
The utilization of appropriate kernel function, 
depending on the dataset, contributes to reaching the 
precise prediction. In this study, the Pearson universal 
kernel (PUK) is employed in the SVR process, which 
outperformed better than other kernel functions 
(Üstün et al. 2006).

2.2.3 � Lazy K‑Star (LKS)

K-star is an instance-based classifier that the class 
of a test instance is determined by analogous train-
ing instances and defined by some similarity func-
tion (Cleary and Trigg 1995). The most straightfor-
ward instance-based learners are nearest neighbor 
algorithms (Cover and Hart 1967). These algorithms 
retrieve the single most comparable instance from the 
training set using a domain-specific distance function.

Using an entropy-based distance function, the 
K-star differs from other instance-based learners. The 
K-Star is a type of nearest-neighbor technique based 
on transformations using a generalized distance func-
tion. The method, which involves calculating the dis-
tance between two instances, is based on information 
theory. Thus, the distance between instances may be 
characterized as the complexity of transforming one 
instance into another. In order to define the length of 

Fig. 4   Frequency of target in the dataset

Table 1   Statistical 
description of training and 
testing sets

Parameter Training set (70%) Training set (30%)

Min Max Average Standard 
deviation

Min Max Average Standard 
deviation

Input D50 mm 0.16 0.50 0.28 0.07 0.16 0.47 0.27 0.05
Cu – 1.26 2.40 1.72 0.27 1.26 2.40 1.69 0.27
Fc – 0.02 0.40 0.16 0.08 0.03 0.30 0.15 0.08
PI % 3 33 20 9 3 33 21 9
LL % 21 78 43 14 21 78 44 13
ΔPI % −9.34 7.37 2.66 4.40 −9.34 7.37 2.91 4.60
eg – 0.58 1.60 1.01 0.19 0.45 1.51 1.00 0.20
σ´c kPa 50 1100 268 232 50 850 263 190

Target IB – 0.00 0.98 0.42 0.31 0.00 0.97 0.47 0.31
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the shortest string connecting the two instances, the 
Kolmogorov criterion between two instances was 
defined (Li and Vitányi 1993), which concentrates 
on just the shortest one out of the numerous potential 
transformations. Incidentally, the key point is that any 
sequence can have a probability.

2.2.4 � Decision Table (DT)

The decision table is a straightforward learning algo-
rithm that sometimes, depending on the dataset, 
can surpass other complex decision tree algorithms, 
attempting to predict a minimum set of features. 
The performance of DT is based on a decision table, 
assisted by the features, which searches for the best 
matches through the table for a given instance. This 
table, known as decision table majority (DTM), is 
made up of two components: (1) a schema, which is 
a collection of features included in the table; (2) a 
body, which is made up of labeled instances from the 
space specified by the features in the schema (Kohavi 
1995). Development of DTM necessitates using a 
search algorithm to determine which features should 
be included in the schema; thus, the particle swarm 
optimization method (PSO) by using a continuous 
search space is used in this study to locate these fea-
tures (Moraglio et al. 2007). It should be mentioned 
that only the assorted features in the schema are 
incorporated, and the others are ignored.

2.2.5 � Random Forest (RF)

Random forest (RF) is a robust technique for solving 
regression, unsupervised learning, and classification 
issues originally presented by Breiman (2001). An 
extensive number of regression trees are combined 
parallelly during the training process of the RF, each 
of which depends on a random vector that has par-
ticular characteristics. The accuracy of the RF sig-
nificantly depends on the strength of the individual 
trees. A randomly divided subset of the training set 
is used to build each tree. The RF then aggregates all 
the trees using the bootstrap aggregating (bagging) 
technique (Breiman 1996). Bagging formulates each 
classifier in the ensemble using a randomly generated 
set of data that each classifier contributes an equal 
vote for identifying unlabeled instances. By lowering 
the variation associated with prediction, bagging may 
increase the accuracy.

2.2.6 � M5

M5 is a tree-based model accompanied by a multi-
variate linear model at the leaves to predict accurately 
(Quinlan 1992). A decision tree is built in which 
a splitting criterion is used to minimize the varia-
tion along each branch. The splitting procedure is 
based on the standard deviation of class values that 
reaches a node, indicating the error and calculating 
the expected reduction due to testing each attribute. 
Finally, multivariate linear regression is utilized to 
construct a linear model for each node based on the 
selected attributes for the nodes. A pruning technique, 
incidentally, is employed to minimize the estimated 
error (Wang and Witten 1997).

2.3 � Accuracy Assessment

In this research, the performance of models in pre-
dicting the brittle index was controlled through three 
indicators, including R, RMSE, and MAE.

R is the correlation coefficient that measures the 
linear correlation between actual and predicted val-
ues. The R value ranges from 0 to 1, and the higher 
value represents the better performance of the model. 
The correlation coefficient R can be obtained as 
follows:

where: yi and pi are the actual and predicted values 
of the output, respectively; y and p are average of the 
actual and predicted output, respectively; m repre-
sents the number of instances.

RMSE is the abbreviation of root mean squared 
error, a measurement of produced error. Accordingly, 
a lower RMSE means a higher level of accuracy. The 
RMSE can be calculated as follows:

MAE stands for mean absolute error, indicat-
ing the average absolute error of predictions in all 
instances. The lower value of MAE reveals higher 
accuracy for a model. It can be calculated as the fol-
lowing equation:

(5)R =

∑m

i−1

�
yi − y

�
(pi − p)

�∑m

i=1
(yi − y)2

�∑m

i=1
(pi − p)2

(6)RMSE =

√
1

m

(∑m

i=1
(yi − pi)

2
)
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2.4 � Models Configuration

Throughout this study, all models were developed 
through WEKA 3.9.5, which is based on Java scripts 
(Witten and Frank 2002). As seen in the previous sec-
tion, some models include hyperparameters that can 
affect the performance of each model. These param-
eters were selected based on two criteria: (a) preci-
sion; (b) quality of the correlations. In other words, 
the configurations of models were selected to make 
a prediction with high precision and proper fitting 
to avoid overfitting and underfitting. The process of 

(7)MAE =
1

m

∑m

i=1
||yi − pi

|| hyperparameter tuning includes a series of test and 
trial of various configuration for each method with 
regards to bias and variance of train and test sets. 
The main goal of each series is to find the model that 
produces predictions with the least possible bias and 
variance. To put it simply, the optimum models are 
ones that are not significantly dependent on training 
data and are capable of producing accurate predic-
tions for test data. To this end, the accuracy of models 
with various hyperparameters was monitored to find 
the optimized model with the highest accuracy for 
both test and training sets (primarily the test set). The 
hyperparameters of the optimized algorithm for each 
method are presented in Table 2.

3 � Results and Discussion

3.1 � Models Performance

Tables  3 and 4 provide a summary of the results of 
all methods using R, RMSE, and MAE for the train-
ing and testing sets, respectively. As shown in these 
tables, tested methods are sorted based on their accu-
racy. According to each accuracy criterion (R, RMSE, 
and MAE), all methods are graded such that a method 
with the highest level of accuracy would receive a 
higher score than other methods (with a high value of 
R and a low value of RMSE and MAE); otherwise, it 
would receive a lower score. As a means of clarify-
ing the effectiveness of the methods, the results are 
presented with a color intensity model, in which a 
higher level of accuracy is indicated by a rich green 
color and a lower level of accuracy by a pale green 
color. The overall score of each method was equal 
to the sum up of all subscores corresponding to the 

Table 2   Hyperparameters of models

Model Parameter Values/option

BP-MLP Hidden layer One (four neu-
rons)

Activation function Sigmoid
Learning rate 0.05
Epochs 500

SVR Epsilon 0.001
c 20
Kernel PUK
PUK omega 1
PUK sigma 1

LKS Global blend 20
DT Search method PSO
RF Number of estimators 100

Max depth Auto
Number of features Auto

M5 Pruning True
Min number of instances 4

Table 3   Performance 
ranking of all models for 
the training set

Methods Network results in training set Performance score in 
training set

Total score Ranking

R RMSE MAE R RMSE MAE

LKS 0.991 0.034 0.019 6 6 6 18 1
SVR 0.974 0.065 0.037 4 5 5 14 2
RF 0.977 0.073 0.057 5 4 4 13 3
BP-MLP 0.920 0.119 0.090 3 3 2 8 4
DT 0.899 0.132 0.087 1 1 3 5 5
M5 0.907 0.127 0.099 2 2 1 5 5
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method. Finally, all methods are sorted in respect of 
their overall scores.

Remarkably, it can be seen from  that all meth-
ods predicted training set with very strong correla-
tions with the experimental values, as the values of R 
ranged between 0.90 to 0.99 (Schober and Schwarte 
2018). Indeed, in terms of RMSE and MAE, the mod-
els showed high accuracy that the values of RMSE 
corresponding to the training set experienced values 
between 0.034 and 0.132. Moreover, the values of 
MAE were between 0.019 to 0.099. Among all meth-
ods, the LKS, SVR, and RF models outperform other 
methods in predicting the training set.

As shown in Table  4, the utilized methods were 
successful in predicting the testing set with satisfac-
tory accuracy. There was a strong correlation between 
the predicted and actual value of IB in all methods 
which predicted the testing set with an R parameter 
ranging from 0.82 to 0.92. The values of RMSE and 
MAE corresponding to the testing set provide com-
plementary evidence for the suitability of employed 
methods. The values of the MAE parameter were 
found in a range of 0.092 to 0.134 for testing set, 
which means that the brittle index of a soil can be 
predicted with an average error of 0.092 to 0.134. 
In other words, the post-peak loss of strength of the 
clayey sand can be predicted with an average error of 
10% for static liquefaction potential. Furthermore, the 
values of the RMSE parameter range from 0.133 to 
0.178. (Fig. 5)

By comparing the performance of all methods and 
their ranking, outperformed predictions were made 
through SVR and LKS. In order to clarify the per-
formance of SVR and LKS, distribution of predicted 
values of these two models are plotted against actual 
values in Fig. 6. Parallel to the line of equality (1:1), 
error limits with ΔIB = 0.3 are also shown on both 

sides. As can be seen in Fig.  5, most of the test set 
falls within the error limit, indicating that almost all 
of the test set is predicted with an error of less than 
0.3. In other words, using SVR or LKS methods to 
predict the brittle index of soil, the predicted value 
would have an error less than 0.3. This error thresh-
old appears acceptable for estimating the behavior 
of clayey sands under monotonic loading when con-
sidering static liquefaction. To illustrate the distribu-
tion of errors for SVR or LKS methods, Figs. 7 and 
8 show the error graphs for the training and testing 
sets, respectively. There is a normal distribution of 
error within the dataset, and most of the samples have 
lower errors. Few predictions, however, produced 
errors greater than 0.3, which may be the result of 
laboratory error occurring during the testing of the 
samples due to the high sensitivity of monotonic tri-
axial testing.

Despite the superior performance of LKS to SVR 
in predicting the training set, both methods made 
almost similar estimations for the testing set. By 
comparing the distribution of error in Figs. 7 and 8, 
the similarity of the prediction can be corroborated. 
The LKS predicted the testing sets reasonably, while 
the difference between the precision of testing and 
training sets marks a degree of overfitting of the 
LKS model for this study. In addition, the difference 
between R values for training and testing sets is less 
in the SVR than in the LKS. This indicates that the 
SVR method is properly fitted.

3.2 � Model Reliability

To determine the superiority and reliability of the 
algorithms, a reliability analysis is also performed. 
The Friedman analysis of variance by ranking was 
performed on the static liquefaction predictions 

Table 4   Performance 
ranking of all models for 
the testing set

Methods Network results in the testing 
set

Performance score in the 
testing set

Total score Ranking

R RMSE MAE R RMSE MAE

SVR 0.920 0.135 0.092 6 5 6 17 1
LKS 0.908 0.133 0.098 5 6 5 16 2
BP-MLP 0.884 0.151 0.118 4 4 3 11 3
DT 0.872 0.153 0.118 3 3 4 10 4
M5 0.851 0.170 0.134 2 2 1 5 5
RF 0.821 0.178 0.129 1 1 2 4 6
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of all utilized models (Shen et  al. 2022). In this 
approach, for z models, the models are ranked based 
on the errors produced by their predictions from 1 
(least error) to z (highest error). For a database with 
m data, the average ranking (Rj) for model j can be 
computed as follows:

where rj
i
 denotes the ranking of the ith data for model 

j.
In this study, the average rankings of all utilized 

models for the test set data were calculated that are 
plotted in Fig.  9. As can be seen, the two models of 
SVR and LKS hold the lowest Friedman rank among 
the other models throughout the test set which dem-
onstrates their superior reliability. To find out whether 
this variation in performance is significant or not, chi-
square is used to evaluate the distribution of rank in 
the Friedman ranks. Chi-square ( χ2

r
 ) can be calculated 

using as follows:

This equation relies on the null hypothesis with z–1 
degrees of freedom for z models. According to She-
skin (2011), the null hypothesis would be rejected if 
the computed value of  χ2

r
 is equal to or greater than the 

critical chi-square at a prespecified level of significance. 
For a distribution of data with 5 degrees of freedom 
and 0.95 degree of significance, the critical chi-square 
is equal to 11.07. Considering that the value of χ2

r
 of 

this study is equal to 11.32, the null hypothesis can be 
rejected, so a significant difference is found between the 
applied models.

3.3 � Sensitivity Analysis

In order to determine the relative importance of brittle 
index to each input feature, a sensitivity analysis of the 
features was conducted. In this study, the Cosine ampli-
tude method (CAM) is employed to explore the relative 
importance of input variables affecting the IB of clayey 
sand. In this approach, the sensitivity degree of input is 
obtained by setting an equation between input and out-
put data pairs. For a set of data with n variable and m 
instances, the sensitivity degree, Ri, of the ith variable is 
calculated as the following equation (Yang and Zhang 
1997):

(8)Rj =
1

m

m∑
i=1

r
j

i

(9)χ2
r
=

12m

z(z + 1)

[
z∑

j=1

R2

j
−

z(z + 1)2

4

]

(10)Ri =

∑m

k=1
xikyk�∑m

i=1

�
xik

�2
.
∑m

i=1

�
yk
�2
.

Fig. 5   Experimental and predicted value of brittle index using 
SVM and LKS methods for: a training set, b testing set
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where xik denotes the value of the ith variable for kth 
instance, and yk is the dependent parameter of kth 
instance. In other words, xik is an array of the input 
matrix (X) with n × m dimension and yk is an array of 
the target matrix (Y) with m × 1 dimension, so these 
matrices are defined as follows:

(11)

X114×8 =

⎡⎢⎢⎣

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x114,1 x114,2 x114,3 x114,4 x114,5 x114,6 x114,7 x114,8

⎤⎥⎥⎦

In this technique, if the value of Ri is near one, 
high dependence can be recognized. On the contrary, 
the value of Ri near zero indicates the independency 
of that input variable.

The results of the CAM analysis conducted on 
experimental results and all methods are presented 
in Fig. 10. For experimental results, five parameters, 

(12)Y8×1 =

⎡⎢⎢⎣

y1
⋮

y114

⎤⎥⎥⎦

Fig. 6   Experimental versus predicted brittle index of SVM and LKS for: a training set, b testing set
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including D50, Cu, PI, LL, and, eg, ranging from 0.76 
to 0.82, showed larger values of Ri than the others, 
which indicate that the brittle index depends greatly 
on these parameters. In other words, the static lique-
faction of clayey sand is consistent with the gradation 
of the host sand, the plasticity of clay fraction, and 
the intergranular void ratio. The index of Ri corre-
sponding to LL has the greatest value among all vari-
ables. On the other hand, the experimental Ri values 
corresponding to ΔPI are around 0.41, demonstrating 
a low correlation between ΔPI and IB. It should be 
noted that previous studies have found that ΔPI is an 
influential parameter in predicting the shear behavior 
of clay (Das 2013; Khan et al. 2016), whereas the fea-
ture importance analysis shows a weak relationship 
between static liquefaction and ΔPI of clayey sand. 
Additionally, the variables Fc and σ’c have values of 
Ri equal to 0.609 and 0.641 for experimental outputs, 
so a medium influence of fines content and confining 
pressure on the brittle index can be interpreted.

By comparing the values of Ri related to different 
models from Fig.  10, it can be noted that SVR and 
LKS have the slightest difference from the experi-
mental values, indicating the superiority of these 
methods in predicting the brittle index.

The results of sensitivity analysis underline the 
importance of some characteristics of sand containing 
plastic fine in static liquefaction. However, as men-
tioned earlier in the literature review of this study, 
current approaches for estimating static liquefaction 
of sand containing plastic fines mainly rely on initial 
states of soil or are calibrated for a specific soil (Rah-
man and Lo 2012; Sadrekarimi 2020); thus, the sand 
physical characteristics are not incorporated in their 
approach. Further, the plasticity of the plastic fines 
and their content are not considered in any previously 
established method of estimating static liquefaction. 
However, as seen in this section, these features are 
influential in the static liquefaction of clayey sand, 
even the relative importance of parameters related 

Fig. 7   Error graphs of the training set: a error magnitude of SVR and LKS, b distribution of error in SVR, c distribution of error in 
LKS
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to host sand gradation (D50 and Cu) and plasticity of 
plastic fines (PI and LL) are higher than the parame-
ters related to initial state of soil (eg and σ’c). In sum-
mary, sensitivity analysis reveals the importance of 
soil physics and plasticity in static liquefaction which 
has previously been ignored.

4 � Brittle Index Estimation

There are several practical benefits to using machine 
learning techniques, such as presenting equations, 
matrices, or trees for estimating targets without using 
computer-based programs so that new input can be 
applied to the equations to estimate the targets. The 
backpropagation multi-layer perceptron and the M5 
are two methods of this study that yield equations 
for calculating brittle index. Presented in this section 
are the methods for estimating the brittle index using 
these two methods. It should be noted that when the 

Fig. 8   Error graphs of the testing set: a error magnitude of SVR and LKS, b distribution of error in SVR, c distribution of error in 
LKS
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Fig. 9   Variation of Friedman rank for utilized algorithms on 
testing data
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computed brittle index returns a negative number, the 
behavior should be considered stable with IB = 0. On 
the other hand, computed IB > 1 should be considered 
as a full-liquefied soil with IB = 1. Further, the units of 
the input parameters are according to Table 1.

4.1 � Backpropagation Multi‑Layer Perceptron

As stated in previous sections, BP-MLP utilized a 
network of neurons to estimate the target. The net-
work is defined by equations and matrices, so new 
input data can be given to the mathematical equations 
to calculate the target. As indicated in Fig. 11, a BP-
MLP network compromising eight inputs, one hidden 
layer with four neurons, and output is harnessed for 

predicting the brittle index. As seen in Fig.  11, the 
hidden layer is calculated by the weight vector of w(1) 
connected to the input layer, and the output layer is 
obtained from the weight vector of w(2) connected to 
the hidden layer. These two weight factors obtained 
from the BP-MLP models are as below:

It can be seen that w(1) is a matrix with 4 × (n + 1) 
dimension that n is the number of input features, 
which equals 8 in this study, and 4 is the number 
of hidden layer neurons. It should be noted that one 
extra column in matrix w(1) refers to the bias of the 
neurons (bi). Needless to say, the weight vector w(2) 
connects 4 hidden neurons to one output, so it is a 
1 × (4 + 1) matrix. The hidden neuron values can be 
calculated from the sigmoid function of the linear 
multiplication of w(1) and the matrix of the input layer 
(X), so it means:

(13)

w(1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.60 1.14 5.45 8.37 −0.59 −1.03 0.85 0.68 0.56

−2.24 0.32 0.94 −2.82 2.43 1.69 0.92 −4.67 2.38

−5.16 2.84 −4.9 −3.34 −3.94 −0.79 −3.60 −1.51 −0.04

−3.45 2.15 −0.01 −1.12 −1.17 0.62 2.48 −0.78 −1.37

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦4×(n+1)

(14)w(2) =
[
0.97 −1.84 −1.14 −2.39 1.58

]
1×(4+1)

(15)X =
[
1 D50 Cu Fc PI LL ΔPI eg σ

�

c

]

(16)z(1) = X ×
(
w(1)

)T
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Fig. 11   The backpropagation multi-layer perceptron architec-
ture
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where the formulation of the sigmoid function, g, 
is defined in Eq.  (3). Eventually, the value of brittle 
index can be obtained from the linear multiplication 
of w(2) and hidden layer (h) matrices, as follows:

4.2 � M5

One of the advantages of M5 methods is formulating 
a decision tree consisting of linear regression func-
tions at terminal leaves. The M5 tree produced by 
the dataset of this study is depicted in Fig.  12. The 
M5 tree for estimating the brittle index relies on two 
parameters of fines content, Fc, and coefficient of 
uniformity of host sand, Cu, and includes four linear 
models (LM) in four-terminal leaves. For calculating 
brittle index of a new datum, as an input, we should 
move downward from the head of the M5 tree to find 
the appropriate linear models based on the conditions 

(17)h = g(z(1))

(18)h =
[
1 h1 h2 h3 h4

]

(19)IB = h ×
(
w(2)

)T

(written in diamonds). At the first stage, the fines con-
tent of soil is the determining factor: for soil with Fc 
higher than 0.175, LM1 should be employed for cal-
culating IB. If not, the coefficient of uniformity should 
be considered: for soil with Cu greater than 1.75 (in 
addition to Fc ≤ 0.175), LM2 should be employed for 
computing IB. If not, the fines content again comes 
out as the determining factor: for soils with Fc higher 
than 0.125 (in addition to.

Fc ≤ 0.175 and Cu ≤ 1.75), LM3 should be used and 
for ones with Fc lower than 0.125; otherwise, LM4 
should be used.

5 � Conclusion and Future Works

This study compiled a dataset from ten research 
papers reported undrained monotonic triaxial test 
results of sand containing plastic fines. The database 
incorporated 114 test results, including properties 
of host sand, plastic fines, and test conditions. The 
database was utilized in six different machine learn-
ing methods, including BP-MLP, SVR, LKS, DT, RF, 
and M5, for the purpose of predicting static liquefac-
tion potential based on brittle index. A color intensity 
rating with the total ranking of all models concerning 
three error criteria of R, RMSE, and R was carried 
out.

An acceptable level of accuracy was found in all 
methods as the values of R corresponding to testing 
sets were in ranges of 0.82 to 0.92. Based on the total 
ranking, the SVR and LKS methods were found to be 
more accurate than the others, which predicted testing 
set with R, RMSE, and MAE values were respectively 
equal to 0.92, 0.135, and 0.096 for the SVR model 
and 0.908, 0.133, and 0.098 for the LKS model.

The sensitivity analysis highlighted the importance 
of the characteristics of host sand and plastic fines in 
static liquefaction. The features D50, Cu, PI, LL, and 
eg have a greater influence on the brittle index of 
clayey sand. Brittle index is less affected by the vari-
ables Fc and σ’c.  Indeed, it was seen that ΔPI of the 
plastic fines had the least impact on the static lique-
faction of clayey sand.

This study has shown that machine learning tech-
niques are capable of predicting static liquefaction 
of sand containing plastic fines, which suggests that 
these algorithms, or some more complex algorithms, 
can be used to predict static liquefaction of other Fig. 12   The Generated tree based on the M5 model
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soils with similar vulnerabilities. Silty sand or sand 
containing non-plastic fines are some of those mate-
rials that have been known as one the most vulner-
able soils to static liquefaction (Lade and Yamamuro 
2011). Further, mine tailings (Macedo and Vergaray 
2022) and losses (Yan et al. 2020) are the other static 
liquefaction susceptible soils. Developing machine 
learning algorithms may significantly contribute to 
the geotechnical community to identify and predict 
the static liquefaction of vulnerable sites.
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