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through two operating parameters, namely, the retract 
rate of monitor and injected fluid pressure. The high 
accuracy and flexibility of the proposed model make 
it suitable for other engineering applications regard-
less of their complexity.
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1  Introduction

The jet grouting is a ground treatment technique that 
enjoys an overwhelming popularity in geotechnical 
engineering owing to its efficiency, versatility, and 
cost-effectiveness. This method consists of construct-
ing in-situ soil–cement columns through the con-
secutive mechanisms of drilling, jetting and grouting 
(Kimpritis et  al. 2018; Shen et  al. 2020; Stark et  al. 
2009, 2012). The jetting grouting involves the inter-
action between high pressure jetting fluid and soil, 
which generates considerable disturbances in the 
surrounding medium and enhances the ground stiff-
ness by forming jet grouted column. However, the jet 
grouted column installation process tends to cause 
substantial ground movements that can jeopardize the 
good functioning of surrounding structures as a result 
of additional earth pressures imposed on them (Wang 
et al., 2018). For instance, lateral displacement is an 
issue often encountered in tunnelling or excavation 
bottom plugs (Eramo et  al. 2012; Ochmański et  al. 
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2015b). Quantifying and or predicting these effects 
have remained an important hurdle to the efficient 
implementation of jet grouting. To date, only few 
models have been developed to estimate the ground 
displacement caused by jet grouting (Chai et  al., 
2009, 2005; Wu et al., 2016). Although these models 
are fairly efficient, they suffer from some limitations. 
Many existing models (see Table 1) do not integrate 
the eventuality of system disruption; and thus will 
be hard to reflect some fundamental soil behaviours 
arising from external and or complex factors. For 
instance, the excess pore pressure fluctuation which is 
a catalyst of upward and lateral ground movements, 
is strongly correlated to the injection pressure and 
installation sequence. Besides, it has been speculated 
that quick gelling binders may play a determinant role 
in the fluctuation of excess pore pressure. Neither the 
existing field investigations (Poh and Wong, 2001; 
Wang et  al., 2013) nor theoretical models (Wang 
et  al., 2018) could incorporate these considerations 
in their models. In addition, their complexity is still 
a hindrance to their effective implementation by 
practitioners, which may lack relevant mathematical 
background.

Due to their prominent ability to deal with non-
linear problems as well as their advantageous 
practicality, deep learning models are increas-
ingly adopted in the field of geotechnical engineer-
ing (Ochmański et  al. 2015a;  Wei et  al., 2021). 
Among these models, the random forest method 
is known as one of the most powerful machine 
learning tools for regression analyses (Liu et  al., 
2020). To date, there is no records of studies that 
capitalized the random forest method to predict 
the ground displacement induced by jet grouting. 
However, the few applications of random forest to 

other engineering problems (Coulston et  al., 2016; 
Couronné et  al., 2018; Palmer et  al., 2007; Segal, 
2004) has allowed delineating some limitations. In 
particular, the topology design of the random forest 
method has remained problematic, and it has usu-
ally required the use of optimization techniques. 
Then again, because these optimizers are sometimes 
prone to suboptimal solutions due to limited abili-
ties, hybridization strategies are gradually espoused 
as alternatives.

The basic idea of hybridization of two methods lies 
in their reciprocal improvement for achieving (near-) 
optimal solutions. Recent efforts have supplied two 
categories of models. First, hybrid models achieved 
via locally embedding SA into the main opera-
tive searching process of PSO or vice versa (Dong 
et al., 2010; Meng et al., 2016; Wang and Li, 2004). 
Second, models stemming from the all-inclusive 
hybridization of PSO and SA (Javidrad and Nazari, 
2017; Shieh et al., 2011; Sudibyo et al., 2015). Most 
of these models share operational and conceptual 
resemblances as well as performance level. However, 
improvements are still in demand regarding a num-
ber of hitches. For instance, the proper characteriza-
tion of the influence of ‘individuals transferred from 
PSO’ on the SA’s population has remained difficult to 
achieved for many models (Meng et al., 2016; Shieh 
et  al., 2011). Moreover, many hybrid models have 
been merely tested on low-dimensional spaces (i.e., 
less than 10-D) and/or on unimodal functions (Dong 
et  al., 2010; Javidrad and Nazari, 2017; Sudibyo 
et al., 2015; Wang and Li, 2004). In other words, the 
benchmarks testing of many existing PSO-SA algo-
rithms has arguably remained inconclusive. There-
fore, there is a room for development of new hybrid 
PSO-SA model.

Table 1   Equations for calculating lateral displacement induced by the construction of jet grouted column

Solutions Idealized displacement medium References
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The objective of this article is to propose a robust 
machine learning method for predicting complex 
geotechnical problems in general and the ground dis-
placement caused by hydraulic jetting in particular. 
In Sect.  2, we proposed an improved random forest 
(IRF) model that combines the advantages of ran-
dom forest and robustness of a novel hybrid particle 
swarm optimization-simulated annealing (PSO-SA) 
algorithm. In Sect. 3, the proposed improved random 
forest (IRF) model was applied to the estimation of 
the lateral ground displacement induced by horizontal 
jet grouting during a tunnel construction in Shang-
hai. The prediction performance of the proposed IRF 
model is presented and discussed and how the soil 
and jetting parameters affect lateral ground displace-
ment is also analyzed by using the proposed IRF 
model. Some key findings in this research are sum-
marized and presented as conclusions.

2 � Improved Random Forest (IRF) Model

This section thoroughly describes the different 
aspects of hybridization strategies undertaken to con-
struct the proposed improved random forest model 
(IRF). Given that, the nature of the problem investi-
gated (prediction of jet grouting-induced displace-
ment), a random forest model was considered in this 
study. The basic idea behind the proposed IRF is to 
maximize the predicting performance of the random 
forest, while ensuring the efficiency of the train-
ing process. As such, to make full use the predicting 
power of the random forest technique, the model has 
been methodically defined in manner to: (i) minimize 
the variance of the predictions, (ii) maximize the con-
vergence and accuracy of the model. To be more spe-
cific, the proposed IRF was obtained by crossbreed-
ing the random forest model with a hybrid PSO-SA. 
The objective of the latter was mainly to define the 
optimum random forest hyper-parameters.

2.1 � Random Forest Model

The random forest is a bagging technique that oper-
ates by building an assembly of decision trees at train-
ing stage and outputting the average prediction of the 
individual trees. That is, considering an assembly of 
decision trees {r (x,�k), t = 1, 2, 3, ...,N} , where x is 
an input variable, ϕk is an independent random forest 

variable, and N is the total number of decision trees, 
the random forest algorithm returns the average score 
of k decision trees r (x,�k) as the final prediction result 
(Coulston et al., 2016). Although this algorithm works 
in a “black box” fashion, satisfactory prediction results 
can be obtained if the model is suitably designed. In our 
study, the random forest model was constructed follow-
ing 3 main steps which can be discretized as it follows:

Step 1: Bootstrapping was applied for reducing the 
variance of the random forest predictions. The basic 
idea was to produce k separate training sets (bootstrap 
samples) �

1
,�

2
, ...,�k by repeatedly sampling data 

with replacement from the original training. Subse-
quently, k decision trees r (x,�

1
), r (x,�

2
), ..., r (x,�k) 

were generated, and then, methodically split into sub-
trees. At this step, the number of features to be searched 
at each split point was itemized as a parameter to the 
system.

Step 2: The out-of-bag (OOB) estimate of perfor-
mance was carried out to check the performance of 
each model. Indeed, each bootstrap sample (previ-
ously generated) consisted of approximately 2/3 of the 
training data, while the remaining portion of samples 
(around 1/3 of the training data) were not included. 
These samples are generally called out-of-bag (OOB) 
samples. Interestingly, by averaging the performance 
of each model on its OOB, it is possible to obtain an 
estimated accuracy of the random forest model. This 
performance was determined by calculating the OOB 
error.

Step 3: The importance of variables (the most or the 
least relevant to the problem) was identified. In fact, as 
the ‘random forest’ is built up, it is necessary to evalu-
ate the error function residual value for a variable at 
each split point. The greater the value of residual at the 
moment of choosing the variable, the greater the impor-
tance. In this case, adopting the mean square error 
(MSE) as error function the variable importance meas-
ure (VIM) was calculated using Eq. 1 (Liu et al., 2020).

where λ is the number of decision trees; MSEoob 
denotes the mean square error value of the OBB; 
MSEoobi is the updated MSE (i.e., after randomly 
replacing the target variables xi); �SD represents the 
standard deviation standardization; and K is the 

(1)

VIM(MSE) =

[
1

�

�∑

j=1

(
MSEoob −MSEoobi

)
]

∕�SD , (1 ≤ i ≤ K)
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number of features in a specific tree. The aforemen-
tioned steps allowed identifying three principal hyper-
parameters that may greatly affect the performance of 
random forest models, including, the number of trees 
to be used in the forest (‘numTrees’); the number of 
features to consider when looking for the best split 
(‘maxFeatures’); and the minimum number of sam-
ples required in a leaf node (‘minLeaf’). The suitable 
selection of these hyper-parameter values is pivotal as 
it governs the model performance. This state of play 
thus substantiates the use of a robust parameter tun-
ing strategy such as PSO-SA.

2.2 � Proposed Hybrid PSO‑SA Optimization Method

It is widely accepted that the PSO possesses a rela-
tively effective global search mechanism. On uni-
modal functions, it can converge rapidly to the global 
optimum and result in high accuracy. However, in the 
case of multimodal functions, the ‘pbests’ are very 
likely to get stuck into a local optimum, especially if 
the latter is far from the global optimum (Gong et al. 
2016). On the contrary, SA owns much effective local 
exploration ability that enables locating the global 
optimum even for multimodal functions. Then again, 
this approach intrinsically abides by the theory of the 
finite Markov chains, i.e., a succession of trials, where 
the probability of the outcome of a particular trial is 
governed by the outcome of the preceding trial. As 

a result, when performed iteratively, the computation 
process can be rather slow (Blum and Roli, 2003). For 
brevity reasons, this section does not review the theo-
retical formulation and implementation procedures 
of PSO and SA. The reader can refer to the original 
articles by Kennedy and Eberhart (1995) and Kirk-
patrick et  al. (1983) for more information on PSO 
and SA algorithms, respectively. In addition, for some 
practical implementation hints on these optimization 
algorithms, the reader can refer to the works of Yang 
(2014) and Yin et  al. (2018). In short, based on the 
review, it has been confirmed that PSO and SA have 
their strengths and weaknesses, which can be mutual-
ized to enhance the overall performance.

The proposed hybrid PSO-SA technique shares 
some conceptual similarities with the existing 
approaches that espoused the complete hybridiza-
tion of PSO and SA. On the other hand, to tackle the 
drawbacks discussed above, the proposed strategy 
preconizes some improvements regarding the algo-
rithm structure and search process. As illustrated in 
Fig. 1, the proposed strategy capitalizes on the PSO 
for performing a generalized exploration of the search 
space, while SA is mainly used to refine the search-
ing process. That is, changing the state of the global 
best swarm member gbest , when its performance gets 
stacked in the iteration process (prevent the parti-
cle getting trapped in a local optimum). Moreover, 
unlike, Javidrad and Nazari (2017) that focused on 

Fig. 1   Schematic illus-
tration of the proposed 
strategy: a global random 
search (PSO); b local ran-
dom search (SA); c refined 
random search (PSO-SA)
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the specific improvement of the random search in 
PSO, the proposed model (in addition) has privileged 
the refined searching process, given its importance for 
escaping local optimum (enhancing the global solu-
tion). To this end, a genetic SA was engrafted to PSO 
procedure. Specifically, a mutation process that cre-
ates new neighbours from the initial population was 
defined for establishing a strong consistency between 
PSO and SA. This operation is vital as it creates and 
maintains the diversity of the population, which is 
essential for solving complex multimodal problems. 
Besides, a new parameter “nMove” was defined to 
limit the number of neighbours per PSO individual so 
as to concomitantly control the amount of refinement 
and the computation effort. The code of the hybrid 
PSO-SA procedure is given in Appendix, while the 
flow chart of the proposed method is presented in 
Fig. 2.

The performance of the proposed hybrid PSO-SA 
optimization algorithm was evaluated using a set of 
8 benchmark functions known for their complexity 

(Dieterich and Hartke, 2012; Jamil and Yang, 2013; 
Yao et  al. 1999). The experiment was conducted on 
high dimension (30D) multimodal functions. A com-
parison with the two previous state-of-the-art optimi-
zation methods (PSO and SA) was carried out. The 
parameter settings of these models are presented in 
Table  2. The PSO-SA parameters were determined 
empirically via a systematic trial-and-error process. 
The population size was taken equal to 50 for all the 
models, whereas the maximum number of iterations 
was set to 1000. The aforementioned algorithms were 
consecutively tested using a MATLAB code ran on 
an Intel(R) Core(TM) i7-8750H CPU at 2.20  GHz 
with 16.0  GB of RAM. Table  3 give the statistics 
(mean value, best, and standard deviation) of the error 
values achieved by the aforementioned optimization 
algorithms. On the other hand, the Fig.  3 provide a 
visual comparison of behaviour of the 3 optimizers 
on higher dimensional space (i.e., D30) benchmarks 
functions. This dimension can arguably reflect degree 
of complexity of some multifaceted real-world prob-
lems (than cannot be solved on a lower dimension). 
All the figures are plotted using a logarithmic scale 
along the y-axis to clearly appreciate some funda-
mental difference among the tested algorithms. It 
should be noted that these statistics were processed 
based upon 30 repeated runs of each algorithm.

The Fig. 3 shows that the PSO-SA is the most effi-
cient for locating the global optimum of the tested 
functions. Besides, based on the results provided in 
Table 3  (best performances are represented in bold), 
it can be observed that the proposed PSO-SA outper-
formed both PSO and SA in terms of accuracy. Then 
again, in terms of convergence, the PSO-SA is by far 
more effective than the other algorithms. Besides, it 
can be seen that for the vast majority of investigated 
functions, the performances of the SA were found 
superior to that of PSO. These results are consistent 
with the work of (Gong et al. 2016) that stressed the 
limitations (premature convergence) of PSO in locat-
ing the global optimum of multimodal functions. For 

Initialization

Generate initial 
population

Mutate position

PSO operation

PSO elementsSA elements

SA operation

Evaluation

Best individual

Meet stop criteria

No

Yes

Fig. 2   Framework of proposed hybrid PSO-SA optimization 
algorithm

Table 2   Parameters 
settings of algorithms

Algorithms Parameters

PSO w = 1;c
1
= 2 ; c

2
= 2 ; wdamp = 0.99 (damping ratio of inertia coefficient)

SA T = 0.1; alpha = 0.99; nMove = 10
PSO-SA w = 1;c

1
= 2 ; c

2
= 2 ; wdamp = 0.99; T = 0.1; alpha = 0.99; nMove = 20; 

mu = 0.5 (mutation rate)
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instance, for functions with several deep local optima 
like Salomon function f5, or Schwefel function f6, PSO 
remained trapped into local minima. Conversely, the 
proposed PSO-SA achieved the lowest error values 
for these complex multimodal functions, owing to its 
ability to maintain larger population diversity. This 
advantageous characteristic can arguably be cred-
ited to the mutation operation (diversification of the 
searching population) proposed in the proposed algo-
rithms. Moreover, in terms of convergence ability 
(see Fig. 3), it is apparent that the proposed PSO-SA 
performs the best on the high dimension multimodal 
functions. Considering its encouraging performances 
(robust searching ability and rapid convergence), the 
proposed PSO-SA paradigm is bound to enhance the 
topology selection of machine learning models in 
general, and that of random forest in particular.

2.3 � Hybridization Random Forest‑ PSO‑SA 
(Improved Random Forest)

For real world geotechnical problems, the use of tra-
ditional machine learning methods in general, and 
random forest can be hampered by low performances. 
Thus, the proposed approach crossbreeds the stand-
ard random forest model and the previous PSO-SA 
for achieving optimal performances. The benchmark 
functions are first replaced by the random forest fit-
ness function, then the PSO-SA model is used to find 
the values of random forest’s hyper-parameters that 
achieve the lowest fitness value. These hyper-param-
eters include: the number of trees (‘numTrees’), num-
ber of features (‘maxFeatures’), and number of leaf 
node (‘minLeaf’). The flow chart of IRF is shown in 
Fig. 4. The process can be divided into six main steps:

Step 1: Load and preprocess data.
Step 2 Initialize the position of the PSO-SA indi-

vidual vector X, which is composed of the random 
forest parameters to be tuned X = [numTrees, maxFea-
tures, minLeaf].

Step 3: Define the objective function to be mini-
mized. In this case we opted for the well-known root 
mean square error (RMSE) error function.

Step 4: Set the IRF parameters, including the max-
imum number of iteration and the PSO-SA parame-
ters discussed in Sect. 2.2.

Step 5: Iteratively evaluate (minimize) the fitness 
function to find the best position of the individual X, 
via the PSO-SA process discussed previously (i.e., 
Sect. 2.2).

Step 6: Output the optimum PSO-SA individu-
als (that satisfied the stopping criteria), i.e., the best 
hyper-parameters to be assigned to the IRF model.

3 � Case study

The proposed improved random forest (IRF) model 
was applied to the estimation of the lateral ground 
displacement induced by horizontal jet grouting dur-
ing a tunnel construction in Shanghai. This section 
only provides the general background information 
pertaining to this project; complementary details such 
as monitoring settings can be found in Wang et  al. 
(2013).

Table 3   Statistical results of high dimension multimodal func-
tions

Function PSO SA PSO-SA

f1 Mean 0 0 0
Best 0 0 0
Std 0 0 0

f2 Mean  − 6.42E-07  − 2.49E-08  − 7.99E-15
Best  − 3.0981E-10  − 1.9655E-08  − 7.99E-15
Std 1.50E-06 2.68E-09 1.58E-30

f3 Mean  − 3.76E-02  − 4.59E-03  − 3.12E-03
Best  − 0.030404  − 2.28E-03  − 0.0026112
Std 7.23E-03 1.76E-03 5.26E-04

f4 Mean  − 4.37E + 01  − 2.08E + 01  − 6.28E + 00
Best  − 17.9443  − 1.92E + 01 -5.37E + 00
Std 2.63E + 01 8.30E-01 1.10E + 00

f5 Mean  − 7.85E-01  − 3.67E-01  − 2.86E-01
Best  − 6.36E-01  − 3.00E-01  − 2.00E-01
Std 7.73E-02 4.71E-02 3.50E-02

f6 Mean  − 4.34E + 03  − 2.43E + 03  − 1.03E + 03
Best  − 3.30E + 03  − 1.80E + 03  − 5.92E + 02
Std 5.40E + 02 3.70E + 02 3.72E + 02

f7 Mean 0 0 0
Best 0 0 0
Std 0 0 0

f8 Mean 1.17E + 03 1.04E + 03 1.01E + 03
Best 1.15E + 03 9.91E + 02 9.77E + 02
Std 1.03E + 01 2.91E + 01 2.24E + 01
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Fig. 3   Testing results of 
high dimensional multi-
modal functions

0 100 200 300 400 500 600 700 800 9001000
-6

-4

-2

0

2

4

6
f1: Ridge

eulav
noitcnuF

Iteration

PSO-SA
SA
PSO

0 100 200 300 400 500 600 700 800 9001000
1E-15

1E-13

1E-11

1E-9

1E-7

1E-5

0.001

0.1

10
f2: Ackley

eulav
noitcnuF

Iteration

PSO-SA
SA
PSO

0 100 200 300 400 500 600 700 800 9001000
0.001

0.01

0.1

1

10

f3: Quartic

eulav
noitcnuF

Iteration

PSO-SA
SA
PSO

0 100 200 300 400 500 600 700 800 9001000
100

101

102

103

104

105

f4: Rosenbrock

eulav
noitcnuF

Iteration

PSO-SA
SA
PSO

0 100 200 300 400 500 600 700 800 9001000
0.1

1

10

f5: Salomon

eulav
noitcnuF

Iteration

PSO-SA
SA
PSO

0 100 200 300 400 500 600 700 800 9001000

1000

10000
f6: Schwefel

eulav
noitcnuF

Iteration

PSO-SA
SA
PSO

0 100 200 300 400 500 600 700 800 9001000

-186.5

-186.0

-185.5

-185.0

-184.5

-184.0

-183.5

-183.0
f7: Shubert

eulav
noitcnuF

Iteration

PSO-SA
SA
PSO

0 100 200 300 400 500 600 700 800 9001000

-1200

-1100

-1000

-900

-800

-700

-600
f8: Styblinski-Tank

eulav
noitcnuF

Iteration

PSO-SA
SA
PSO



466	 Geotech Geol Eng (2023) 41:459–475

1 3
Vol:. (1234567890)

3.1 � Site Conditions

The aforementioned tunnel project targeted the creation 
of the shanghai metro line No 11. However, the pre-
sent study only focused in the construction of a metro 
station located on this line (the ‘Baili road’ metro sta-
tion). As part of its construction process, a series of 
horizontal jet grouting operations was undertaken at the 
entrance shaft of the said metro station. A set of 5 hori-
zontal jet grouted columns were constructed through 
the tunnel entrance, slightly above the tunnel centreline, 
which was located 11.65 m beneath the ground surface. 
The dimensions of the entrance shaft were 24.2 m and 
18.9 m for the width and length, respectively. As shown 
in this figure, a water pipe was detected at a depth of 
1.5  m below the ground surface. Furthermore, geo-
technical and hydrogeological surveys revealed that 
the groundwater level varied between 1 and 2 m below 
the surface of the ground. As shown in Fig. 5, the sub-
soil profile was mainly composed of 4 layers, includ-
ing backfill, clayey silt, soft clay and soft silty clay. The 
unconfined compressive strengths of these soils were 
found to fluctuate between 30 to 55 kPa, whereas their 
water content varied between 30 and 50%. Interestingly, 
the soil layer corresponding to the implementation of 

jet grouting was mainly low strength silty clay, with 
a high time-dependent compressibility characteristic 
(Axtell et Stark, 2008; Yin et al., 2016). The horizon-
tal jet grouting process was suitably operated using the 
parameters summarized in the Table 4.

3.2 � Extraction of Analysis Variables

The present investigation mainly targeted the lat-
eral ground displacement data (see Fig. 6). The pro-
posed IRF was applied for mapping the complex 
nonlinear relationships between the response vari-
able and input variables. Indeed, the field investiga-
tions have allowed delineating 11 input variables and 
one response variable (lateral ground displacement). 
As shown in Table  5, five of these input variables 
relate to the ground conditions, while the remaining 
input variablesrelates to the operational jet grouting 
parameters.

4 � Results and Discussions

This section reports and discusses the prediction 
performance of the proposed IRF model, and also 

Assign hyper-parameters to 
the random forest model

Initialize the algorithm

Export the optimum Random 
forest model

Monitored data preprocessing

Meet stop criteria
No

Yes

Ground displacement

Evaluate the fitness function

Optimization:
PSO-SA

DT 1 DT 2 DT n

Mean value

Tree 1 Tree 2 Tree n

Training 
dataset

Boostrap 
process

Decision 
tree result
Predicted 

result

Fig. 4   Simplified illustration of the proposed IRF model
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Fig. 5   Geotechnical profile 
and soil properties at the 
construction site (after 
Wang et al., 2013)

Table 4   Jet grouting construction parameters

Column ID Air Cement slurry Sodium silicate Jetting parameters

Flow rate 
(m3/min)

Pressure (MPa) Flow rate (m3/min) Pressure (MPa) Flow rate 
(m3/min)

Pressure (MPa) Retract 
rate (m/
min)

Rotation 
rate (rot/
min)

1 6 0.7 15 98.01 6 23.1 0.7 15
2 6 0.7 12 ~ 15 85.12 ~ 98.01 6 23.1 0.7 15
3 6 0.7 10 ~ 15 80.12 ~ 98.01 3.6 18 0.7 15
4 6 0.7 10 ~ 12 85.12 ~ 80.92 7.8 26.5 0.6 15
5 6 0.7 12 80.12 ~ 98.01 6 23.1 0.6 15

Fig. 6   Lateral displace-
ment observed after the 
installation of jet grouted 
columns (After Wang et al. 
2013)
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presents analyses on how soil and jetting parameters 
affect lateral ground displacement.

4.1 � Benchmark Random Forest Models

Together with the analytical results reported by 
Wang et  al. (2018), two optimized random forest 
models were adopted to serve as baselines of com-
parison for the proposed IRF. Specifically, the ran-
dom forest-particle swarm optimization (RF-PSO) 
(Malik et  al., 2011) and the random forest-genetic 
algorithm (RF-GA) models were employed. The sec-
ond optimized model (RF-GA) was developed by 
the authors for comparison purposes. This algorithm 
abides by the same principles (hybridization and 
implementation) as the proposed IRF. In this case, 
we adopted the following parameters for the genetic 
algorithms: mutation rate = 0.9; crossover rate = 0.1; 
population size = 50; Generation = 20. Besides, for 
all the algorithms, the lower and upper bounds of 
the hyper-parameters were initialized as follows: 
numTrees = [10, 150]; numFeatures = [1, 10], num-
Leaf = [1, 25]. It should also be noted that 80% of the 
dataset was used to train the proposed model, while 
the remaining portion (20%) was used for testing.

4.2 � Performance of the IRF Model

Table  6 summarizes the simulated results  (best per-
formances are represented in bold). These statistics 
were compiled on the basis of 15 consecutive runs 
of each algorithm. Generally speaking, it can be seen 
that all the optimized random forest models per-
formed quite well, with an average correlation coef-
ficient bigger or equal to 0.96. Although the proposed 
RF-GA presents a higher average coefficient of cor-
relation, its best value was found smaller than the 
best value of RF-PSO. Compared with the other tech-
niques, the proposed IRF brings about a substantial 
increase in the prediction ability. This improvement 
can be attributed to the proposed optimization strat-
egy, namely PSO-SA, which tends to perform better 
than the others. Indeed, the root mean square error on 
the test data was found the smallest for the proposed 
IRF, followed by the RF-GA and RF-PSO.

Moreover, the comparison with the theoretical 
model by Wang et al. (2018) tends to confirm the effi-
cacy of the proposed approach. As shown in Figs. 7, 
and 8, the proposed IRF model agrees well with the Ta
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observed data. On the contrary, the results obtained 
using Wang et  al.’s method reveal the limitations of 
this analytical approach. In fact, some obvious dis-
crepancies can be observed between the predicted 
values and the monitored displacements. These dis-
crepancies stem from the inability of this theoretical 
model to strongly integrate the nonlinearity of the 
problem, i.e., external factors like overburden stress. 
Then again, it can be seen that there is a slight dispar-
ity between the observed and predicted data (obtained 
using the proposed model) near the ground surface 

for the columns 1 and 2. This can be ascribed to the 
strong variability of the input variables of these two 
columns near the ground surface. This effect is fur-
ther discussed in Sect. 4.4.

4.3 � Effect of Soil and Jetting Parameters on Lateral 
Ground Displacement

The influence of soil properties and jetting param-
eters on ground responses was investigated using 
variable importance evaluation. The random forest 
is considered as one of the most reliable approaches 

Table 6   Evaluation of 
performance of improved 
random forest models

Algorithms Elements of comparison Mean Best value Standard deviation

RF-PSO (Malik et al., 2011) numTrees 66.667 123 40.925
numFeatures 4.750 7 0.354
numLeaf 2.333 2 0.471
r-squared 0.960 0.9662 0.007
RMSE 1.303 1.22 0.240

RF-GA (This study) numTrees 91.000 100 30.474
numFeatures 3.133 2 0.660
numLeaf 1.667 2 0.471
r-squared 0.962 0.9634 0.003
RMSE 1.220 1.26 0.071

IRF (This study) numTrees 97.667 93 40.958
numFeatures 2.333 2 0.471
numLeaf 2.667 6 2.357
r-squared 0.979 0.9894 0.008
RMSE 1.048 1.05 0.003
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Fig. 7   Prediction performance of proposed IRF model
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for achieving this task due to its voting process and 
out-of-bag error calculation. Fig. 9 gives the variable 
importance of the predictors investigated in this study. 
This plot represents the increase in VIM (MSE) (i.e., 
Eq.  1) resulting from the permuting of out-of-bag 
observations across each input variable and averaging 
it over all trees in the forest (overall interpretation). 
The larger is the out-of-bag variable importance, the 
more important is the variable.

It can be observed that the ground depth and the 
retract rate have the highest influence on the lateral 
displacement during jet grouted column construction. 
The reason is that the soil properties vary substan-
tially with depth, and as a result, significantly affects 
the soil erosion process. Then, achieving the targeted 
jet grouted column diameter in this condition argu-
ably requires a longer exposure time (fluid jet –soil 
interaction). This also explains the observed rela-
tively large effect of retract rate on the lateral ground 
movement. The second duet (soil properties—jetting 
parameters) of input variables with a large variance 
importance was found to be the soil strength and the 
sodium silicate pressure. Again, the soil strength in 
this case can be associated with the in-situ geological 
profile (soil layers), in the sense that hard layers will 
be more difficult to erode than softer layers. That is 
to say, the jetting effect on the surrounding soil will 
be more pronounced in hard layers than softer lay-
ers due to the exposure time. Moreover, the sodium 
silicate tends to play a significant role in the ground 
movement process, which observation is consistent 
with the suspicions of Wang et  al. Future research 

will monitor and consider the sodium silicate gel-
ling time to provide deeper insights on excess pore 
pressure generation and ground movement. Overall, 
the pressure and flow rate of injected fluids, as well 
as the retract rate were found to be the key operating 
parameters to control in order to reduce environmen-
tal effects due to jet grouting operations.

4.4 � Interpretation of IRF predictions

To better understand the physics behind the pro-
posed IRF as well as understand the disparities in 
the lateral displacements following the chronological 
installation of columns, a local interpretation of the 
proposed model is performed. That is, for each data 
point and associated IRF prediction, the contributions 
from each feature are determined (via inspecting the 
prediction paths and decomposing the predictions) 
to explain the said prediction. Mathematically, this 
translate into the following Equation, where N is the 
number of features, cfull is the bias (value at the root 
of the node) and contrib (x, i) is the contribution from 
the i-th feature in the feature vector x.

Figure 10 Illustrates the contribution of each fea-
ture to the model predictions. Particularly, it explains 
the sources of the strong disparities observed for the 
columns No 1 and No 2. It can be seen that the strong 
disparities in predictions (for these two columns) 

(2)f (x) = cfull +

N∑

i=1

contrib(x, i)

Fig. 9   Effect of input vari-
ables on the ground lateral 
displacement
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near the ground surface stems mainly from the posi-
tive and unexpected contributions of cement pressure, 
excess pore water pressure and cement flow rate. This 
decomposition was easily verified via checking that 
contributions and bias sum up to the predicted value

Further, Fig. 11 exhibits the residual contributions 
of different parameters throughout the sequential col-
umns’ construction, which arguably explain why pre-
dicted displacement are different from one column 

installation to another. For example, the residual con-
tribution between column 3 and column 4 implies 
that one reason for the strong disparities between 
the lateral displacement of columns 4 and the oth-
ers is the significant negative contribution of retract 
rate, sodium silicate flow rate and sodium silicate 
pressure. While on the other hand, the other reason 
can be ascribed to the distance separating these two 
columns.

Fig. 10   Effect of differ-
ent features on IRF model 
predictions
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5 � Conclusions

This study proposed a novel intelligent approach, 
improved random forest (IRF) model, for predicting 
the ground displacement caused by jet grouting. A 
new hybrid metaheuristic (PSO-SA) algorithm was 
developed and tested against a set of 8 well-known 
benchmark functions. Then, the PSO-SA was incor-
porated into the random forest model for optimizing 
its topology to build up the IRF model, the perfor-
mance of which was then investigated through bench-
mark models. The main limitation of the proposed 
model could be its constraint to a specific problem 
domain. That is, any update of information shall trig-
ger the update of the model topology (number of 
trees, etc.). Then again, the latter is efficiently tackled 
by the proposed approach. Overall, the following con-
clusions can be drawn.

(1)	 The proposed hybrid metaheuristic PSO-SA 
algorithm was found to have significantly better 
searching and convergence abilities than its coun-
terparts (PSO and SA). These prominent qualities 
have been substantiated by its ability to timely 
obtain (near-) optimal solutions when tested on 
high dimensional complex multimodal bench-
mark functions. The robustness of the proposed 
optimization strategy makes it suitable for com-
plex engineering problems.

(2)	 The proposed IRF model has shown a substan-
tial improvement in the accuracy compared to 

the other methods. Besides, the statistical results 
have demonstrated its stability over consecu-
tive runs. The proposed IRF model can provide 
an encouraging prediction of the jetting-induced 
lateral displacement, outperforming the existing 
analytical methods.

(3)	 The variable importance analysis has allowed 
delineating the key factors affecting the ground 
lateral displacement resulting from jet grout-
ing operation. The environmental effects of such 
operation can be controlled via two main operat-
ing parameters that include the retract rate of the 
monitor and the injected fluid pressure.
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Table 7   Implementation code of the proposed PSO-SA
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