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specific locations. The first input data (input data-1) 
is constructed as a function of the Mean Grain Size 
 (D50), Measured CPT Tip Resistance  (qc), Earthquake 
Magnitude (M), and Cyclic Shear Resistance (CSR). 
The second input data (input data-2) employed  D50, 
Normalized CPT Tip Resistance  (qc−1), M, CSR. 
Finally, the third input data (input data-3) consists 
of  D50,  qc−1, M, the Maximum Ground Accelera-
tion  (amax), Effective Vertical Overburden Stress, and 
Total Overburden Stress. The significance feature 
analysis shows the most important feature for assess-
ing liquefaction susceptibility in the soil using input 
data for model 1 is measured CPT Tip Resistance, for 
input data model 2 it is normalized CPT Tip Resist-
ance, and finally, for input data model 3, it is meas-
ured CPT Tip Resistance. Conclusively, this study 
proposed simple and quick approaches to evaluate 
soil liquefaction susceptibility without complicated 
calculations.

Keywords Supervised machine learning classifiers · 
Liquefaction · Cyclic resistance · Cyclic stress ratio

Abbreviations 
qc   Measured CPT tip resistance
Fs   Friction sleeve
M   Earthquake magnitude M
D50   Mean grain size
CSR   Cyclic stress ratio
qc-1   Normalized CPT tip resistance
σʹvo  Effective vertical overburden stress

Abstract Liquefaction of saturated granular soils 
is marked by the total loss of shear strength of soil 
under dynamic cyclic or transient loading conditions 
due to excess pore water pressure that builds up to 
produce a soil regime that mechanically performs as 
a liquid. The cone penetration test (CPT) is widely 
recognized as a means of evaluating liquefaction sus-
ceptibility. This study presents a comparative super-
vised machine learning-based assessment for CPT-
based liquefaction data. In particular, this study views 
soil liquefaction as a binary classification problem, 
whether the soil is liquefied or not, by utilizing three 
supervised machine learning classifiers: support vec-
tor machine, Decision Trees, and Quadratic Discrimi-
nation Analysis. To build the supervised machine 
learning models, three different soil characteriza-
tion data sets were selected by performing CPTs at 
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σvo   Total effective overburden stress
amax   Ground surface
AI   Artificial intelligence
SVM   Support vector machine
QDA   Quadratic discriminant analysis

1 Introduction

One of the most crucial earthquake-induced haz-
ards is liquefaction, this hazard is recognized as one 
of the most common damaging incidents related to 
earthquakes. Liquefaction occurs whenever loosely 
packed liquid sediments at the surface of the earth 
lose strength due to intense shaking. During an earth-
quake, liquefaction underneath structures may cause 
considerable damage. For instance, the 1964 Niigata 
earthquake in Japan caused significant liquefaction 
and structural destruction. In the 1989 Loma Pri-
eta earthquake in California, liquefied fill soils and 
debris produced considerable subsidence, fracture, 
and lateral spreading of the surface of the ground in 
San Francisco’s Marina neighborhood. Soil liquefac-
tion is the ground breakdown or loss of strength that 
enables normally solid soil to behave as a viscous 
liquid. The phenomenon happens in unconsolidated 
soils impacted by secondary seismic S-waves (ground 
vibrations). Construction activities such as blasting, 
soil compaction, and vibrio flotation (which utilizes 
a vibrating probe to modify the microstructures of 
the surrounding soil) purposefully create liquefac-
tion. Sand, silt, and gravelly soils with poor drainage 
are particularly prone to liquefaction. When an earth-
quake shocks saturated soils, the liquid pore spaces 
collapse, reducing the soil’s volume. This raises the 
hydrostatic pressure between soil grains that reduces 
the soil’s resistance to shear force and turns the soil 
into a liquid. Soil deforms quickly when liquefied, and 
massive items like buildings may be destroyed when 
they lose support from underneath. Liquefaction has 
reportedly proven to occur in loose saturated sand 
deposits (Juang et al. 2003; Owen and Moretti 2011; 
Pathak and Purandare 2016; CubrinovskiI et al. 2018; 
Mohanty and Patra 2018; Zhang et al. 2018; Sharma 
et al. 2019; Anderson 2019; Rasouli et al. 2019; Beyz-
aei et  al. 2019). Due to the severe destruction made 
by earthquakes associated with liquefaction, research-
ers are increasingly involved in studying the liquefac-
tion vulnerability of soils. Most liquefaction studies 

use a traditional empirical method such as regression 
methods that do not usually provide a clear liquefac-
tion assessment other than statistical experimentation 
based on observed events, due to the complexity of 
the liquefaction mechanism. Pal (2006) used Standard 
Penetration Tests (SPT) and CPT data tested by sev-
eral machine-learning approaches amongst which the 
Support Vector Machines provided the best liquefac-
tion prediction.

Real-world methods developed based on SPT and 
practitioners of engineering prefer CPT tests since it 
is readily available, cost-effective, and easy to per-
form. CPT test, particularly, gained popularity and 
broad acceptance in liquefaction studies since this test 
is known to provide a reliable estimation of mechani-
cal parameters of sands. A primary advantage of the 
CPT method is the continuous data produced over 
the entire depth of the investigated soil layers. CPT 
is also recognized with consistent and repeatable 
measurements more than other in  situ test methods. 
However, most of the CPT-based methods are empiri-
cal performance functions established based on field 
observations during earthquake events (Baez et  al. 
2000; Andrus et  al. 2003; Juang et  al. 2003; Samui 
2007; Samui and Sitharam 2011; Zhao and Cai 2015; 
Setiawan et  al. 2018). Susceptibility of liquefaction 
is indexed by the Factor of Safety defined (Idriss and 
Boulanger 2008) as

where CRRM is cyclic resistance ratio at earthquake 
magnitude M and CSRM is cyclic stress ratio earth-
quake magnitude (M).

CRR is equivalent to CSR that induces liquefac-
tion for a particular soil and was introduced by sev-
eral authors (Seed and Idriss 1971) as a function of 
CPT test parameters (primarily  qc in different forms) 
or SPT values (Seed and Idriss 1971; Seed 1975). 
(Seed and Idriss 1971; Seed et  al. 1975) introduced 
the well-known equation to estimate the cyclic stress 
ratio (CSR)

where τave is the average earthquake-induced shear 
stress, σʹvo is the effective vertical stress,  amax is the 
maximum horizontal acceleration, g is the gravity 

(1)FS =
CRRM

CSRM

(2)CSReq =
�ave

��0�
= 0.65

a max

g
⋅
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⋅ rd
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acceleration, σvo is the total vertical stress, and rd is 
the depth reduction factor to account for the soil 
column flexibility. The constant 0.65 is employed 
to transform the peak cyclic shear stress ratio into a 
cyclic stress ratio.

Liquefaction susceptibility requires interpretation 
of too many parameters that are obtained from cone 
penetration testing, in addition to seismic parameters 
including cyclic stress ratio, CSR which provide a 
meaning of seismic charge in a soil matrix, and the 
cyclic resistance ratio, CRR which provides the capa-
bility of a soil to resist liquefaction (Youd 2000). 
Seed and Idriss (1971) suggested incorporating cyclic 
stress and cyclic resistance ratio in assessing lique-
faction susceptibility. Later on, several techniques 
have been developed to evaluate the cyclic resistance 
ratio (Idriss and Boulanger 2006). Interpreting a large 
number of parameters, and using many methods to 
estimate the same parameter, assimilates a signifi-
cant amount of uncertainties in the results and con-
clusions. ANN is the most principal method utilized 
in soil liquefaction investigation representing great 
capabilities concerning complex nonlinear problems 
(Mughieda et  al. 2009; Stolte and Cox 2019; Javda-
nian 2019; Sideras 2019; Njock et  al. 2020). Artifi-
cial intelligence is generally applied for the classifi-
cation and prediction of a phenomenon, rather than 
using conventional methods (Hanandeh 2007, 2022a, 
b; Fang et  al. 2018; Bi et  al. 2018; Hanandeh et  al. 
2020a, b; Al Bodour et al. 2022)

In the past few years, there has been an increasing 
interest in Supervised Machine learning models in 
the sciences and engineering fields. The main reason 
for the success of these models is their ability to suf-
ficiently approximate a general complex function pro-
vided enough data is fed into these models. Moreover, 
the abundance of various methods to collect data and 
the availability to process this data has also contrib-
uted to the popularity of this field. The premier bene-
fit of machine learning methods over the conventional 
methods is their strength to capture the nonlinear 
behavior and interrelations between dependent and 
independent variables, in addition to their high capa-
bilities to operate with complicated data hierarchies 
(Goh 1996; Juang et  al. 2003; Goh and Goh 2007; 
Oommen et  al. 2010; Samui and Sitharam 2011). 
This study is intended to introduce a comparison 
analysis using various machine-learning classifiers for 
assessing liquefaction potential. More specifically, it 

presents a comparative study on supervised machine 
learning classifiers to classify the soil type (whether 
liquefiable or not) under certain conditions. In this 
study, three supervised machine learning classifiers 
were studied on three parameter-based models. The 
following machine learning methods were used in this 
study: decision tree, support vector machine (SVM), 
and quadratic discriminant analysis (QDA). More 
explanation of these techniques is explained in the 
appendix. These models are considered to study the 
liquefaction phenomenon. A comparison between the 
three models is performed to determine how strongly 
they correlate to the phenomenon and which one 
amongst them best classifies the soil into liquefiable 
or non-liquefiable soils.

2  Database

The data used in this study to propose and ver-
ify the machine-learning models were collected 
from Stark and Olson (1995). The database con-
sists of resistance values obtained from CPT 
testing versus observation-based information on 
whether the soil liquefied during an earthquake 
event or not. The experimental data includes 
94 incidents of liquefiable and non-liquefiable 
sites. Data was depicted in 53 sections that liq-
uefied and 41 sections that did not experience 
liquefaction. The soils in these locations vary 
from silty sand to sandy silt. The measured 
depth of the CPT test varies from 1.3 to 15.1 m. 
The tip resistance  (qc) value varies from 0.38 
to 20.6 MPa. The measured total stress var-
ies from 31.4 to 290.3 kPa, while the effective 
stress ranges from 13.9 to 227.5 kPa. The peak 
ground horizontal acceleration at the ground 
surface varies from 0.15g to 0.5g. Moreover, 
experimental CPT test data sets along with dif-
ferent types of other soil parameters were used 
to predict Machine learning (ML) models. The 
computer program Python was used to perform 
the Machine Learning analysis. Each of the 
three proposed models maps the liquefaction 
occurrence to a set of parameters is presented in 
Table  1. A summary of the statistical parame-
ters performed for the collected data is tabulated 
in Table 2.
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3  Analysis of machine learning methods/
classification

Each of these classifiers is inspected for the three 
parametric models provided above with different 
input parameters, and the output for all three models 
includes one output layer which denotes happens (1) 

and non-happens (0) of liquefaction. The goal here 
is to consider applying these classifiers to the three 
models in order to utilize the provided real-world 
measurements in predicting earthquake-induced liq-
uefaction and to identify the most appropriate method 
that describes each model. In order to train the above 
classifiers, one usually starts with a reasonable 

Table 1  Parameters used to 
determine soil liquefaction 
susceptibility class for 3 
models

Parameter Parameter description Model 1 Model 2 Model 3

D50 (mm) Mean grain size x x x
qc Measured CPT tip resistance x
M Earthquake magnitude x x x
CSR Cyclic Stress Ratio x x
qc−1 Normalized CPT tip resistance x x
amax Peak acceleration at the ground surface x
σ’vo Effective vertical overburden stress x
σvo Total effective overburden stress x

Table 2  Basic statistical parameters for data used in developing machin learning model

Parameter No. of data Model Max Min Median Mean Standard 
deviation

Earthquake magnitude (M) 95 Model 1 7.80 5.90 7.50 7.21 0.65
95 Model 2 7.80 5.90 7.50 7.22 0.65
94 Model 3 7.8 5.90 7.5 7.22 0.65

Total effective overburden stress (σvo) 95 Model 1 – – – – –
95 Model 2 – – – – –
94 Model 3 286.30 16.70 97.10 111.38 62.90

Effective vertical overburden stress (σ’vo) 95 Model 1 – – – – –
95 Model 2 – – – – –
94 Model 3 227.50 13.90 66.20 79.05 45.85

Mean grain size  D50 95 Model 1 0.40 0.016 0.16 0.16 0.09
95 Model 2 0.40 0.01 0.16 0.17 0.09
94 Model 3 0.40 0.01 0.16 0.17 4.96

Measured CPT tip resistance  (qc) 95 Model 1 21.57 0.38 5.22 6.33 5.00
95 Model 2 21.57 0.38 5.12 6.31 2.83
94 Model 3 19 7.53 14 13.58 0.09

Peak acceleration at the ground surface
amax

95 Model 1 – – – – –
95 Model 2 – – – – –
94 Model 3 0.60 0.10 0.24 0.29 0.13

Normalized CPT tip resistance
qc−1

95 Model 1 – – – – –
95 Model 2 26.88 0.44 6.10 7.37 5.80
94 Model 3 – – – – –

Cyclic stress ratio (CSR) 95 Model 1 0.52 0.09 0.23 0.24 0.09
95 Model 2 0.52 0.09 0.23 0.24 0.09
94 Model 3 – – – – –
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default set of hyper-parameters. In this study, the 
hyper-parameters were chosen to be the default hyper-
parameters that are provided with the Scikit-Learn 
package. Once the hyper-parameters are initially cho-
sen, standard learning curve analysis is performed, 
and the variance and bias of the curves are examined. 
After the initial inspection of the learning curves, the 
model complexity analysis is then performed. For 
the three models, it is important to modify the hyper-
parameters to reduce the likelihood of false-negative 
classifiers. This is because a false negative prediction 
potentially has very severe consequences. For this 
reason, the hyper-parameters are tuned with respect to 
the recall metric, which is defined to be:

It is also sometimes desirable to record the clas-
sification results in a single matrix called the confu-
sion matrix of a classifier. Specifically, the confusion 
matrix of a binary classifier is a 2 × 2 matrix that sum-
marizes the prediction results of the classifier. In par-
ticular, it stores the number, or percentage, of the cor-
rect and incorrect predictions broken down into each 
class. Finally, it is common to divide the dataset into 
two subsets: a training part and a testing part. In this 
study, each dataset was divided into 70% for training 
and 30% for testing. This study performs an analysis 
of the training data set using tenfold cross-validation. 
Without testing the three models, an initial inspection 
of the recall metric analysis of the seven classifiers 

(3)Recall =
True positive

True positive+False negative

(4)Precision =
True positive

True positive+False positive

(5)Accuracy =
True positive+True positive

True positive+False positive+False negative+True negative

mentioned above is computed and reported in Table 3 
on the testing dataset with respect to the three mod-
els. These results are improved in later sections when 
we perform a hyperparameter search.

The explanations of essential terminology are uti-
lized to express the fundamental metrics while recog-
nizing the absence of liquefaction occurrences. The 
explanation of the terms used in this study is defined 
as follows: True negative and true positive designate 
that the representations are predicted accurately. A 
false positive expresses the quantity of no liquefaction 
that is predicted inaccurately as positive. A false neg-
ative indicates the quantity of liquefied units that are 
predicted inaccurately as negative. Precision relates 
to the efficiency of the forecasts for a particular type 
(positive or negative). Recall estimates the precision 
of forecasts, recognizing just the predicted value. For 
the confusion matrix, the resulting metrics were uti-
lized to estimate and analyze the forecast for three 
models.

3.1  Analysis of model 1

The first input data set (input data-1) is constructed 
as a function of the Mean Grain Size  (D50), Measured 
CPT Tip Resistance  (qc), Earthquake Magnitude (M), 
and Cyclic Shear Resistance (CSR). The output layer 
contains one output layer that denotes the liquefaction 
that happens (1) and non-happens (0). As mentioned 
earlier, the choice of the metric for choosing the 
classifier is based on the recall value that this clas-
sifier gives on the testing data. For model-1, one can 
observe from Table 4 that all three classifiers (SVM, 
Decision Tree, and QDA) provide a recall score of 1. 
In order to decide on the best classifier, other metrics 

Table 3  Supervised classification models recall results

Method Decision tree SVM QDA

Model-1 0.94 0.98 1.0
Model-2 0.85 0.90 0.85
Model-3 0.71 0.95 0.76

Table 4  Classification report for model-1

Method Decision tree SVM QDA

Precision 0.94 0.91 0.97
Recall 1 1 1
Accuracy 0.71 0.85 0.94
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are examined on these classifiers. The metrics that 
are examined along with recall are "precision" and 
"accuracy" as reported in the table. Table  4 shows 
that the QDA achieves the highest precision and accu-
racy score. The confusion matrix for this classifier is 
shown in Fig. 1.

The model description can be represented using 
the decision tree that recognizes which situations are 
commonly expected to give a purposeful assemblage 
of liquefaction occurrence. The proposed decision 
tree model may be employed to determine the accu-
rate soil liquidation frequency. Figure  2: Common 
Fuzzy Interpretation Purpose is applied to implement 
the common probable purpose established for lique-
faction occurrence, which is for model 1. This dem-
onstrates that the prediction results are collaborative 
and unique and that there is a high level of model 
accuracy.

3.2  Analysis of model 2

The second input data set (input data-2) employed 
D50, Normalized CPT Tip Resistance (qc−1), M, and 
CSR. The output layer contains one output layer that 
denotes the liquefaction that happens (1) and non-
happens (0). For this model, three classifiers provided 
identical results on the recall metric. These classifiers 
are QDA, SVM, and Decision Tree. The most appro-
priate classifier for this model is the SVM because the 
accuracy metric for this classifier is 0.91, as shown 

in Fig. 3. Whereas the accuracy metric for the QDA 
and the Decision Tree classifiers is 0.88, as shown 
in Fig.  4. In other words, all of these classifiers are 
equally reliable for predicting negative examples, but 
when it comes to predicting an arbitrary example, the 
SVM outperforms the other two classifiers. All three 
classifiers provided identical results on the recall 
metric. In order to decide on the best classifier, one 
must look at other metrics examined in the unsuper-
vised setting. The metrics that are examined along 
with recall are "precision" and "accuracy" as reported 
in table. Table  5 shows that the SVM achieves the 
highest precision and accuracy score. The confusion 
matrix for this classifier is shown in Fig. 3.

Figure 5 common feasible interpretation purpose is 
applied to implement the common probable purpose 
established of liquefaction occurrence for model1.

3.3  Analysis of model 3

The third input data set (input data-3) consists of  D50, 
 qc−1, M, the Maximum Ground Acceleration  (amax), 
Effective Vertical Overburden Stress, and Total Over-
burden Stress. The output layer contains one output 
layer that denotes the liquefaction that happens (1) 
and non-happens (0). Based on the recall results of 
the classifiers obtained in Table  1, the classifier of 
choice in this model is the support vector machine. 
Inspecting the confusion matrix of this classifier in 
Fig. 4, we observe that while the percentage of false 
negatives is very low for this classifier, the percent-
age of false positives is very high. Hence, this clas-
sifier is reliable to eliminate false negative examples, 
but it is unreliable when trying to decide on the posi-
tively predicted examples. In order to decide on the 
best classifier, one must look at other metrics exam-
ined in the unsupervised setting. The metrics that are 
examined along with recall are "precision" and "accu-
racy" as reported in the table. Table 6 shows that the 
decision tree achieves the highest precision and accu-
racy score. The confusion matrix for this classifier is 
shown in Fig. 6.

The other classifiers that are performed and return 
relatively good results for this model are the QDA and 
the decision tree classifiers. The confusion matrices 
of these two classifiers are shown in Fig. 7. Observe 
that these classifiers give identical results on the con-
fusion matrices. On the other hand, both of these two Fig. 1  The confusion matrix for the QDA classifier on Model-

1
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classifiers outperform the decision tree when it comes 
to predicting positive examples.

Figure 8 common feasible interpretation purpose is 
applied to implement the common probable purpose 
established of liquefaction occurrence for model1.

3.4  Sensitivity analysis

This section discusses the importance of the features 
in the supervised classification tasks. The importance 
of a feature is defined as the increase in the prediction 
error of a given classifier after perturbing the values 

of the feature. In other words, feature importance 
measures how sensitive a classifier is with respect to 
changing a certain feature. In this study, the feature 
importance with respect to the best classifier for each 
model is only considered. Model-1 was found to be 
the best classified using the QDA classifier. Figure 9 
shows the result of the feature importance test of 
features when using the QDA classifier for Model-1. 
The length of the bars represents the importance of 
the feature in the final classification task. The most 
important input variables for liquefaction potential 
prediction modeling were graded discerningly as fol-
lows: measured CPT tip resistance, cyclic stress ratio, 
earthquake magnitude, and mean grain size.

The SVM was shown to be the best classifier for 
Model-2 in the previous analysis. Figure  10 shows 
the feature importance reported for this classifier. The 
most important input variables for liquefaction poten-
tial prediction modeling were graded descendingly as 
follows: normalized CPT tip resistance, cyclic stress 
ratio, earthquake magnitude, and mean grain size.

Model-3 has six input parameters, and the best 
classifier in this model was the Decision tree. Fig-
ure 11 shows the results of the feature importance in 
this model. The most important input variables for liq-
uefaction potential prediction modeling were graded 
descending as follows: mean grain size, total effective 
overburden stress, effective overburden stress, earth-
quake magnitude, measured CPT tip resistance, and 
Peak Acceleration at the ground surface.

Fig. 3  Confusion matrix of SVM for model-2

Fig. 4  Confusion matrix of QDA and the Decision Tree classifiers for Model-2
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4  Results and Discussion

The performance of QDA provides better results than 
the decision tree and support vector machine con-
sidering QDA reduces the error of the output model. 
Model 1 has a fantastic achievement percentage of 
100% for experimental data; additionally, measured 
CPT tip resistance influences model 1 output results 
more than other input parameters. Furthermore, 

model 2 with the SVM method provides a super-
vised classification model recall percentage of 0.98 
for experimental data. Also, for model 2, normalized 
CPT tip resistance influences the output results for 
model 2 more than other input parameters. Moreover, 
model 3 with the decision tree method provides bet-
ter results than other machine learning methods. Fur-
thermore, measured CPT tip resistance influences the 
output results more than other input parameters. To 

Fig. 5  Graphical result of Decision tree design soil liquefaction probability for model 2
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predict the liquefaction occurrence, three models with 
different input variables were presented and discussed 
above. In this study, for model 1, we included four 
input variables, designating the Cyclic Stress Ratio 
(CSR), the mean grain size (D50), the earthquake 
magnitude M, and the measured CPT tip resistance. 
Model 2 was composed of four input variables depict-
ing the mean grain size, earthquake magnitude M, the 
measured CPT tip resistance, and the Cyclic Stress 
Ratio (CSR). Model 2 differs from model 1 by add-
ing a new input variable, which is normalized cone 
tip resistance. The analysis’s results showed that the 

predicted value of liquefaction is similarly equal to 
the liquefaction observation in the proposed models.

5  Deployment of the Models

Deployment of the trained models can be done in 
practice by loading the previously trained model and 
executing this model on a newly available data point. 
All models in this manuscript were trained using the 
scikit-learn package. The final trained models that 
were explained in Sect.  3 are made available online 

Table 5  Classification report for model-2

Method Decision tree SVM QDA

Precision 0.90 0.95 0.92
Recall 1 1 1
Accuracy 0.71 0.93 0.90

Table 6  Classification report for model-3

Method Decision tree SVM QDA

Precision 0.93 0.88 0.90
Recall 1 1 1
Accuracy 0.92 0.87 0.91

Fig. 6  Confusion Matrix of Decision Tree on Model 3

Fig. 7  Confusion matrices for the decision tree and the SVM classifiers
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on the following URL: https:// www. dropb ox. com/ 
sh/ iv3rv 8azil bfsup/ AAAhg YplOY iefX4 z1pd7 Fxjia? 
dl=0. The URL also contains instructions on python 

installation as well as the installation of the scikit-
learn package. Furthermore, all available models are 
saved in “joblib” format which is a standard scikit-
learn format to save trained models. To deploy these 
models, the following steps can be done:

• After running python, the classifier can be loaded 
by using the command clf = load(’filename.
joblib’), where filename is the name of the model 
available in the URL provided above.

• Given a new point x obtained by doing field meas-
urement, a classifier can be utilized by using the 
command y = clf.predict(x). The obtained y is the 
final label that can be used to determine the final 
liquefaction label.

6  Conclusion

Liquefaction in saturated sand soil is an example of an 
important topic in geotechnical design. The CPT has 
been confirmed to be a powerful method in soil explo-
ration and analysis of various features of soil response. 
In this study, machine-learning methods are utilized to 
estimate the liquefaction occurrence in soil by using 
CPT information. Three models were proposed based 
on different types of machine learning methods. The 
results show that Model-1 is the best among all classi-
fiers, and across the three models, the results show that 
QDA provides better performance when compared 
with other classifier methods. For model-1, QDA gen-
erates (a score of 1 on the recall metric, 0.97 on the 
accuracy metric, and 0.94 on the precision metric). 
Model-2 was best described using SVM, (with a recall 
score of 0.90). Model-3 was best described using a 
decision tree (with a recall score of 0.95). In all mod-
els, the recall metric was not sufficient to decide the 
best classifier, as some classifiers performed equally 
well with respect to this metric. In order to decide 
on the best classifier computed, other metrics such as 
precision and accuracy were used to present the final 
decision. Using the available trained models explained 
in Sect.  5, engineers can apply the proposed three 
models as reliable and active tools to evaluate soil 
liquefaction perceptivity without any additional regu-
lation calculation methods such as applying charts, 
equations, and tables. The findings confirm that using 
various machine learning methods is extremely effec-
tive for predicting liquefaction events.

Fig. 9  Feature Importance for QDA on model-1

Fig. 10  Feature importance for SVM on model-2

Fig. 11  Feature importance for Decision tree on Model-3

https://www.dropbox.com/sh/iv3rv8azilbfsup/AAAhgYplOYiefX4z1pd7Fxjia?dl=0
https://www.dropbox.com/sh/iv3rv8azilbfsup/AAAhgYplOYiefX4z1pd7Fxjia?dl=0
https://www.dropbox.com/sh/iv3rv8azilbfsup/AAAhgYplOYiefX4z1pd7Fxjia?dl=0
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Appendix

This section describes the machine learning methods 
used to predict a new liquefaction model. The lique-
faction potential was evaluated using CPT databases. 
The next parts present a concise explanation of the 
basic knowledge of these methods. The validation 
and quantification were performed by using overall 
accuracy, precision.

Supervised machine learning classifiers

This section summarizes some of the supervised 
machine learning techniques used in this article. In 
particular, the following methods are reviewed: Deci-
sion Tree, Support Vector Machine (SVM), and QDA.

Decision tree

The decision tree is one of the most popular super-
vised machine learning classifiers. This classifier 
operates by dividing the feature space into axis-paral-
lel rectangles and labeling each rectangle with one of 
the two classes (Yang et al. 2018).

Support vector machine (SVM)

Support Vector Machine is a supervised machine-
learning method that has been used for classifi-
cation and regression analysis. The linear vector 
machine algorithm takes as input data consists of 
training examples 

(

x1.y1
)

…
(

xN.yN
)

 where the points 
{

xi
}N

i=1
⊆ RP and the labels yi ∈ Y = {±1} for every 

i and return a p − 1 hypersurface (Huang et al. 2018).

Quadratic discriminant analysis (QDA)

In QDA, the decision boundary is assumed to be a 
quadratic surface. In other words, a QDA classifier 
tries to find a quadratic surface that best separates the 
training set data. From this understanding, QDA can 
be considered as a generalization of linear classifiers 
(Ghojogh and Crowley 2019).
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