Geotech Geol Eng (2022) 40:2781-2797
https://doi.org/10.1007/s10706-022-02061-5

)

Check for
updates

ORIGINAL PAPER

Effect of Love Wave Propagation on the Equivalent Seismic
Bearing Capacity of Shallow Foundations Using 3D

Coulomb Failure Mechanism

Ardavan Izadi - Reza Jamshidi Chenari
Foroogh Hemmati Masouleh

+ Sina Javankhshdel -

Received: 4 September 2020/ Accepted: 11 January 2022 /Published online: 24 January 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract The equivalent seismic bearing capacity
factor of shallow strip foundations in the presence of
pseudo-dynamic earthquake accelerations induced by
Love wave propagation have been evaluated by the
limit equilibrium method and application of the three-
dimensional Coulomb failure mechanism. A paramet-
ric study was conducted to evaluate the influences of
different geo-material and geometrical conditions,
seismic excitation parameters including earthquake
coefficient of accelerations, and wavelength of the
Love wave on the seismic bearing capacity factor. The
results showed that the earthquake acceleration coefif-
cient and the Love wave frequency (wavelength) are
the most important parameetrs affecting the perfor-
mance of overlying shallow foundations. It was found
that the bearing capacity of shallow footing decreases
with the increase of earthquake acceleration and Love
wavelength. It was further confirmed that increasing
the soil cohesion and footing embedment depth would
diminish the detrimental impacts of the surface wave
interaction with the overlying shallow footings.
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1 Introduction

Earthquakes, as one of the most recognized tragic
natural disasters, are potentially highly destructive and
unpredictable. The statistics of human losses and
enormous financial casualties induced by earthquakes
signify the importance of risk assessment and evalu-
ation of the effect of seismic forces on foundations
failure and its corresponding severe damage to super-
structures. Hence, the attention of many researchers
has been garnered to the problem of seismic bearing
capacity of shallow foundations. To this end, propos-
ing novel solutions to mitigate risks and casualties,
implementation of more accurate analytical and
numerical analysis methods to evaluate the key
parameters contributing to the seismic bearing capac-
ity assessment have been targeted accordingly. Fur-
thermore, consideration of more realistic problem
conditions involving seismic excitations, soil strength
profiles, third dimension effect of the problem, and
evaluation of the effects of body and surface waves
excitations on foundation failure have been covered.
The simplicity and capability of the pseudo-static
scheme of analysis associated with different methods
of analysis such as limit equilibrium method (LEM),
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bound theorems of limit analysis, stress characteristics
as well as numerical analysis to take into account
seismic forces make it more favorable than the
pseudo-dynamic loading consideration to investigate
the seismic bearing capacity of shallow foundations.
The study of Meyerhof (1963) is among the first
documented uses of the pseudo-static approach to
capture the effect of seismic forces on the ultimate
limit load of shallow foundations. In these studies, the
effects of seismic forces on the soil mass, i.e. inertia
forces of the soil media, were neglected and the
seismic forces were only applied by an additional
inclination angle to the gravity forces of superstruc-
tures. However, innumerable numerical and experi-
mental studies showed that seismic forces admittedly
have great impacts on the soil properties and inertia of
soil mass. Consequently, the ultimate load of the
shallow foundations is strongly dependent on the
assumption of seismic excitation effects on the soil
media.

Over the several recent decades, many researchers
studied the problem of seismic bearing capacity of
shallow foundations by taking into account pseudo-
static earthquake coefficients of acceleration for both
superstructures and soil mass by the implementation
of different numerical and analytical methods includ-
ing limit equilibrium, bound theorem of limit analysis,
and stress characteristics method. Budhu and Al-Karni
(1993), Paolucci and Pecker (1997), Soubra (1999),
Kumar and Rao (2002), Askari and Farzaneh (2003),
Kumar and Kumar (2003), Choudhury and Rao
(2005), Yamamoto (2010), Kumar and Chakraborty
(2013), Chakraborty and Kumar (2015), Ghosh and
Debnath (2017), Foroutan Kalourazi et al. (2019),
Haghsheno et al. (2020), Nouzari et al. (2021), and
Izadi et al. (2021) are among many on this problem.

Despite its robustness, the pseudo-static approach is
not able to capture the effect of excitation time
duration, excitation frequency, and phase differences.
By subjecting the entire soil mass to the same value of
accelerations, the pseudo-static method essentially
assumes the magnitude and phase of the accelerations
to be invariant through the soil body. By taking into
account the influences of both shear and primary
waves, the amplification of seismic excitations, and
the period of lateral shaking, the pseudo-dynamic
approach was firstly proposed by Steedman and Zeng
(1990) and extended by Choudhury and Nimbalkar
(2005). Over recent years, the problems of bearing
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capacity of shallow foundations (Ghosh 2008; Ghosh
and Choudhury 2011; Saha and Ghosh 2015; Zhou
et al. 2016; Saha and Ghosh 2017; Kurup and
Kolathayar 2018; Izadi et al. 2019b; Pakdel et al.
2021) and stability of retaining walls (Ghosh and
Kolathayar 2011; Bellezza 2014, 2015; Pain et al.
2015; Fathipour et al. 2021) in conjunction with
different methods of analysis and application of the
pseudo-dynamic approach have received considerable
attention.

Although numerous studies were reported on the
problem of seismic bearing capacity of shallow
foundation via different methods of analysis and
different assumptions for capturing the effects of the
earthquake excitation, there seem to be little if any
published evidence on the influence of the Love wave
propagation on foundation failure. Moreover, an
additional difficulty arises from the fact that the Love
wave velocity is frequency-dependent in nature.

In this study, the limit equilibrium method (LEM)
associated with the 3D Coulomb failure mechanism is
used to investigate the influence of the Love wave
propagation on the seismic bearing capacity of shal-
low footings. Despite all the other studies on the
effects of wave propagation on bearing capacity, the
problem under consideration is assumed to be 3D. In
fact, the body and surface waves propagate in any
arbitrary direction and the bearing capacity of shallow
footings strongly depends on the ratio of the wave-
length to the dimensions of the foundation. Further-
more, the Love wave cycles along the footing length/
width and exerts excitations transversely. To over-
come these concerns, the 3D Coulomb failure mech-
anism was adopted and the most critical case, the
direction of the Love wave along the footing length
and particle’s oscillation perpendicular to the train of
Love wave, was considered.

2 Love Wave Propagation

Body waves including primary and shear waves as
well as Rayleigh waves propagate through homoge-
neous elastic half-space. For a soil profile consisting of
at least a semi-infinite medium and a soil layer,
primary and shear waves may be reflected and partly
transmitted through the shared interfaces between the
layers. In this case, the successive reflections of SH
waves from the interface of the thin soft layer and the
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semi-infinite stiffer soil as shown in Fig. 1a may lead
to generate Love wave (Kramer 1996; Verruijt 2010).
In other words, the necessary condition to observe
Love waves is that a low-velocity layer is underlain by
a high-velocity half-space. The Love waves are indeed
resultant of interference of shear waves in the surficial
layer and are often described as SH-waves trapped in
the surface layer.

The particle motion of a Love wave, representing a
transverse wave, is a side-to-side (back and forth)
motion perpendicular to the main direction of the wave
propagation without either vertical or longitudinal
components as shown in Fig. 1b (Love 1927). In
geotechnical earthquake engineering and seismology,
the Love waves are known as surface seismic waves
that cause horizontal shifting of the surface ground
during the action of an earthquake dispersing as a long
train of waves to the substantial distances from the
source. As the amplitude of Love waves decays more
slowly than body waves, these waves lead to strong
ground motion and consequently to strong seismic

motions even for earthquakes originated from distant
sources (Shearer 2009).

For a surficial layer of thickness H, shear modules
of G, and density of p; overlying a homogenous half-
space with shear modulus and density of G, and p,,
respectively, as shown in Fig. 2, the love wave travels
in the + x direction with the particles oscillating in
the & y directions, perpendicular to the plane of wave
propagation (x—z). The particle displacement can then
be described as the basic form of Eq. (1).

v, 2.1) = V(e 1)

where v is the particle displacement in the y-direction,
V(z) is the amplitude describing the variation of the
particle displacement with depth, k; is the Love wave
number, o is the angular frequency and ¢ is the time of
vibration (Kramer 1996).

Note that the third dimension of the failure surface
is formed in the out-of-plane direction and the footing
length, as illustrated schematically in Fig. 2, is
assumed sufficiently long to assure plane strain
condition in the out-of-plane direction. Therefore,

Fig. 1 a Generation of the PAb) /‘V\\
Love wave by successive / / N e
reflections of SH-wave in a Surface layer // AN // AN Supelcrltlcal reflected
surficial layer, b Love wave N y; \\ Y \\ SH-wave
propagation and generated \\ / N/ Ny
transverse particle motion 4 Y Y
Semi-infinite
half-space
(@

Wave propagation

(b)
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Fig. 2 Schematic illustration of the soil profile, shallow foundation with corresponding failure mechanism, and Love-wave

propagation in the soil layer

the foundation width is assumed to lie in the particles’
transverse displacement direction.

According to Aki and Richards (1980) and Kramer
(1996), while satisfying the traction-free surface
assumption atop, the particle displacement can be
found by:

12

1 1 i(kyx—ot

V(X,Z7t) :ZAlcOS (U(VT—E> Z €<k/ )
s1 1

(2)

for0<z<H

o I)MH
V32~1 "12

1 1 lﬂ i(kpx—ar)
exp|—o|5——| (z—H)|e

Vil Ve

v(x,z,1) = 2A; cos

forz>H
(3)

where vy; and v; are the shear wave velocity in each
layer (i = 1, 2) and Love wave velocity, respectively.
As seen from Egs. (2) and (3), the variation of the
particle displacement amplitude of the Love wave
with depth is harmonic and exponential for the surface
layer and the half-space, respectively, decaying
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Fig. 3 Variation of the particle displacement amplitude with
depth

readily by getting away from the surface as shown
schematically in Fig. 3. Surface waves such as the
Love wave, decay more slowly with distance than
body waves do. Therefore, the effect of the surface
waves is more eminent in comparison to the body
waves in structures and superstructures afar. Hence,
Love waves could be arguably the most destructive
waves in areas that are far away from the focus of an
earthquake. The Love wave velocity is admitted to be
dependent on the excitation frequency, the surface
layer thickness, and the shear moduli of both layers as
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well as the shear wave velocities of each layer as
shown in Eq. (4a). It is observed that the Love waves
propagate at higher velocities with low frequencies
which is limited to shear wave velocity of the stiffer
underlying half-space. By increasing the excitation
frequency, the Love waves are more inclined to
propagate with the shear wave velocity of the softer
surface layer, i.e. vg; <v; < vg.

ol 12
an | . —- — —&
V?L sz

In principle, the Love wave velocity can be found
both graphically and numerically for given values of
frequency, surficial layer thickness, shear modules
ratio, and shear wave velocities of the surficial layer
and semi-infinite half-space. In the graphical
scheme of analysis, a new variable (X) was defined,
and the Love wave velocity equation was re-written in
the following form of Eq. (4b).

<
ot

iGz
=G

-

(4a)

M<N
S

Gy /-1
_ Vi V2
tan[wX] = TGx (4b)
where

X—H 1 1
a V%l V12

It is worth noting that, as the Love wave velocity is
always more than the shear wave velocity of the
surficial layer, the X variable is always positive. In
order to find the Love wave velocity, the left- and
right-hand sides of Eq. (4b) were sketched simultane-
ously. For a particular value of w and a different value
of X, the left-hand side (LHS) of Eq. (4b) could vary
from — oo to 4+ oo, while the right-hand side (RHS)
of Eq. (4b) is always positive within the interval of
interest. Each intersection between the left-hand side
and the right-hand side with respect to the constraint of
Vg1 < v < vy corresponds to a real value of v;. For
real values of v; boundary conditions are satisfied for
the given value of ®. Another worth mentioning point
is that there are several possible solutions (called
modes) for a given value of X which are dependent on
the o values. The lowest Love wave velocity
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Fig. 4 Variation of the Love wave velocity with frequency

corresponds to the fundamental mode while the other
solutions are called overtones. Figure 4 shows
schematically the Love wave solution by the graphical
approach (Verruijt 2010).

Another approach which is followed in this study is
the numerical scheme of analysis. For this purpose, by
factorizing the Love wave velocity from the right and
left-hand sides of Eq. (4a), substituting Egs. (5)—(7) in
Eq. (4a), and after simplification, the Love wave
velocity equation can be expressed as Eq. (8).

w727r

k= — 5
== (5)
_ Vs2

— 52 6
= (6)
Gi= /)Vfi (7)

where A is the Love wavelength. Now for any arbitrary
value of the dimensionless frequency of the Love
wave (k;H), shear waves velocity ratio (¢), and density
ratio (py/p;), the ratio of Love wave velocity to the
shear wave velocity of the surficial layer (v/v,;) can be
yielded numerically. By applying this formulation, a
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specific value can be found for the ratio of the Love
wave velocity to the shear wave velocity of the
surficial layer (v/vy) for fixed and particular values of
the Love wave non-dimensional frequency (k;H), the
shear waves velocity ratio (¢), and the density ratio

(po/p1)-

3 Problem Definition and Assumptions

This study aims to evaluate the effect of the Love wave
propagation on the seismic bearing capacity of a
shallow foundation which is shown in Fig. 5. A
shallow strip footing of width B is placed at a depth of
Dy, over soil with the unit weight of y and shear
strength parameters friction angle, ¢ and cohesion, c,
with an underlying bedrock stretching horizontally to
infinity and located at a depth of H to the footing. An
idealized uniform pressure is assumed to simulate the
effect of the surcharge. Moreover, the resistive effect
of the soil overlying the foundation top is neglected.
Following the study of Richards et al. (1993, 1994),
the efficiency of the Coulomb failure mechanism as a
viable alternative to the general shear failure mecha-
nism was proven by Ghosh (2008), Ghosh and
Debnath (2017), Saha and Ghosh (2017), and Izadi
et al. (2019a) in the case of calculation of seismic
bearing capacity. The simplified Coulomb failure
mechanism consists of an active wedge (AABC)
directly beneath the foundation, a passive wedge

failure mechanism adopted

Fig. 5 Seismic Coulomb Pp.B
in the current study [

Coulomb failure mechanism

Prandtl failure mechanism

(a)

\ Coulomb failure mechanism

Prandtl failure mechanism

(b)

Fig. 6 Schematic representations of the slip lines; a static
condition; and b seismic condition (Richards et al. 1994; Izadi
et al. 2019a)

(ABCD) adjacent to the active wedge, and an interface
wall between the active and passive zones (line BC) as
shown in Fig. 5. In the simplified Coulomb failure
mechanism, the transitional shear fan zone is not
eliminated; instead, it is merged with the passive
wedge due to asymmetric seismic loading condition as
pointed out by Izadi et al. (2019a). This can be easily
deduced by comparing different parts of Fig. 6. It is
noteworthy that the implementation of the Prandtl
failure mechanism and consequently the simplified
Coulomb failure mechanism was widely proven to be

q=vDr

<

Particle’s
oscillation (v)

O O O
B p b

X

NaRREEEEEEE--EEE PR LR

Bedrock
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more accurate when the soil-foundation interface was
perfectly rough. In the case of smooth soil-foundation
interface, the Hill mechanism will be used to calculate
bearing capacity of foundations (Fang 2013).

The borders of active and passive zones make the
inclination angles of o and f§ with horizontal surface,
respectively. P, is the active thrust pushing the
adjacent passive zone and Pp is the passive thrust,
resisting the active wedge as shown in Fig. 7. The
active and passive lateral earth pressures are equated
to satisfy equilibrium conditions and should be found
in a way that led to the more conservative ultimate
load P. The soil shear strength parameters were
adopted to be independent of the occurrence of an
earthquake. No water table was considered and the
critical failure mechanism is solely placed in the
surficial layer which is schematically shown in Fig. 5.

In this study, the joint bearing capacity factors
(Ny.q) considering the simultaneous actions of all the
contributors including soil cohesion, soil unit weight,
and surcharge are calculated by limit equilibrium
method. Despite the fact that individual consideration
of the different contributors and their superposition

Active Zone

Pp

A

Csc

o,

Fig. 7 Forces acting on the failure wedges

may lead to a more conservative solution in compar-
ison to the simultaneous action of all the contributors
as discussed by Jamshidi Chenari et al. (2018), a single
failure mechanism will be invoked in the course of
calculations. The formulation of modified pseudo-
dynamic bearing capacity as introduced by Ghosh and
Kolathayar (2011), and Bellezza (2014, 2015) was
extended for the case of the Love wave propagation. A
parametric analysis was also conducted to evaluate the
influence of the most effective parameters such as the
soil internal friction angle (¢), the interface wall
friction angle (0), the earthquake coefficient of
acceleration (k;,), and the Love wave non-dimensional

frequency (k;H).

4 Method of Analysis

The seismic bearing capacity formulation to capture
the effect of the Love wave propagation was derived
using the limit equilibrium method (LEM) associated
with the two-wedge Coulomb failure mechanism. As
stated earlier, the propagation of the Love wave solely
induces horizontal particle motion in the direction
perpendicular to the wave traveling course. In order to
calculate the inertia forces induced by the seismic
excitation, the seismic acceleration due to the Love
wave-induced particle motion should be calculated.
According to Eq. (2), the horizontal acceleration field
for the Love wave can be written as Eq. (9).

v
or?

_ one? [ (1-1) m}
= 107 cos |0 | — 5 zZle
Vst Vi

©)

Assuming a thin element with the thickness of dz at
depth z in the active wedge as shown in Fig. 7, the
horizontal inertia force acting on the active wedge can
be obtained through integration within the failure
mechanism depth.

kny {cos (sz% \/m) - 1} [sin(wr — kL) — sin(r)]
k} tan o cos {k;H\/W} ((V‘i"yil)

a(x,z, 1) =

(1) =

(10)
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The total horizontal inertia force acting on the
passive wedge can be written in the form of Eq. (11).

kny |:cns <k,HB‘;‘I"" (ﬁ)z—l> —1
k?tanﬁcos[k,ﬁ,/(%)zf ((%)271)

(1 42D )[sin((u[ — kL) — sin(wt)]

Btano,

Owe(t) =

(11)

Equilibrium conditions enforce the following equa-
tions on the forces applied to the active wedge:

fH: 0 (12)

P4Lcosd = RyLsin(a — @) + Qna — cBL (12a)

1Y v=o0 (13)

PaLsind = —RyLcos(o — @) + W4 — 2¢BLtan o
+ pLBL

(13a)

where c is soil cohesion, R4 and P, are the resultant
force acting on the slip surfaces and the total seismic
active resistance force, respectively, and W, is the
weight of the active wedge as follows:

1
Wy = EszLtanoc (14)

After simplification and manipulation of Eqgs. (12)
and (13), the active force (P,) can be found as
Eq. (15):

Wy sin(o — @)

P Onacos(a— @)
Lcos(o — ¢ — 0)

A ~ Lcos(a— @ — 0)

sin(a — @)
+pLBcos(oc —@p—90)
cos(ot — ¢) 2tanasin(a — @)
—cB
cos(x — @ —9) cos(a— @ —0)

(15)

Similarly, equilibrium conditions enforce the fol-
lowing equations on the forces applied to the passive
wedge:

szo (16)

tan o

tan f§
(16a)

P,Lcos o = R,Lsin(fi+ ¢) — Qnp + cBL
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1Y v=0 (17)

P,Lsind = R,Lcos(fi + ¢) — W, —2cBLtanu
(17a)

where Wpis the weight of the passive wedge defined as

e B*Ltan® o

W
) tan

(18)
After simplification and manipulation of Egs. (16)
and (17), the total passive force (P,) is obtained as:

_ Owcos(B+¢)  Wysin(f+ o)
Leos(0+ B+ ¢) Lcos(d+ B+ )
tan ocos(ff + o) 2tanasin(f + @)
+ {tan[fcos(é—l—[f—i—q)) cos(d+ B+ o) }

(19)
As previously mentioned, Pp and P, are equated to

satisfy the equilibrium condition. Therefore, the
ultimate limit load of P;, can be found:

P, =

sin(o — @)
17 cos(a— ¢ — 0)
 Oucosz—9) _ Qweos(B o)
Leos(o — @ —0) Lcos(o+ f+ ¢)
W, sin(f + ¢) Wy sin(a — @)
Leos(6+f+¢) Lcos(o— ¢ —0)
tan ocos(ff + ¢) 2tanasin(ff + @)
+ {tanﬁcos(é +ph+¢9) cos(o+p+ )
cos(o — @) + 2tan asin(o — )
+ cos(ox — @ — 9) }

(20)

After simplifying and manipulation the Eq. (20),
the equivalent seismic bearing capacity factor (Ny.q.
= 2p;/yB) capturing the effect of the Love wave
propagation can be found as Eq. (21).

The pseudo-dynamic bearing capacity factor
depends on the soil properties (c, ¢, ), interface wall
friction angle (J), geometric parameters of the foun-
dation (B, L, Dy), the corresponding failure mechanism
(o, f) and the surficial soil layer (H), the seismic
coefficient of acceleration (k;,), the dimensionless
frequency of the Love wave (k;H), the ratio of the
Love wave velocity to the shear wave velocity of the
surficial layer (v/vy), the dimensionless wavelength
ratios (B/A, L/A) and the dimensionless time (#/T). Note
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N = s1.n(/3 + @)cos(or — ¢ — ) tan” o 1+ 2Dy 1\ s
‘o | sin(oe — @) cos(d + f + @) tan f§ Btana
i 2
2k, | cos <k1H—B‘;‘i““ (VV—’]) —l> - 1} [sm(2rc(7 — %)) — sin(%)]
- 2
(Z,ITB)Z(ML) tan o cos |:le (V—’) —1:| ((—) —1) tan(o — ¢)
i 2
2k [cos [ kH Bz J(2) ) — 1| (1 + 222 ) [sin 2n(k— %)) — sin(3H)
B h|: < 1 H (m) > ( Btanoc)[ ( A ) T ] (COS(ﬁ+(,D) COS(O(—QD—(S))
2 2 sin(a — @) cos(d+ f+ ¢
(@)2 (Z/LL) tan f§ cos | k\H (V‘T’l> —1 ((%) 71) ( ) ( )
tan acos(ff + @) 2tanasin(f + @)
2ccos(o— @ — &) | tanfcos(d+ B+ @)  cos(d+ f+ @)
7Bsin(x — @) cos(ot — @) + 2 tan asin(o — @)
cos(ot — @ — 9)
(21)

that the ratio of the Love wave velocity to the shear
wave velocity of the surficial layer (v/vy;) is also a
function of the dimensionless frequency of the Love
wave (k;H), the shear wave velocity ratio (¢), and the
density ratio (p,/p;) as stated before. Steedman and
Zeng (1990) stated that for most of the earthquakes,
the dominant earthquake periods vary between 0.2 and
0.5 s and the value of H/TV has the range of 0.2-0.5
while Ghosh (2008) and Saha and Ghosh (2015)
proposed a wider range of 0.3-0.6 for H/TV,. As the
Love wave velocity is higher than the shear wave
velocity of the surficial layer, the proposed range of
Steedman and Zeng (1990) is deemed more
appropriate.

5 Result and discussion

The results are reported for practical ranges of
parameters as ¢ = 20-40°, é/¢p = 0-1, 2¢/yB = 0-0.5,
D¢B = 0.25-1, k;, = 0-0.3, and different ratios of the
Love wave velocity to the shear wave velocity of the
surficial layer (v/v,). The solutions were found
through an optimization process with the best combi-
nations of geometry variables and time parameter
which led to the least limit load. The objective
function of this study (joint bearing capacity factor),
input parameters of the Love wave velocity and the
constraints of the objective function are as follow:

Input parameter of the Love wave velocity, i.e.
Equation (8);
H
Zeb
2P
The output of Eq. (8):

Vi

Vs1

Input parameters of the bearing capacity factor, i.e.
Equation (21):

c H Df Vi
— O, kiH,—,— kn,—
’}/B’q)’ s Rl RN ) havSl
where
_ gD B v P
N'ng *f(})B7(p7aﬁ6kl I BuL7H7kh7T7vS7c7pl
(22)

Minimize N,

t

Variable parameters: o,f3, T
Subjected to: 07 <a <90°

0° < B<90°
N, >0

Veq —

The results of equivalent static bearing capacity
factors were reported in Table 1. For the sake of

@ Springer



2790

Geotech Geol Eng (2022) 40:2781-2797

Table 1 Static bearing capacity factor (Ny,,)

H/B = L/B =10, =5, p/p; = 1.5

¢ =20° ¢ = 30° ¢ = 40°
Di/B
5 2B 025 05 075 1 025 05 075 1 025 05 075 1
0 0 545 772 993 1210 1538 2032 2513 2987 4565 5726  68.60  79.78
025 884 1104 1322 1537 2090 2572 3046 3516 5534 6674 7796  89.06
0.5 1211 1428 1644 1859 2625 3101 3571 4038 6479 7607 8720  98.4
o2 0 766 1086 1397 1703 27.61 3656 4530 5391 12333 15531 186.64 217.56
025 1185 1494 1800 2103 3598 4473 5336 6190 14465 17617 20721 237.94
0.5 1591 1896 2199 2500 44.15 5279 6134  69.84 16562 19681 227.64 25821
o 0 10.61 1505 1938 2365 5545  73.69 9153 10915 - - - -
025 1599 2029 2455 2878 70.84 8872 10637 12386 - - - -
0.5 2120 2544 29.66 33.87 8591 10358 12109 13849 - - - -

validation of the computation procedure, a comparison
was made between the results of the current study and
Saha and Ghosh (2017). It should be noted that in the
scarcity of any solution for pseudo-dynamic bearing
capacity of shallow foundations with consideration of
the effect of the Love wave on seismic bearing
capacity, only the static bearing capacity factors were
comparable to validate the results of the current
findings. It is worth mentioning that the dimensionless

80

70 4 aE .

so4 T .
40 .
304

20

D/B

—¢=20:. Saha & Ghosh (2017) = ¢=20, Current study
--- ¢:30: Saha & Ghosh (2017) e ¢=30, Current study
""" ¢:405. Saha & Ghosh (2017) A $=40, Current study

(a)

H/B and L/B ratios were maintained at 10, shear waves
velocity ratio was assumed ¢=5 and density ratio of p,/
p1 = 1.5 was selected to find the ratio of the Love
wave velocity to the shear wave velocity of the
surficial layer (Fig. 8).

The simultaneous actions of all contributors includ-
ing, @, &/¢, 2¢/yB, D/B, and k,H on the equivalent
bearing capacity factors of shallow foundations are
presented for different earthquake coefficients of

D/B

—— $=20’, Saha & Ghosh (2017)
- - - $=30, Saha & Ghosh (2017)
----- $=40’, Saha & Ghosh (2017)

(b)

®  $=20 Current study
. ¢=30:, Current study
A ¢:40:. Current study

Fig. 8 Validation of the equivalent bearing capacity factor with Saha and Ghosh (2017); a § = 0, 2¢/yB = 0; and b 6 = /2, 2¢/

vB =0.5
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Table 2 Equivalent seismic bearing capacity factor (Ny,,) for k, = 0.1

H/B=L/B=10,T=5, po/p; = 1.5

kH =3 kH =5 kH =10
D¢/B
S 2c/yB  0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1
®=20° 0 0 475 6.88 8.94 1097 530 7.55 9.74 11.89 539 7.67 9.89 12.06
0.25 8.08 1045 12.16  14.17  8.69 10.87 13.02  15.15 8.80 11.01  13.18 1534
0.5 1132 1334 1535 1734 1196 1411 1624 1837 12.08 1425 1641 18.56
®2 0 6.87 9.89 1281 1569 7.49 1065 13.73 1676  7.58 10.78  13.89  16.96
0.25 11.02 1393 16.80 19.65 11.68 1474 17.76  20.76  11.79 1488 17.94  20.97
0.5 1505 17.92 2076 2359 1574 1875 21.75 2473 1586 1890 2193 2494
(0] 0 9.73 1395 18.05 2209 1042 1481 19.10 2333 1051 1494 1927 2353
0.25 15.07 19.16  23.19 27.19 1579 20.05 2427 2845 1591 2020 2445 28.67
0.5 2026 2429 2828 3226 21.00 2521 2938 3354 21.13 2536 2958  33.77
¢=30° 0 0 1433  19.09 2372 2827 1520 20.12 2491 29.63 1537 2031 2513 29.87
0.25 19.80 2444 29.00 3350 2072 2552 3024 3491 2089 2572 3046 35.16
0.5 2512 29.69 3421 38.69 26.07 30.80 3549 40.14 2624 31.00 3571 4038
®2 0 2630 3499 4346 51.80 2736 3628 4498 5356 2757 3653 4528  53.90
0.25 3464 4312 5148 59.75 3574 4445 53.04 6155 3595 4471 5334 61.89
0.5 42778  51.15 5943  67.65 4391 5251 61.06 6949 4413 5277 6133  69.83
0] 0 5377 7159  89.02 10622 55.13 7330 91.08 108.63 5539 73.63 9148  109.10
0.25 69.12  86.59 103.82 12090 70.52 8834 10592 12335 70.79  88.68  106.32 123.82
0.5 84.16  101.42 118.52 13551 8559 10320 120.64 13798 85.87 103.54 121.06 138.46
¢=40° 0 0 4408 5548 66.60 7756 4545 5705 6839 7956 4564 5725 6859  79.75
0.25 5374 6493 7593 86.80 5515 66.55 7776  88.84 5533  66.73 7794  89.03
0.5 63.17 7423 85.14 9595 6457 7583 8695 9797 6478 7605 87.18 98.20
®2 0 121.04 152.60 183.50 214.00 12294 154.88 186.17 217.04 12333 15531 186.63 217.54
0.25 14234 173.43 204.05 23435 14427 17575 206.75 23743 144.65 176.16 207.19 23791
0.5 163.28 194.05 22445 254.60 26525 19640 227.18 257.72 16562 196.80 227.62 258.19
® 0 - - - - - - - - - - - -
0.25 - - - - - - - - - - - -
0.5 - - - - - - - - - - - -

accelerations in Tables 2, 3 and 4. In the following
sections, the impact of each effective parameter is
elaborated and discussed.

5.1 Soil Friction Angle Impact

Superimposed on Fig. 9 are the results of equivalent
seismic bearing capacity factors for different Love
wave acceleration coefficients and ¢ = 20-40°. In
general, it is observed that the excitation induced by
the Love wave propagation gives rise to a reduction in

the seismic bearing capacity of shallow foundations.
As expected, the soil with a higher internal friction
angle has a higher range of the pseudo-dynamic
bearing capacity factor. This is obvious as the bearing
capacity coefficient N, varies exponentially with the
internal friction angle. It is further observed that
almost for all frequency levels the seismic bearing
capacity decreases with the Love wave amplitude;
however, when the frequency rises due to the reduced
wavelength, out-of-plane inertia forces along the
footing length counteract in integral form. This means
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Table 3 Equivalent seismic bearing capacity factor (Ny,,) for k, = 0.2

H/B = L/B = 10, ¢=5, po/p; = 1.5

kH =3 kH =5 kH =10
D¢/B
S 2c/yB  0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1
®=20° 0 0 4.02 5.98 7.86 9.69 5.08 7.30 9.45 11.57 533 7.62 9.84 12.02
0.25 7.29 9.17 11.02 185 8.46 10.61 1272 1482 8.76 1097  13.14 1530
0.5 1049 1235 1418 1599 11.73 1384 1594 18.03 12.04 1422 1638 1853
®2 0 6.06 8.87 11.57 1423 723 1035 1338 1636  7.50 10.70  13.81  16.88
0.25 10.16  12.87 1553  18.16 1142 1443 1740 2036 11.73 1482 17.87  20.90
0.5 1417 1683 1947 22.08 1547 1844 2139 2432 1581 18.85  21.87  24.88
0] 0 8.82 1279  16.64 2042 10.12 1445 18.67 2284 104l 1484 19.15 2342
0.25 1413 1798 21.76 2551 1549 19.69 2384 2796 1582 20.11 2435 2857
0.5 1930 23.09 26.84 30.57 2071 2484 2896 33.05 21.06 2528 2949  33.67
¢=30° 0 0 1326  17.83 2227 2662 1492 1981 2457 2926 1535 2030 25.12 29.86
0.25 18.69  23.13 2749 31.80 2044 2521 2990 3455 2089 2571 3046  35.15
0.5 2397 2834 3266 3695 2580 3050 3515 39.77 2624 31.00 3571 4038
®2 0 2498 3339 4157 49.63 27.00 3586 4451 53.03 2753 3650 4525 53.88
0.25 3328 4149 4956 5755 3538  44.04 5257  61.03 3593 44,69 5333  61.88
0.5 4140 4949 5749 6543 4356 5210 60.56 6896 4411 5276 6132  69.82
0] 0 5206 6946 8646 103.23 5464 7271 90.39 107.86 5532 7357 9143  109.05
0.25 6738 8444 101.24 117.89 70.03 87.76  105.24 122,57 70.74  88.63  106.28 123.78
0.5 8240 99.24 11592 13248 85.11 102.62 11997 13721 85.83  103.51 121.02 138.43
¢=40° 0 0 4250 53.68 6458 7531 4515 56775 68.07 79.22 4564 5724 6857  79.73
0.25 52.13  63.10 73.87 8451 5487 6625 7744 8851 5532 6671 7792  88.99
0.5 61.54 7237 83.05 93.64 6434 75559 86.70 97.71 6477 7603 87.15 98.17
®2 0 118.75 149.88 180.35 210.41 12255 15445 185.69 216.53 12333 15530 186.62 217.52
0.25 140.01 170.68 200.86 230.74 143.89 17532 206.28 236.93 144.64 176.15 207.18 237.89
0.5 160.93 19127 221.24 25097 164.89 19599 226.73 25722 16561 196.79 227.60 258.16
® 0 - - - - - - - - - - - -
0.25 - - - - - - - - - - - -
0.5 - - - - - - - - - - - -

that the seismic bearing capacity does not undergo
changes with the Love wave propagation substantiated
in form of the horizontal bearing capacity lines in
Fig. 9 and also almost similar numbers corresponding
to k;H = 10 among Tables 2, 3 and 4.

5.2 Interface Wall Friction Angle Impact
It can be seen from Fig. 10 that the equivalent seismic

bearing capacity factor of a shallow foundation
increases significantly with an increase of the wall

@ Springer

interface friction angle. The values of the seismic
bearing capacity factor of 6 = ¢/2 and 6 = ¢ are
relatively 2 and 4 times the seismic bearing capacity
factor of the case when 0 = 0, respectively. Similar to
the impact of the soil internal friction angle, the effect
of the Love wave excitation is more eminent for a
lower frequency.
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Table 4 Equivalent seismic bearing capacity factor (Ny,,) for k, = 0.3

H/B = L/B = 10, ¢=5, po/p; = 1.5

kH =3 kH =5 kH =10
D¢/B
S 2c/yB  0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1
®=20° 0 0 3.22 491 6.52 8.10 4.89 7.09 9.21 11.30 526 7.56 9.79 11.98
0.25 6.43 8.10 9.72 11.31 827 1039 1247 1454 871 1092 13.10 1526
0.5 9.61 11.26 1288 1448 11,53 13.62 1569 1775 1201 1419 1635 1850
®2 0 5.19 7.73 10.17 1255  7.01 10.09 13.08 16.02 741 1062  13.73  16.79
0.25 9.26 11.73 1414 1652 1120 1417 17.10 20.01 11.66 1475 17.80  20.83
0.5 1325 1568 18.08 2046 1526 18.18 21.08 2397 1575 1879 21.81 24.82
0] 0 7.87 11.56 1510 18.58  9.87 14.15 1832 2242 1030 1472 19.04 2329
0.25 13.16 1674 2024 2370 1525 1939 2349 2755 1573  20.02 2425 2846
0.5 1831 21.84 2533 2878 2046 2454 28,60 32.64 2098 2520 2940 33.57
¢=30° 0 0 12.16 1653  20.76 2490 14.68 1955 2429 2895 1533 2029 2998 29.86
0.25 17.54 2178 2594 30.04 2021 2495 29.62 3424 2088 2571 3046 35.15
0.5 2279 2696  31.08 3515 2557 3025 3487 3946 2623 31.00 3571 4038
®2 0 23.63 3175 39.64 4740 26.69 3551 4411 5259 2749 3647 4523  53.86
0.25 3190  39.82 4760 5529 3508 43.69 52.18 60.58 3590 44.67 5331 61.86
0.5 40.00 47.80 5551 63.15 4326 51.76  60.17 6852 4410 5274 6131  69.81
0] 0 5033 67.30 83.86 100.19 5423 7222 89.82 107.20 5526 7351 91.37  109.01
0.25 65.62 8225 98.62 11484 69.63 8727 104.67 12193 70.69 8858 10624 123.74
0.5 80.61 97.03 11328 12941 84.71 102.14 11941 136.57 85.79  103.47 12098 138.39
¢=40° 0 0 4090 51.86 6253  73.03 4490 5649 67.80 7894 4563 5723 6855  79.70
0.25 5051 6124 7179 8220 5463 6600 77.18 8824 5531 6670 77.89  89.96
0.5 5990 7049 8095 9130 6412 7535 8644 9744 6475 7601 87.12 98.13
®2 0 11643 147.13 177.16 206.79 122.15 154.01 185.21 216.01 12333 15530 186.60 217.50
0.25 137.67 16790 197.66 227.10 143.52 17490 205.82 236.42 144.64 176.14 207.16 237.86
0.5 158.57 188.47 218.02 24731 164.52 19557 22627 256.72 165.60 196.77 227.58 258.13
® 0 - - - - - - - - - - - -
0.25 - - - - - - - - - - - -
0.5 - - - - - - - - - - - -

5.3 Embedment Depth Impact

As illustrated in Fig. 11, the footings with higher
embedment depth ratio have a higher range of
surcharge and passive resistance. Consequently, these
increases raise the limit load sustained by the footings.

5.4 Soil Cohesion Impact

Figure 12 demonstrates the variation of the equivalent
seismic bearing capacity factor for different values of

the dimensionless cohesion factor. As the resisting
forces acting on the slip surfaces of the assumed
failure mechanism increase, the ultimate limit pres-
sure and the equivalent bearing capacity factor
increase, accordingly.

5.5 The Influence of the Love wavelength
The bearing capacity of shallow footings subjected to

the Love wave propagations becomes more compli-
cated if the wavelength is comparable with the
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Fig. 9 Effect of the soil friction angle and Love wave
acceleration coefficient on the equivalent seismic bearing
capacity factor (0 = ¢/2, 2c¢/yB = 0.25, and D/B = 0.5)
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Fig. 10 Effect of the interface wall friction angle and Love
wave acceleration coefficient on the equivalent seismic bearing
capacity factor (¢ = 30°, 2¢/yB = 0.25, and D¢/B = 0.5)

foundation length. This means that the Love wave
cycles along the footing length/width and exerts
excitation transversely. Depending on the footing
dimension along the propagation direction and the
Love wavelength compared to it, the bearing capacity
of the footing may be reduced or unaltered in some
circumstances when the integral influence of the
inertia forces becomes immaterial.

Incorporating this effect properly entails due adop-
tion of a failure mechanism, which is relevant in three-
dimension geometry. If plane strain condition is
concerned, the most critical case is admittedly when
the Love wave travels along the longer dimension.
Even in such cases, the wavelength must be compared
to the footing length. If the footing is infinitely long,

@ Springer
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Fig. 11 Effect of the embedment depth ratio and Love wave
acceleration coefficient on the equivalent seismic bearing
capacity factor (¢ = 30°, 6 = ¢/2, and 2¢/yB = 0.25)
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Fig. 12 Effect of the dimensionless cohesion ratio and Love
wave acceleration coefficient on the equivalent seismic bearing
capacity factor (¢ = 30°, = ¢/2, and D/B = 0.5)

the Love wave-induced inertia forces in the out-of-
plane direction harmonically fluctuate across the
footing length and this presumably yields counter-
acted destabilizing force, hence the bearing capacity
may remain unchanged.

Figure 13 demonstrates the results of the pseudo-
dynamic bearing capacity factor by capturing the
effect of the Love wavelength. As seen in this figure,
the seismic bearing capacity factor reaches the static
bearing capacity factor by increasing the value of the
non-dimensional frequency k;H. In fact, by increasing
the Love wave frequency, its wavelength diminishes
and therefore due to the periodic nature of the assumed
wave front, many harmonic cycles of the back and
forth particle displacement along the direction of the
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Fig. 13 Variation of the seismic bearing capacity factor with
the Love wave frequency for different seismic coefficients of
acceleration and ¢ = 30°, 6 = ¢/2, and Dy/B = 0.5, and 2c¢/
yB =0.25

wave propagation would have a neutralized influence.
Hence, the net effect of the seismic excitation was
negligible.

6 Summary and Conclusion

The equivalent seismic bearing capacity factor of
shallow strip foundations in the presence of pseudo-
dynamic earthquake accelerations induced by Love
wave propagation has been evaluated by the limit
equilibrium method (LEM). The equation of the
particle displacement induced by the propagation of
the Love wave was manipulated and the pseudo-
dynamic bearing capacity formulation for shallow
footings was extended to the three-dimensional
Coulomb failure mechanism. The bearing capacity
factor has been evaluated for the impacts of the most
effective factors including geo-material properties,
geometrical characteristics, and earthquake excitation
frequency. The results of the equivalent bearing
capacity of shallow foundations with three-dimen-
sional Coulomb failure mechanism are in good
agreement with those reported in the literature. Based
on the results of this study, the equivalent seismic
bearing capacity factor showed a direct relationship
with soil strength parameters and non-dimensional
frequency factor. The main conclusion of this study
are:

An increase in shear strength parameters raises the
resisting forces acting on the failure surface and
consequently increases the ultimate limit load
acting on the footing.

Love wave acceleration coefficient was found to
have a decreasing impact on the bearing capacity
of overlying shallow footing. The reduction of the
limit load is more pronounced for higher values of
the Love wave acceleration coefficient.

The influence of the Love wave propagation on the
seismic bearing capacity of overlying shallow
footings was found to be frequency-dependent. In
other words, for lower non-dimensional frequency
values, the bearing capacity of overlying shallow
footings is expected to undergo reduction. There-
fore, increasing the frequency of the Love wave,
reflected in form of diminished wavelength, will in
effect have less impact on bearing capacity
reduction. This observation can be ascribed to
the very fact that in the direction of wave
propagation, depending on the Love wavelength
relative to the footing length, phase shift will give
rise to the out-of-plane displacement direction to
shift in short distances; hence, yielding counter-
acted unbalancing forces.

The results showed that the seismic bearing
capacity factor increased gradually with the
frequency of the Love wave up to the value of
the static bearing capacity factor.

It was observed that augmentation of the soil
cohesion and foundation embedment depth would
hamper the destructing effects of Love wave
interaction with the overlying shallow footings.
The practical significance of the findings of the
current study lies in the importance of the surface
wave propagation on performance of shallow
foundations. Indeed, in areas located close to
earthquake sources, or even sometime the loca-
tions far away from the earthquake source, it
might happen the surface waves to adversely
influence our infrastructures. Thus, provision of
charts, similar to those presented in the current
study, would pave the way towards better under-
standing of the seismic soil-structure interactions.
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