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Abstract The equivalent seismic bearing capacity

factor of shallow strip foundations in the presence of

pseudo-dynamic earthquake accelerations induced by

Love wave propagation have been evaluated by the

limit equilibrium method and application of the three-

dimensional Coulomb failure mechanism. A paramet-

ric study was conducted to evaluate the influences of

different geo-material and geometrical conditions,

seismic excitation parameters including earthquake

coefficient of accelerations, and wavelength of the

Love wave on the seismic bearing capacity factor. The

results showed that the earthquake acceleration coefif-

cient and the Love wave frequency (wavelength) are

the most important parameetrs affecting the perfor-

mance of overlying shallow foundations. It was found

that the bearing capacity of shallow footing decreases

with the increase of earthquake acceleration and Love

wavelength. It was further confirmed that increasing

the soil cohesion and footing embedment depth would

diminish the detrimental impacts of the surface wave

interaction with the overlying shallow footings.

Keywords Pseudo dynamic bearing capacity � Love
wave � Limit equilibrium method � Coulomb failure

mechanism

1 Introduction

Earthquakes, as one of the most recognized tragic

natural disasters, are potentially highly destructive and

unpredictable. The statistics of human losses and

enormous financial casualties induced by earthquakes

signify the importance of risk assessment and evalu-

ation of the effect of seismic forces on foundations

failure and its corresponding severe damage to super-

structures. Hence, the attention of many researchers

has been garnered to the problem of seismic bearing

capacity of shallow foundations. To this end, propos-

ing novel solutions to mitigate risks and casualties,

implementation of more accurate analytical and

numerical analysis methods to evaluate the key

parameters contributing to the seismic bearing capac-

ity assessment have been targeted accordingly. Fur-

thermore, consideration of more realistic problem

conditions involving seismic excitations, soil strength

profiles, third dimension effect of the problem, and

evaluation of the effects of body and surface waves

excitations on foundation failure have been covered.

The simplicity and capability of the pseudo-static

scheme of analysis associated with different methods

of analysis such as limit equilibrium method (LEM),
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bound theorems of limit analysis, stress characteristics

as well as numerical analysis to take into account

seismic forces make it more favorable than the

pseudo-dynamic loading consideration to investigate

the seismic bearing capacity of shallow foundations.

The study of Meyerhof (1963) is among the first

documented uses of the pseudo-static approach to

capture the effect of seismic forces on the ultimate

limit load of shallow foundations. In these studies, the

effects of seismic forces on the soil mass, i.e. inertia

forces of the soil media, were neglected and the

seismic forces were only applied by an additional

inclination angle to the gravity forces of superstruc-

tures. However, innumerable numerical and experi-

mental studies showed that seismic forces admittedly

have great impacts on the soil properties and inertia of

soil mass. Consequently, the ultimate load of the

shallow foundations is strongly dependent on the

assumption of seismic excitation effects on the soil

media.

Over the several recent decades, many researchers

studied the problem of seismic bearing capacity of

shallow foundations by taking into account pseudo-

static earthquake coefficients of acceleration for both

superstructures and soil mass by the implementation

of different numerical and analytical methods includ-

ing limit equilibrium, bound theorem of limit analysis,

and stress characteristics method. Budhu and Al-Karni

(1993), Paolucci and Pecker (1997), Soubra (1999),

Kumar and Rao (2002), Askari and Farzaneh (2003),

Kumar and Kumar (2003), Choudhury and Rao

(2005), Yamamoto (2010), Kumar and Chakraborty

(2013), Chakraborty and Kumar (2015), Ghosh and

Debnath (2017), Foroutan Kalourazi et al. (2019),

Haghsheno et al. (2020), Nouzari et al. (2021), and

Izadi et al. (2021) are among many on this problem.

Despite its robustness, the pseudo-static approach is

not able to capture the effect of excitation time

duration, excitation frequency, and phase differences.

By subjecting the entire soil mass to the same value of

accelerations, the pseudo-static method essentially

assumes the magnitude and phase of the accelerations

to be invariant through the soil body. By taking into

account the influences of both shear and primary

waves, the amplification of seismic excitations, and

the period of lateral shaking, the pseudo-dynamic

approach was firstly proposed by Steedman and Zeng

(1990) and extended by Choudhury and Nimbalkar

(2005). Over recent years, the problems of bearing

capacity of shallow foundations (Ghosh 2008; Ghosh

and Choudhury 2011; Saha and Ghosh 2015; Zhou

et al. 2016; Saha and Ghosh 2017; Kurup and

Kolathayar 2018; Izadi et al. 2019b; Pakdel et al.

2021) and stability of retaining walls (Ghosh and

Kolathayar 2011; Bellezza 2014, 2015; Pain et al.

2015; Fathipour et al. 2021) in conjunction with

different methods of analysis and application of the

pseudo-dynamic approach have received considerable

attention.

Although numerous studies were reported on the

problem of seismic bearing capacity of shallow

foundation via different methods of analysis and

different assumptions for capturing the effects of the

earthquake excitation, there seem to be little if any

published evidence on the influence of the Love wave

propagation on foundation failure. Moreover, an

additional difficulty arises from the fact that the Love

wave velocity is frequency-dependent in nature.

In this study, the limit equilibrium method (LEM)

associated with the 3D Coulomb failure mechanism is

used to investigate the influence of the Love wave

propagation on the seismic bearing capacity of shal-

low footings. Despite all the other studies on the

effects of wave propagation on bearing capacity, the

problem under consideration is assumed to be 3D. In

fact, the body and surface waves propagate in any

arbitrary direction and the bearing capacity of shallow

footings strongly depends on the ratio of the wave-

length to the dimensions of the foundation. Further-

more, the Love wave cycles along the footing length/

width and exerts excitations transversely. To over-

come these concerns, the 3D Coulomb failure mech-

anism was adopted and the most critical case, the

direction of the Love wave along the footing length

and particle’s oscillation perpendicular to the train of

Love wave, was considered.

2 Love Wave Propagation

Body waves including primary and shear waves as

well as Rayleigh waves propagate through homoge-

neous elastic half-space. For a soil profile consisting of

at least a semi-infinite medium and a soil layer,

primary and shear waves may be reflected and partly

transmitted through the shared interfaces between the

layers. In this case, the successive reflections of SH

waves from the interface of the thin soft layer and the
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semi-infinite stiffer soil as shown in Fig. 1a may lead

to generate Love wave (Kramer 1996; Verruijt 2010).

In other words, the necessary condition to observe

Love waves is that a low-velocity layer is underlain by

a high-velocity half-space. The Love waves are indeed

resultant of interference of shear waves in the surficial

layer and are often described as SH-waves trapped in

the surface layer.

The particle motion of a Love wave, representing a

transverse wave, is a side-to-side (back and forth)

motion perpendicular to the main direction of the wave

propagation without either vertical or longitudinal

components as shown in Fig. 1b (Love 1927). In

geotechnical earthquake engineering and seismology,

the Love waves are known as surface seismic waves

that cause horizontal shifting of the surface ground

during the action of an earthquake dispersing as a long

train of waves to the substantial distances from the

source. As the amplitude of Love waves decays more

slowly than body waves, these waves lead to strong

ground motion and consequently to strong seismic

motions even for earthquakes originated from distant

sources (Shearer 2009).

For a surficial layer of thickness H, shear modules

of G1 and density of q1 overlying a homogenous half-

space with shear modulus and density of G2 and q2,
respectively, as shown in Fig. 2, the love wave travels

in the ? x direction with the particles oscillating in

the � y directions, perpendicular to the plane of wave

propagation (x–z). The particle displacement can then

be described as the basic form of Eq. (1).

vðx; z; tÞ ¼ VðzÞeiðklx�xtÞ ð1Þ

where v is the particle displacement in the y-direction,

V(z) is the amplitude describing the variation of the

particle displacement with depth, kl is the Love wave

number, x is the angular frequency and t is the time of

vibration (Kramer 1996).

Note that the third dimension of the failure surface

is formed in the out-of-plane direction and the footing

length, as illustrated schematically in Fig. 2, is

assumed sufficiently long to assure plane strain

condition in the out-of-plane direction. Therefore,

(a)

(b) 

Fig. 1 a Generation of the

Love wave by successive

reflections of SH-wave in a

surficial layer, b Love wave

propagation and generated

transverse particle motion
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the foundation width is assumed to lie in the particles’

transverse displacement direction.

According to Aki and Richards (1980) and Kramer

(1996), while satisfying the traction-free surface

assumption atop, the particle displacement can be

found by:

vðx; z; tÞ ¼ 2A1 cos x
1

v2s1
� 1

v2l

� �1=2
z

" #
e
iðkl x�xtÞ

for 0� z�H
ð2Þ

vðx; z; tÞ ¼ 2A1 cos x
1

v2s1
� 1

v2l

� �1=2
H

" #

exp �x
1

v2l
� 1

v2s2

� �1=2
ðz� HÞ

" #
e
iðklx�xtÞ

for z�H

ð3Þ

where vsi and vl are the shear wave velocity in each

layer (i = 1, 2) and Love wave velocity, respectively.

As seen from Eqs. (2) and (3), the variation of the

particle displacement amplitude of the Love wave

with depth is harmonic and exponential for the surface

layer and the half-space, respectively, decaying

readily by getting away from the surface as shown

schematically in Fig. 3. Surface waves such as the

Love wave, decay more slowly with distance than

body waves do. Therefore, the effect of the surface

waves is more eminent in comparison to the body

waves in structures and superstructures afar. Hence,

Love waves could be arguably the most destructive

waves in areas that are far away from the focus of an

earthquake. The Love wave velocity is admitted to be

dependent on the excitation frequency, the surface

layer thickness, and the shear moduli of both layers as

Surface layer

Pu (Force/Length)

Particle 
oscillation

Love wave
propagation

G1,ρ1

c, ϕ

Semi-infinite 
half-space

G2,ρ2

H

H

B

L

Z

X

y

Fig. 2 Schematic illustration of the soil profile, shallow foundation with corresponding failure mechanism, and Love-wave

propagation in the soil layer

Fig. 3 Variation of the particle displacement amplitude with

depth
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well as the shear wave velocities of each layer as

shown in Eq. (4a). It is observed that the Love waves

propagate at higher velocities with low frequencies

which is limited to shear wave velocity of the stiffer

underlying half-space. By increasing the excitation

frequency, the Love waves are more inclined to

propagate with the shear wave velocity of the softer

surface layer, i.e. vs1 \ vl \ vs2.

tan xH
1

v2s1
� 1

v2l

� �1=2" #
¼ G2

G1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
v2
l

� 1
v2
s2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
v2
s1

� 1
v2
l

q
ð4aÞ

In principle, the Love wave velocity can be found

both graphically and numerically for given values of

frequency, surficial layer thickness, shear modules

ratio, and shear wave velocities of the surficial layer

and semi-infinite half-space. In the graphical

scheme of analysis, a new variable (X) was defined,

and the Love wave velocity equation was re-written in

the following form of Eq. (4b).

tan xX½ � ¼
G2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

v2
l

� H2

v2
s2

q
G1X ð4bÞ

where

X ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2s1
� 1

v2l

s

It is worth noting that, as the Love wave velocity is

always more than the shear wave velocity of the

surficial layer, the X variable is always positive. In

order to find the Love wave velocity, the left- and

right-hand sides of Eq. (4b) were sketched simultane-

ously. For a particular value of x and a different value

of X, the left-hand side (LHS) of Eq. (4b) could vary

from - ? to ? ?, while the right-hand side (RHS)

of Eq. (4b) is always positive within the interval of

interest. Each intersection between the left-hand side

and the right-hand side with respect to the constraint of

vs1 \ vl \ vs2 corresponds to a real value of vl. For

real values of vl boundary conditions are satisfied for

the given value of x. Another worth mentioning point

is that there are several possible solutions (called

modes) for a given value of X which are dependent on

the x values. The lowest Love wave velocity

corresponds to the fundamental mode while the other

solutions are called overtones. Figure 4 shows

schematically the Love wave solution by the graphical

approach (Verruijt 2010).

Another approach which is followed in this study is

the numerical scheme of analysis. For this purpose, by

factorizing the Love wave velocity from the right and

left-hand sides of Eq. (4a), substituting Eqs. (5)–(7) in

Eq. (4a), and after simplification, the Love wave

velocity equation can be expressed as Eq. (8).

kl ¼
x
vl
¼ 2p

k
ð5Þ

c ¼ vs2
vs1

ð6Þ

Gi ¼ qv2si ð7Þ

tan
2pH
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vl
vs1

� �2

�1

s0
@

1
A ¼ tan klH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vl
vs1

� �2

�1

s0
@

1
A

¼ q2
q1

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

c2
vl
vs1

� �2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vl
vs1

� �2
�1

r ð8Þ

where k is the Love wavelength. Now for any arbitrary

value of the dimensionless frequency of the Love

wave (klH), shear waves velocity ratio (c), and density

ratio (q2/q1), the ratio of Love wave velocity to the

shear wave velocity of the surficial layer (vl/vs1) can be

yielded numerically. By applying this formulation, a

Fig. 4 Variation of the Love wave velocity with frequency
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specific value can be found for the ratio of the Love

wave velocity to the shear wave velocity of the

surficial layer (vl/vs1) for fixed and particular values of

the Love wave non-dimensional frequency (klH), the

shear waves velocity ratio (c), and the density ratio

(q2/q1).

3 Problem Definition and Assumptions

This study aims to evaluate the effect of the Love wave

propagation on the seismic bearing capacity of a

shallow foundation which is shown in Fig. 5. A

shallow strip footing of width B is placed at a depth of

Df, over soil with the unit weight of c and shear

strength parameters friction angle, u and cohesion, c,

with an underlying bedrock stretching horizontally to

infinity and located at a depth of H to the footing. An

idealized uniform pressure is assumed to simulate the

effect of the surcharge. Moreover, the resistive effect

of the soil overlying the foundation top is neglected.

Following the study of Richards et al. (1993, 1994),

the efficiency of the Coulomb failure mechanism as a

viable alternative to the general shear failure mecha-

nism was proven by Ghosh (2008), Ghosh and

Debnath (2017), Saha and Ghosh (2017), and Izadi

et al. (2019a) in the case of calculation of seismic

bearing capacity. The simplified Coulomb failure

mechanism consists of an active wedge (DABC)
directly beneath the foundation, a passive wedge

(DBCD) adjacent to the active wedge, and an interface
wall between the active and passive zones (line BC) as

shown in Fig. 5. In the simplified Coulomb failure

mechanism, the transitional shear fan zone is not

eliminated; instead, it is merged with the passive

wedge due to asymmetric seismic loading condition as

pointed out by Izadi et al. (2019a). This can be easily

deduced by comparing different parts of Fig. 6. It is

noteworthy that the implementation of the Prandtl

failure mechanism and consequently the simplified

Coulomb failure mechanism was widely proven to be

Fig. 5 Seismic Coulomb

failure mechanism adopted

in the current study

Fig. 6 Schematic representations of the slip lines; a static

condition; and b seismic condition (Richards et al. 1994; Izadi

et al. 2019a)
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more accurate when the soil-foundation interface was

perfectly rough. In the case of smooth soil-foundation

interface, the Hill mechanism will be used to calculate

bearing capacity of foundations (Fang 2013).

The borders of active and passive zones make the

inclination angles of a and b with horizontal surface,

respectively. PA is the active thrust pushing the

adjacent passive zone and PP is the passive thrust,

resisting the active wedge as shown in Fig. 7. The

active and passive lateral earth pressures are equated

to satisfy equilibrium conditions and should be found

in a way that led to the more conservative ultimate

load P. The soil shear strength parameters were

adopted to be independent of the occurrence of an

earthquake. No water table was considered and the

critical failure mechanism is solely placed in the

surficial layer which is schematically shown in Fig. 5.

In this study, the joint bearing capacity factors

(Nceq) considering the simultaneous actions of all the

contributors including soil cohesion, soil unit weight,

and surcharge are calculated by limit equilibrium

method. Despite the fact that individual consideration

of the different contributors and their superposition

may lead to a more conservative solution in compar-

ison to the simultaneous action of all the contributors

as discussed by Jamshidi Chenari et al. (2018), a single

failure mechanism will be invoked in the course of

calculations. The formulation of modified pseudo-

dynamic bearing capacity as introduced by Ghosh and

Kolathayar (2011), and Bellezza (2014, 2015) was

extended for the case of the Love wave propagation. A

parametric analysis was also conducted to evaluate the

influence of the most effective parameters such as the

soil internal friction angle (u), the interface wall

friction angle (d), the earthquake coefficient of

acceleration (kh), and the Love wave non-dimensional

frequency (klH).

4 Method of Analysis

The seismic bearing capacity formulation to capture

the effect of the Love wave propagation was derived

using the limit equilibrium method (LEM) associated

with the two-wedge Coulomb failure mechanism. As

stated earlier, the propagation of the Love wave solely

induces horizontal particle motion in the direction

perpendicular to the wave traveling course. In order to

calculate the inertia forces induced by the seismic

excitation, the seismic acceleration due to the Love

wave-induced particle motion should be calculated.

According to Eq. (2), the horizontal acceleration field

for the Love wave can be written as Eq. (9).

aðx; z; tÞ ¼ o2v

ot2

¼ �2A1x
2 cos x

1

v2s1
� 1

v2l

� �1=2
z

" #
e
iðkl x�xtÞ

ð9Þ

Assuming a thin element with the thickness of dz at

depth z in the active wedge as shown in Fig. 7, the

horizontal inertia force acting on the active wedge can

be obtained through integration within the failure

mechanism depth.

QhAðtÞ ¼
khc cos klH

B tan a
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vl
vs1

� �2
�1

r !
� 1

" #
sinðxt � klLÞ � sinðxtÞ½ �

k3l tan a cos klH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vl
vs1

� �2
�1

r" #
vl
vs1

� �2
�1

� �

ð10Þ

Fig. 7 Forces acting on the failure wedges
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The total horizontal inertia force acting on the

passive wedge can be written in the form of Eq. (11).

QhPðtÞ ¼
khc cos klH

B tan a
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vl
vs1

� �2
�1

r !
� 1

" #
1þ 2Df

B tan a

� �
sinðxt � klLÞ � sinðxtÞ½ �

k3l tan b cos klH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vl
vs1

� �2
�1

r" #
vl
vs1

� �2
�1

� �

ð11Þ

Equilibrium conditions enforce the following equa-

tions on the forces applied to the active wedge:

X
H

�!
¼ 0 ð12Þ

PAL cos d ¼ RAL sin a� uð Þ þ QhA � cBL ð12aÞ

"
X

V ¼ 0 ð13Þ

PAL sin d ¼ �RAL cos a� uð Þ þWA � 2cBL tan a
þ pLBL

ð13aÞ

where c is soil cohesion, RA and PA are the resultant

force acting on the slip surfaces and the total seismic

active resistance force, respectively, and WA is the

weight of the active wedge as follows:

WA ¼ 1

2
cB2L tan a ð14Þ

After simplification and manipulation of Eqs. (12)

and (13), the active force (PA) can be found as

Eq. (15):

PA ¼ QhA cos a� uð Þ
L cos a� u� dð Þ þ

WA sin a� uð Þ
L cos a� u� dð Þ

þ pLB
sin a� uð Þ

cos a� u� dð Þ

� cB
cos a� uð Þ

cos a� u� dð Þ þ
2 tan a sin a� uð Þ
cos a� u� dð Þ

� �

ð15Þ

Similarly, equilibrium conditions enforce the fol-

lowing equations on the forces applied to the passive

wedge:

X
H

�!
¼ 0 ð16Þ

PpL cos d ¼ RpL sin bþ uð Þ � QhP þ cBL
tan a
tan b

ð16aÞ

"
X

V ¼ 0 ð17Þ

PpL sin d ¼ RpL cos bþ uð Þ �Wp � 2cBL tan a

ð17aÞ

whereWP is the weight of the passive wedge defined as

WP ¼ ce
2

B2L tan2 a
tan b

ð18Þ

After simplification and manipulation of Eqs. (16)

and (17), the total passive force (Pp) is obtained as:

Pp ¼� QhP cos bþ uð Þ
L cos dþ bþ uð Þ þ

Wp sin bþ uð Þ
L cos dþ bþ uð Þ

þ cB
tan a cos bþ uð Þ

tan b cos dþ bþ uð Þ þ
2 tan a sin bþ uð Þ
cos dþ bþ uð Þ

� �

ð19Þ

As previously mentioned, PP and PA are equated to

satisfy the equilibrium condition. Therefore, the

ultimate limit load of PL can be found:

pLB
sin a� uð Þ

cos a� u� dð Þ

¼ � QhA cos a� uð Þ
L cos a� u� dð Þ �

QhP cos bþ uð Þ
L cos dþ bþ uð Þ

þ Wp sin bþ uð Þ
L cos dþ bþ uð Þ �

WA sin a� uð Þ
L cos a� u� dð Þ

þ cB
tan a cos bþ uð Þ

tan b cos dþ bþ uð Þ þ
2 tan a sin bþ uð Þ
cos dþ bþ uð Þ

�

þ cos a� uð Þ þ 2 tan a sin a� uð Þ
cos a� u� dð Þ

�

ð20Þ

After simplifying and manipulation the Eq. (20),

the equivalent seismic bearing capacity factor (Nceq-
= 2pL/cB) capturing the effect of the Love wave

propagation can be found as Eq. (21).

The pseudo-dynamic bearing capacity factor

depends on the soil properties (c, u, c), interface wall
friction angle (d), geometric parameters of the foun-

dation (B, L,Df), the corresponding failure mechanism

(a, b) and the surficial soil layer (H), the seismic

coefficient of acceleration (kh), the dimensionless

frequency of the Love wave (klH), the ratio of the

Love wave velocity to the shear wave velocity of the

surficial layer (vl/vs1), the dimensionless wavelength

ratios (B/k, L/k) and the dimensionless time (t/T). Note

123

2788 Geotech Geol Eng (2022) 40:2781–2797



that the ratio of the Love wave velocity to the shear

wave velocity of the surficial layer (vl/vs1) is also a

function of the dimensionless frequency of the Love

wave (klH), the shear wave velocity ratio (c), and the

density ratio (q2/q1) as stated before. Steedman and

Zeng (1990) stated that for most of the earthquakes,

the dominant earthquake periods vary between 0.2 and

0.5 s and the value of H/TVs has the range of 0.2–0.5

while Ghosh (2008) and Saha and Ghosh (2015)

proposed a wider range of 0.3–0.6 for H/TVs. As the

Love wave velocity is higher than the shear wave

velocity of the surficial layer, the proposed range of

Steedman and Zeng (1990) is deemed more

appropriate.

5 Result and discussion

The results are reported for practical ranges of

parameters as u = 20–40�, d/u = 0–1, 2c/cB = 0–0.5,

Df/B = 0.25–1, kh = 0–0.3, and different ratios of the

Love wave velocity to the shear wave velocity of the

surficial layer (vl/vs1). The solutions were found

through an optimization process with the best combi-

nations of geometry variables and time parameter

which led to the least limit load. The objective

function of this study (joint bearing capacity factor),

input parameters of the Love wave velocity and the

constraints of the objective function are as follow:

Input parameter of the Love wave velocity, i.e.

Equation (8);

H

k
; c;

q2
q1

The output of Eq. (8):

vl
vs1

Input parameters of the bearing capacity factor, i.e.

Equation (21):

c

cB
;u; d; klH;

H

k
;
Df

B
;

B

L;H
; kh;

vl
vs1

where

Nceq ¼ f
c

cB
;u; a; b; d; klH;

H

k
;
Df

B
;

B

L;H
; kh;

t

T
;
vl
vs
; c;

q2
q1

� �

ð22Þ

Minimize Nceq

Variable parameters: a;b;
t

T

Subjected to: 0o � a� 90o
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validation of the computation procedure, a comparison

was made between the results of the current study and

Saha and Ghosh (2017). It should be noted that in the

scarcity of any solution for pseudo-dynamic bearing

capacity of shallow foundations with consideration of

the effect of the Love wave on seismic bearing

capacity, only the static bearing capacity factors were

comparable to validate the results of the current

findings. It is worth mentioning that the dimensionless

H/B and L/B ratios were maintained at 10, shear waves

velocity ratio was assumed c=5 and density ratio of q2/
q1 = 1.5 was selected to find the ratio of the Love

wave velocity to the shear wave velocity of the

surficial layer (Fig. 8).

The simultaneous actions of all contributors includ-

ing, u, d/u, 2c/cB, Df/B, and klH on the equivalent

bearing capacity factors of shallow foundations are

presented for different earthquake coefficients of

Table 1 Static bearing capacity factor (Nceq)

H/B = L/B = 10, c=5, q2/q1 = 1.5

u = 20� u = 30� u = 40�

Df/B

d 2c/cB 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

0 0 5.45 7.72 9.93 12.10 15.38 20.32 25.13 29.87 45.65 57.26 68.60 79.78

0.25 8.84 11.04 13.22 15.37 20.90 25.72 30.46 35.16 55.34 66.74 77.96 89.06

0.5 12.11 14.28 16.44 18.59 26.25 31.01 35.71 40.38 64.79 76.07 87.20 98.24

u/2 0 7.66 10.86 13.97 17.03 27.61 36.56 45.30 53.91 123.33 155.31 186.64 217.56

0.25 11.85 14.94 18.00 21.03 35.98 44.73 53.36 61.90 144.65 176.17 207.21 237.94

0.5 15.91 18.96 21.99 25.00 44.15 52.79 61.34 69.84 165.62 196.81 227.64 258.21

u 0 10.61 15.05 19.38 23.65 55.45 73.69 91.53 109.15 – – – –

0.25 15.99 20.29 24.55 28.78 70.84 88.72 106.37 123.86 – – – –

0.5 21.20 25.44 29.66 33.87 85.91 103.58 121.09 138.49 – – – –

Fig. 8 Validation of the equivalent bearing capacity factor with Saha and Ghosh (2017); a d = 0, 2c/cB = 0; and b d = u/2, 2c/
cB = 0.5
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accelerations in Tables 2, 3 and 4. In the following

sections, the impact of each effective parameter is

elaborated and discussed.

5.1 Soil Friction Angle Impact

Superimposed on Fig. 9 are the results of equivalent

seismic bearing capacity factors for different Love

wave acceleration coefficients and u = 20–40�. In

general, it is observed that the excitation induced by

the Love wave propagation gives rise to a reduction in

the seismic bearing capacity of shallow foundations.

As expected, the soil with a higher internal friction

angle has a higher range of the pseudo-dynamic

bearing capacity factor. This is obvious as the bearing

capacity coefficient Nc varies exponentially with the

internal friction angle. It is further observed that

almost for all frequency levels the seismic bearing

capacity decreases with the Love wave amplitude;

however, when the frequency rises due to the reduced

wavelength, out-of-plane inertia forces along the

footing length counteract in integral form. This means

Table 2 Equivalent seismic bearing capacity factor (Nceq) for kh = 0.1

H/B = L/B = 10, c = 5, q2/q1 = 1.5

klH = 3 klH = 5 klH = 10

Df/B

d 2c/cB 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

u = 20� 0 0 4.75 6.88 8.94 10.97 5.30 7.55 9.74 11.89 5.39 7.67 9.89 12.06

0.25 8.08 10.45 12.16 14.17 8.69 10.87 13.02 15.15 8.80 11.01 13.18 15.34

0.5 11.32 13.34 15.35 17.34 11.96 14.11 16.24 18.37 12.08 14.25 16.41 18.56

u/2 0 6.87 9.89 12.81 15.69 7.49 10.65 13.73 16.76 7.58 10.78 13.89 16.96

0.25 11.02 13.93 16.80 19.65 11.68 14.74 17.76 20.76 11.79 14.88 17.94 20.97

0.5 15.05 17.92 20.76 23.59 15.74 18.75 21.75 24.73 15.86 18.90 21.93 24.94

u 0 9.73 13.95 18.05 22.09 10.42 14.81 19.10 23.33 10.51 14.94 19.27 23.53

0.25 15.07 19.16 23.19 27.19 15.79 20.05 24.27 28.45 15.91 20.20 24.45 28.67

0.5 20.26 24.29 28.28 32.26 21.00 25.21 29.38 33.54 21.13 25.36 29.58 33.77

u = 30� 0 0 14.33 19.09 23.72 28.27 15.20 20.12 24.91 29.63 15.37 20.31 25.13 29.87

0.25 19.80 24.44 29.00 33.50 20.72 25.52 30.24 34.91 20.89 25.72 30.46 35.16

0.5 25.12 29.69 34.21 38.69 26.07 30.80 35.49 40.14 26.24 31.00 35.71 40.38

u/2 0 26.30 34.99 43.46 51.80 27.36 36.28 44.98 53.56 27.57 36.53 45.28 53.90

0.25 34.64 43.12 51.48 59.75 35.74 44.45 53.04 61.55 35.95 44.71 53.34 61.89

0.5 42.78 51.15 59.43 67.65 43.91 52.51 61.06 69.49 44.13 52.77 61.33 69.83

u 0 53.77 71.59 89.02 106.22 55.13 73.30 91.08 108.63 55.39 73.63 91.48 109.10

0.25 69.12 86.59 103.82 120.90 70.52 88.34 105.92 123.35 70.79 88.68 106.32 123.82

0.5 84.16 101.42 118.52 135.51 85.59 103.20 120.64 137.98 85.87 103.54 121.06 138.46

u = 40� 0 0 44.08 55.48 66.60 77.56 45.45 57.05 68.39 79.56 45.64 57.25 68.59 79.75

0.25 53.74 64.93 75.93 86.80 55.15 66.55 77.76 88.84 55.33 66.73 77.94 89.03

0.5 63.17 74.23 85.14 95.95 64.57 75.83 86.95 97.97 64.78 76.05 87.18 98.20

u/2 0 121.04 152.60 183.50 214.00 122.94 154.88 186.17 217.04 123.33 155.31 186.63 217.54

0.25 142.34 173.43 204.05 234.35 144.27 175.75 206.75 237.43 144.65 176.16 207.19 237.91

0.5 163.28 194.05 224.45 254.60 265.25 196.40 227.18 257.72 165.62 196.80 227.62 258.19

u 0 – – – – – – – – – – – –

0.25 – – – – – – – – – – – –

0.5 – – – – – – – – – – – –
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that the seismic bearing capacity does not undergo

changes with the Love wave propagation substantiated

in form of the horizontal bearing capacity lines in

Fig. 9 and also almost similar numbers corresponding

to klH = 10 among Tables 2, 3 and 4.

5.2 Interface Wall Friction Angle Impact

It can be seen from Fig. 10 that the equivalent seismic

bearing capacity factor of a shallow foundation

increases significantly with an increase of the wall

interface friction angle. The values of the seismic

bearing capacity factor of d = u/2 and d = u are

relatively 2 and 4 times the seismic bearing capacity

factor of the case when d = 0, respectively. Similar to

the impact of the soil internal friction angle, the effect

of the Love wave excitation is more eminent for a

lower frequency.

Table 3 Equivalent seismic bearing capacity factor (Nceq) for kh = 0.2

H/B = L/B = 10, c=5, q2/q1 = 1.5

klH = 3 klH = 5 klH = 10

Df/B

d 2c/cB 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

u = 20� 0 0 4.02 5.98 7.86 9.69 5.08 7.30 9.45 11.57 5.33 7.62 9.84 12.02

0.25 7.29 9.17 11.02 1.85 8.46 10.61 12.72 14.82 8.76 10.97 13.14 15.30

0.5 10.49 12.35 14.18 15.99 11.73 13.84 15.94 18.03 12.04 14.22 16.38 18.53

u/2 0 6.06 8.87 11.57 14.23 7.23 10.35 13.38 16.36 7.50 10.70 13.81 16.88

0.25 10.16 12.87 15.53 18.16 11.42 14.43 17.40 20.36 11.73 14.82 17.87 20.90

0.5 14.17 16.83 19.47 22.08 15.47 18.44 21.39 24.32 15.81 18.85 21.87 24.88

u 0 8.82 12.79 16.64 20.42 10.12 14.45 18.67 22.84 10.41 14.84 19.15 23.42

0.25 14.13 17.98 21.76 25.51 15.49 19.69 23.84 27.96 15.82 20.11 24.35 28.57

0.5 19.30 23.09 26.84 30.57 20.71 24.84 28.96 33.05 21.06 25.28 29.49 33.67

u = 30� 0 0 13.26 17.83 22.27 26.62 14.92 19.81 24.57 29.26 15.35 20.30 25.12 29.86

0.25 18.69 23.13 27.49 31.80 20.44 25.21 29.90 34.55 20.89 25.71 30.46 35.15

0.5 23.97 28.34 32.66 36.95 25.80 30.50 35.15 39.77 26.24 31.00 35.71 40.38

u/2 0 24.98 33.39 41.57 49.63 27.00 35.86 44.51 53.03 27.53 36.50 45.25 53.88

0.25 33.28 41.49 49.56 57.55 35.38 44.04 52.57 61.03 35.93 44.69 53.33 61.88

0.5 41.40 49.49 57.49 65.43 43.56 52.10 60.56 68.96 44.11 52.76 61.32 69.82

u 0 52.06 69.46 86.46 103.23 54.64 72.71 90.39 107.86 55.32 73.57 91.43 109.05

0.25 67.38 84.44 101.24 117.89 70.03 87.76 105.24 122.57 70.74 88.63 106.28 123.78

0.5 82.40 99.24 115.92 132.48 85.11 102.62 119.97 137.21 85.83 103.51 121.02 138.43

u = 40� 0 0 42.50 53.68 64.58 75.31 45.15 56.75 68.07 79.22 45.64 57.24 68.57 79.73

0.25 52.13 63.10 73.87 84.51 54.87 66.25 77.44 88.51 55.32 66.71 77.92 88.99

0.5 61.54 72.37 83.05 93.64 64.34 75.559 86.70 97.71 64.77 76.03 87.15 98.17

u/2 0 118.75 149.88 180.35 210.41 122.55 154.45 185.69 216.53 123.33 155.30 186.62 217.52

0.25 140.01 170.68 200.86 230.74 143.89 175.32 206.28 236.93 144.64 176.15 207.18 237.89

0.5 160.93 191.27 221.24 250.97 164.89 195.99 226.73 257.22 165.61 196.79 227.60 258.16

u 0 – – – – – – – – – – – –

0.25 – – – – – – – – – – – –

0.5 – – – – – – – – – – – –
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5.3 Embedment Depth Impact

As illustrated in Fig. 11, the footings with higher

embedment depth ratio have a higher range of

surcharge and passive resistance. Consequently, these

increases raise the limit load sustained by the footings.

5.4 Soil Cohesion Impact

Figure 12 demonstrates the variation of the equivalent

seismic bearing capacity factor for different values of

the dimensionless cohesion factor. As the resisting

forces acting on the slip surfaces of the assumed

failure mechanism increase, the ultimate limit pres-

sure and the equivalent bearing capacity factor

increase, accordingly.

5.5 The Influence of the Love wavelength

The bearing capacity of shallow footings subjected to

the Love wave propagations becomes more compli-

cated if the wavelength is comparable with the

Table 4 Equivalent seismic bearing capacity factor (Nceq) for kh = 0.3

H/B = L/B = 10, c=5, q2/q1 = 1.5

klH = 3 klH = 5 klH = 10

Df/B

d 2c/cB 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

u = 20� 0 0 3.22 4.91 6.52 8.10 4.89 7.09 9.21 11.30 5.26 7.56 9.79 11.98

0.25 6.43 8.10 9.72 11.31 8.27 10.39 12.47 14.54 8.71 10.92 13.10 15.26

0.5 9.61 11.26 12.88 14.48 11.53 13.62 15.69 17.75 12.01 14.19 16.35 18.50

u/2 0 5.19 7.73 10.17 12.55 7.01 10.09 13.08 16.02 7.41 10.62 13.73 16.79

0.25 9.26 11.73 14.14 16.52 11.20 14.17 17.10 20.01 11.66 14.75 17.80 20.83

0.5 13.25 15.68 18.08 20.46 15.26 18.18 21.08 23.97 15.75 18.79 21.81 24.82

u 0 7.87 11.56 15.10 18.58 9.87 14.15 18.32 22.42 10.30 14.72 19.04 23.29

0.25 13.16 16.74 20.24 23.70 15.25 19.39 23.49 27.55 15.73 20.02 24.25 28.46

0.5 18.31 21.84 25.33 28.78 20.46 24.54 28.60 32.64 20.98 25.20 29.40 33.57

u = 30� 0 0 12.16 16.53 20.76 24.90 14.68 19.55 24.29 28.95 15.33 20.29 29.98 29.86

0.25 17.54 21.78 25.94 30.04 20.21 24.95 29.62 34.24 20.88 25.71 30.46 35.15

0.5 22.79 26.96 31.08 35.15 25.57 30.25 34.87 39.46 26.23 31.00 35.71 40.38

u/2 0 23.63 31.75 39.64 47.40 26.69 35.51 44.11 52.59 27.49 36.47 45.23 53.86

0.25 31.90 39.82 47.60 55.29 35.08 43.69 52.18 60.58 35.90 44.67 53.31 61.86

0.5 40.00 47.80 55.51 63.15 43.26 51.76 60.17 68.52 44.10 52.74 61.31 69.81

u 0 50.33 67.30 83.86 100.19 54.23 72.22 89.82 107.20 55.26 73.51 91.37 109.01

0.25 65.62 82.25 98.62 114.84 69.63 87.27 104.67 121.93 70.69 88.58 106.24 123.74

0.5 80.61 97.03 113.28 129.41 84.71 102.14 119.41 136.57 85.79 103.47 120.98 138.39

u = 40� 0 0 40.90 51.86 62.53 73.03 44.90 56.49 67.80 78.94 45.63 57.23 68.55 79.70

0.25 50.51 61.24 71.79 82.20 54.63 66.00 77.18 88.24 55.31 66.70 77.89 89.96

0.5 59.90 70.49 80.95 91.30 64.12 75.35 86.44 97.44 64.75 76.01 87.12 98.13

u/2 0 116.43 147.13 177.16 206.79 122.15 154.01 185.21 216.01 123.33 155.30 186.60 217.50

0.25 137.67 167.90 197.66 227.10 143.52 174.90 205.82 236.42 144.64 176.14 207.16 237.86

0.5 158.57 188.47 218.02 247.31 164.52 195.57 226.27 256.72 165.60 196.77 227.58 258.13

u 0 – – – – – – – – – – – –

0.25 – – – – – – – – – – – –

0.5 – – – – – – – – – – – –
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foundation length. This means that the Love wave

cycles along the footing length/width and exerts

excitation transversely. Depending on the footing

dimension along the propagation direction and the

Love wavelength compared to it, the bearing capacity

of the footing may be reduced or unaltered in some

circumstances when the integral influence of the

inertia forces becomes immaterial.

Incorporating this effect properly entails due adop-

tion of a failure mechanism, which is relevant in three-

dimension geometry. If plane strain condition is

concerned, the most critical case is admittedly when

the Love wave travels along the longer dimension.

Even in such cases, the wavelength must be compared

to the footing length. If the footing is infinitely long,

the Love wave-induced inertia forces in the out-of-

plane direction harmonically fluctuate across the

footing length and this presumably yields counter-

acted destabilizing force, hence the bearing capacity

may remain unchanged.

Figure 13 demonstrates the results of the pseudo-

dynamic bearing capacity factor by capturing the

effect of the Love wavelength. As seen in this figure,

the seismic bearing capacity factor reaches the static

bearing capacity factor by increasing the value of the

non-dimensional frequency klH. In fact, by increasing

the Love wave frequency, its wavelength diminishes

and therefore due to the periodic nature of the assumed

wave front, many harmonic cycles of the back and

forth particle displacement along the direction of the

Fig. 9 Effect of the soil friction angle and Love wave

acceleration coefficient on the equivalent seismic bearing

capacity factor (d = u/2, 2c/cB = 0.25, and Df/B = 0.5)

Fig. 10 Effect of the interface wall friction angle and Love

wave acceleration coefficient on the equivalent seismic bearing

capacity factor (u = 30�, 2c/cB = 0.25, and Df/B = 0.5)

Fig. 11 Effect of the embedment depth ratio and Love wave

acceleration coefficient on the equivalent seismic bearing

capacity factor (u = 30�, d = u/2, and 2c/cB = 0.25)

Fig. 12 Effect of the dimensionless cohesion ratio and Love

wave acceleration coefficient on the equivalent seismic bearing

capacity factor (u = 30�, d = u/2, and Df/B = 0.5)
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wave propagation would have a neutralized influence.

Hence, the net effect of the seismic excitation was

negligible.

6 Summary and Conclusion

The equivalent seismic bearing capacity factor of

shallow strip foundations in the presence of pseudo-

dynamic earthquake accelerations induced by Love

wave propagation has been evaluated by the limit

equilibrium method (LEM). The equation of the

particle displacement induced by the propagation of

the Love wave was manipulated and the pseudo-

dynamic bearing capacity formulation for shallow

footings was extended to the three-dimensional

Coulomb failure mechanism. The bearing capacity

factor has been evaluated for the impacts of the most

effective factors including geo-material properties,

geometrical characteristics, and earthquake excitation

frequency. The results of the equivalent bearing

capacity of shallow foundations with three-dimen-

sional Coulomb failure mechanism are in good

agreement with those reported in the literature. Based

on the results of this study, the equivalent seismic

bearing capacity factor showed a direct relationship

with soil strength parameters and non-dimensional

frequency factor. The main conclusion of this study

are:

1. An increase in shear strength parameters raises the

resisting forces acting on the failure surface and

consequently increases the ultimate limit load

acting on the footing.

2. Love wave acceleration coefficient was found to

have a decreasing impact on the bearing capacity

of overlying shallow footing. The reduction of the

limit load is more pronounced for higher values of

the Love wave acceleration coefficient.

3. The influence of the Love wave propagation on the

seismic bearing capacity of overlying shallow

footings was found to be frequency-dependent. In

other words, for lower non-dimensional frequency

values, the bearing capacity of overlying shallow

footings is expected to undergo reduction. There-

fore, increasing the frequency of the Love wave,

reflected in form of diminished wavelength, will in

effect have less impact on bearing capacity

reduction. This observation can be ascribed to

the very fact that in the direction of wave

propagation, depending on the Love wavelength

relative to the footing length, phase shift will give

rise to the out-of-plane displacement direction to

shift in short distances; hence, yielding counter-

acted unbalancing forces.

4. The results showed that the seismic bearing

capacity factor increased gradually with the

frequency of the Love wave up to the value of

the static bearing capacity factor.

5. It was observed that augmentation of the soil

cohesion and foundation embedment depth would

hamper the destructing effects of Love wave

interaction with the overlying shallow footings.

6. The practical significance of the findings of the

current study lies in the importance of the surface

wave propagation on performance of shallow

foundations. Indeed, in areas located close to

earthquake sources, or even sometime the loca-

tions far away from the earthquake source, it

might happen the surface waves to adversely

influence our infrastructures. Thus, provision of

charts, similar to those presented in the current

study, would pave the way towards better under-

standing of the seismic soil-structure interactions.

Fig. 13 Variation of the seismic bearing capacity factor with

the Love wave frequency for different seismic coefficients of

acceleration and u = 30�, d = u/2, and Df/B = 0.5, and 2c/
cB = 0.25
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