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Abstract In the process of coal mining, the charac-

teristics of overburden failure and the evolution of

cracks were of great significance to the prevention and

control of mine water and gas by using similar

simulation test to study the overlying rock failure

and crack evolution law of Yuwu Coal Industry’s

compound roof and large cutting height fully mech-

anized caving face. The results show that: the height of

the caving zone is 32.6 m and the height of the fracture

zone is 64.6 m; The influence of coal seam mining

process on the supporting pressure of the roof

overlying rock, the near seam was larger, the far seam

was smaller; The inclination angle of the overburden

mining fissures was medium angle, the width was

mainly medium width, and the number of fissures

gradually decreases as they move away from the coal

seam; During the mining process, the overlying strata

of the coal seams at a short distance are the gathering

areas of mining cracks, and the density curve of the

overlying cracks presents a ‘‘wave’’ shape.

Keywords Mining engineering � Fully mechanized

caving mining �Overburden failure � Crack evolution �
Similar simulation

1 Introduction

China is a large country in coal mines, and coal has an

important role in economic development in my

country (Huang et al. 2021; Li et al. 2020a; Wang

et al. 2020a). Coal energy is closely related to our

lives, and is an indispensable substance foundation for

social and economic development (Zhang et al. 2021a;

Wang et al. 2020b; Fu and Wang 2020). In my

country’s primary performance source structure, oil

and natural gas storage is very small, in contrast (Zhao

and Fu 2020; Wang et al. 2020c; Zhu et al. 2019;

Cheng et al. 2020), the coal reserves are very large,

although my country has vigorously developed new

energy in recent years, but the status of coal energy

main body will not change within a period of time

(Zhu and Teng 2021; Zuo et al. 2019; Zhang et al.

2021a, 2019; Li and Wang 2020; Hu et al. 2020).

‘‘Energy Development Strategic Action Plan

(2014–2020)’’ pointed out that by 2020 (Xu and Gao

2020; Yang et al. 2020a; Xia et al. 2020; Wang et al.

2020d; Ren 2020), the total energy consumption of

energy consumption was around 4.8 billion tons of

standard coal, and the total coal consumption was

controlled around 4.2 billion tons, of which coal

accounted for one energy proportion (Su et al. 2020;

Wang 2019; Yang et al. 2020b; Xu et al. 2019). It is

62%. This can be seen that my country’s energy or

coal is mainly coal in a quite long time in the future

W. Xiaolei (&)

Department of Mining Engineering, Luliang University,

No. 1, Xueyuan Road, Lishi District,

Luliang City 033000, Shanxi Province, China

e-mail: 18039172835@126.com

123

Geotech Geol Eng (2022) 40:73–82

https://doi.org/10.1007/s10706-021-01892-y(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0002-7273-2230
http://crossmark.crossref.org/dialog/?doi=10.1007/s10706-021-01892-y&amp;domain=pdf
https://doi.org/10.1007/s10706-021-01892-y


(Zhang et al. 2021a; Gao 2019; Chen et al. 2021; Li

et al. 2021).

After the coal resource was taken, the coal seam of

coal seams affected by the pilot field was called a

moblite (Kang 2020; Jia and Hu 2020; Jiang et al.

2021). After the coal seam mining, the overclocking

layer will have a movement, breaking phenomenon,

and there is a fissure. The fracture can be divided into

vertically breaking fracture, and the rock layer is

alleviated by its nature (Zhang et al. 2020b, 2021a; Yu

et al. 2021; Ma et al. 2020). The distribution of

cracking fractures is not only important for mine water

damage governance and the protection of water

resources, but also has an important role in gas

disaster prevention and coalbed methane resource

development (Liu et al. 2020; Zhang et al. 2021b;

Chen 2020; Cai 2020). Coal-grade top plate rocky

‘‘two bands’’ developmental height and the distribu-

tion of the fracture are very complex, and the

geological characteristics of the coal-coating engi-

neering, coal seam mining thickness and coal mining

methods. Currently, the ‘‘two band’’ heights are more,

there is formula method, material detectance, and

drilling method (Bi et al. 2020; Wang et al. 2021; Qie

et al. 2021; Pan et al. 2020). The ‘‘two band’’

calculation formula in the ‘‘Three Coal Regulations’’

is only applicable to coal seams that are thin and

medium and thickly laminated, and it is not suitable for

overall mining and high thick coal seams (Wang and

Wang 2021; Li and Du 2020; Kang 2021; Gao 2021;

Fu and Wang 2020).

Fully mechanized caving mining has become the

main coal mining method for medium and thick coal

seams in China (Cai et al. 2020; Zhang and Wang

2020; Li et al. 2020b). The complexity and dynamic

invisibility of the overlying rock activity process

during the mining of fully mechanized caving mining

face brings difficulties to coal production, and similar

simulation tests can be intuitive The whole process of

overburden deformation (Hou et al. 2020; Fan 2020),

movement and fracture during the mining process was

one of the methods to deeply understand the failure

and crack evolution of the overburden in fully

mechanized caving mining, and can more accurately

determine the ‘‘two zones’’ of the overburden after

mining (Chai et al. 2020a; Chen et al. 2020). The

development height and the evolution process of

fissures provide important theoretical basis for mine

water disaster prevention and gas prevention (Zhang

et al. 2021c; Chai et al. 2020b; Zhang et al. 2020a).

For the similar simulation study of overburden

failure due to mining, Zhai (2002) simulated the

movement of overburden under fully mechanized

caving mining in Yima Changcun Coal Mine, studied

the changes in the level of caving zone and fracture

zone, and revealed the ‘‘masonry The ’’beam‘‘ struc-

ture develops towards high-rise level; Zhang and Hou

(2007) conducted an experimental study on the

movement of the roof of the first mining face in

Nanliang Coal Mine, the compression strength, and

the deformation and failure of the roadway, and

summarized the overburden movement in the thick

soil layer and shallow coal seam. The failure law, and

proposed to strengthen the support to prevent the roof

collapse in a large area, provides a necessary basis for

the realization of the normal mining of thick soil layer

and shallow coal seam.

The above-mentioned scholars have conducted

similar simulation studies on the overburden rock

caused by mining, mainly from the development

height of the ’’two belts‘‘ of the overburden rock, the

characteristics of surface movement, and the stress

changes in the stope. However, there was no further

study on the evolution of cracks during the advance-

ment of the working face. Coal Mining S1202 working

face was the test face, and similar simulation research

was carried out on the height of the overlying rock

’’two zones‘‘, subsidence characteristics, stress field

changes, and fracture evolution during mining.

2 Engineering Situation

The designed production capacity of Yuwu Coal Mine

of Lu’an Group was 6Mt/a, and the main coal seam

was 3#. The average thickness of the coal seam in the

S1202 working face of the simulation test was 6.15 m,

and the average mining depth was 412 m. It was a

near-level coal seam and adopts fully mechanized

caving mining. The mining ratio was 1:0.92. The

working surface has four roadway, gas emission

roadway, return airway, belt transportation, intake

airway (the layout is shown in Fig. 1). Roof features:

(1) The direct roof was sandy mudstone with a

thickness of about 5.65 m; (2) The basic roof was fine-

grained sandstone and siltstone with a thickness of

about 11.2 m, and there are staggered joints.
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3 Similarity Simulation Experiment

3.1 Test Equipment

According to the purpose of this test, a stress test bench

was used, the size of the test bench was 3300 mm 9

1800 mm 9 300 mm (length 9 width 9 height), as

shown in Fig. 2, and the rockmechanics parameters are

shown in Table 1.

3.2 Proportional Similarity

According to the similarity test principle and the

actual situation of the S1202 working face, the

similarity ratio was determined, and the details are

as follows:

(1) Geometric similarity coefficient: Cl ¼ LM=

LH ¼ 1=200, Among them, Cl was the geomet-

ric similarity ratio, LM and LH are the length of

the model and prototype respectively.

(2) Time similarity coefficient: Ct ¼ TM=TH ¼
ffiffiffiffiffi

Cl

p
¼ 1 : 14:1, In order to accurately grasp

the time during excavation, take 1/12, where Ct

was the time similarity ratio, TM was the model

process time, and TH was the prototype process

time.

(3) Similarity coefficient of bulk density: Cc ¼
cM=cH ¼ 3 : 5, Among them, Cc was the bulk

density similarity ratio, cM model bulk density,

and cH prototype bulk density.

(4) Similarity coefficient of elastic modulus:

CE ¼ EM=EH ¼ ClCc = 3/1000, Among them,

CE was the elastic modulus similarity ratio, EM

was the model elastic modulus, and EH was the

prototype elastic modulus.

(5) Strength similarity coefficient: Cr ¼ rM=rH ¼
ClCc, Among them, Cr was the uniaxial com-

pressive strength similarity ratio, rM was the

model uniaxial compressive strength, and rH
was the prototype uniaxial compressive

strength.

The test model uses fine sand as aggregate and

gypsum and lime as cementing materials. According

to the similarity ratio, the physical and mechanical

parameters of the similar model and the ratio of similar

materials are shown in Tables 2 and 3.

3.3 Observation Point Arrangement

and Observation Method

The displacement and stress measuring point layout

was shown in Fig. 3.

Four effective displacement observation lines and

one stress observation line are arranged in the

overburden of the coal roof. The displacement line

observes the breakage of the overburden of the coal

roof, and the stress line observes the change of the

overburden stress during the mining process. In the

experiment, an electronic total station was used to

observe the displacement line.

Electronic total station is a high-tech measuring

instrument integrating lighting, machine, and electric-

ity. It is a synthetic angle, vertical angle, distance,

high-profile measurement function in a surveying

instrument system. Comparing the optical coiler to

compare the electropolite to the photoelectric scan-

ning disc, the artificial optical micrograph generation

is automatically recorded and displayed, so that the

angular operation is simplified, and the generation of

reading errors can be avoided. All measurement work

Fig. 1 Layout of working face

Fig. 2 Station of similar simulation test
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on the station can be completed due to its resettlement

instrument.

Its test principle is to provide a spectroscopic prism

system between the telephoto objective and the focus

lens, and the multi-function of the telescope is

achieved by the system, that is, aiming at the target,

making it imaged on a cross wire plate, angular

measurement, and it is measured The outer light path

system of the distance can also cause a modulated

infrared light emitted by the photosensitive diode of

the ranging portion to the reflective prism in the

substrate lens. Reflected by the same path, then the

substantial prism is used to receive the backlight by the

photodiode, and the ranging needs to have another

inner optical path system inside the instrument, and

the optical fibers in the spectroscope system will be

transmitted by the photodiode. Infrared light trans-

mission also given to the photodiode reception,

Table 1 Rock mechanics parameters

Rock type Density

(g�cm-3)

Compressive strength

(MPa)

Elastic modulus

(GPa)

Cohesion

(MPa)

Internal friction

angle (�)
Poisson

ratio

Medium

sandstone

2.69 62.0 7.6 2.7 34 0.33

Mudstone 2.31 49.3 6.3 2.2 31 0.31

Fine sandstone 2.42 58.1 6.4 2.4 33 0.30

Siltstone 2.61 35.2 5.6 2.6 35 0.32

Coal 1.41 10.6 1.4 1.1 19 0.34

Table 2 Physico-mechanical parameters of similar model

Rock type Density

(g�cm-3)

Compressive strength

(MPa)

Elastic modulus

(GPa)

Cohesion

(MPa)

Internal friction

angle (�)
Poisson

ratio

Medium

sandstone

1.61 0.27 7.6 0.008 34 0.33

Mudstone 1.39 0.13 6.3 0.007 31 0.31

Fine sandstone 1.45 0.22 6.4 0.007 33 0.30

Siltstone 1.57 0.21 5.6 0.007 35 0.32

Coal 0.85 0.03 1.4 0.003 19 0.34

Table 3 Similar materials

ratio of test
Rock type Similar material and ratio

Medium sandstone Fine sand:Lime:Gypsum:Water = 10.1:1.0:2.3:1.94

Mudstone Fine sand:Lime:Gypsum:Water = 11.1:1.0:1.0:1.40

Fine sandstone Fine sand:Lime:Gypsum:Water = 13.1:1.0:2.3:1.8

Siltstone Fine sand:Lime:Gypsum:Water = 13.6:1.0:2.6:2.1

Coal Fine sand:Lime:Gypsum:Water = 5.90:1.0:1.0:1.1

Fig. 3 Measuring points layout of displacement and stress
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performing the phase difference between the inner and

outer light path modulated light, calculates the prop-

agation time, calculating the measured distance.

Yuwu Coal Industry S1202 face production was 9

cuts per day, and each cut was 0.8 m. According to the

time similarity ratio, the model simulates the actual

coal intake of 1.8 cm/h.

4 Test Process and Analysis of Results

4.1 ‘‘Two Zones’’ Damage Height

Figure 4 shows the development process of overlying

strata ‘‘two zones’’ during the mining process of the

working face. After the working face was mined, the

overlying rock near the coal wall begins to move.

When the working face advances 90 m, the old roof

breaks for the first time and the overlying rock was

separated; when the working face advances to 120 m,

the old roof collapses for the first time and its covering

Rock fissures are developed; when the working face

advances to 190 m, the goaf was gradually compacted

and the pressure rises; when the working face

advances to 240 m, the middle of the goaf was

completely compacted, the cracks are closed, and a

sinking basin was formed. According to the histogram

of S1202 working face of Yuwu Coal Industry, the

dynamic development height of the overlying rock

‘‘two zones’’ was shown in Table 4.

4.2 Analysis of the Highest Fracture Location

and Collapse Height

For the prevention and control of mine water and gas

disasters, it was necessary not only to study the

distribution of the overburden fissure field during

mining, but also to study the overburden collapse of

the coal seam roof and the dynamic changes of the

separation height during the advancement of the

working face, so as to achieve a comprehensive

understanding of the mining face The evolution of the

cracks and the gas migration and accumulation

patterns in the process. Figure 5 shows the relation-

ship between the advancing distance of the working

face and the highest position of the crack and the

height of the collapse.

It can be seen from Fig. 4 that the development of

separation cracks and broken fractures are not com-

pletely synchronized with the rock movement, and

they develop nonlinearly from bottom to top. The

separated cracks develop faster than broken fractures.

When the working face advances to about 170 m, the

cracks develop the height of the coal seam was about

75 m. Every time the working face advances by

6–10 m on average, the range of the overlying strata

will increase, and the position of the overlying strata

will increase, and the breakage and collapse of the coal

roof overlying strata are particularly obvious.

4.3 The Deformation Law of Overlying Strata

in Stope

In order to visually analyze the movement and

deformation laws of the overburden strata of the

(a) (b)

(c) (d)

Fig. 4 The roof falling shape of different advance distance

Table 4 Development height of two zones of overburden

Name Failure height (m)

Caving zone 32.6

Fractured zone 64.6
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stope, the advancement distance of the working face

and the movement variation of the overburden strata

are placed in the same coordinate system, and the

variation curve of the displacement variation with the

working face was shown in Fig. 6.

From Fig. 6, the subsidence curve of the overlying

strata at different advancing distances shows that the

overlying strata was in a state of original stress balance

when the coal seam was not mined. When coal

resources are mined, the overlying strata above the

goaf undergoes elasticity to shape The state changes,

with the continuous advancement of the working face,

the overlying strata moves, breaks and collapses,

forming the ‘‘three zones’’ of the overlying strata

(breakdown zone, fissure zone, and bending subsi-

dence zone), and the subsidence of the overburden

strata was nonlinear, Movement was asymmetry; due

to the different strengths, thicknesses, bedding devel-

opment, and joint development of each layer of the

overburden, the movement and movement of each

rock layer are asynchronous, and the group movement

characteristics of the key layers are mainly coordi-

nated. With the advancement of the working face, the

development height of the overburden caving zone

and fissure zone gradually rises. When the working

face advances for a certain distance, the height

remains basically unchanged. The overburden (except

the caving zone) experienced during coal mining a

continuous and dynamic process of sinking and

moving. The movement of the far coal seam was

more obvious, and the movement curve shape was

similar to that of the ground. The near-coal rock layer,

when the overburden straddles, the sinking curve was

more irregular.

4.4 Stress Distribution of Overlying Strata

in Stope

During the advancing process of the working face, the

stress of the overburden rock mass of the coal seam

roof goes through three stages of pressure increase

before mining, pressure relief after mining, and

Fig. 5 The relationship among fissure and falling height and the

advance distance

Fig. 6 Sinking curve of different advance distance
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pressure stabilization recovery. The observation of the

stress of the roof overburden reveals the behavior of

the stress in the goaf during the mining process. The

overburden failure characteristics, the supporting

pressure distribution curve when the working face

was mined at 90 m and 240 m are shown in Fig. 7.

It can be seen from the Fig. 7 that during the coal

mining process, the abutment pressure has a larger

range of influence, with a higher peak value. The peak

value was 75 m away from the working face. The

stress was lower in the range of 0–50 m behind the

working face, forming a stress reduction zone. The

stress rises slowly in the range of 50–100 m behind the

working face, forming a stable zone of supporting

pressure, because the gangue was gradually com-

pacted by the roof. Under different mining depths, the

greater the mining depth, the smaller the concentration

of support pressure. Because the surrounding rock was

fractured and softened under high stress, the high-

stress area becomes wider, and the internal stress field

becomes wider with the increase in mining depth.

5 Quantitative Analysis of Fracture Development

of Mining Overburden

Mining fissures are not only of great significance for

mine water disasters and water resources protection,

but also play an important role in gas disaster

prevention and coalbed methane development. There-

fore, the inclination, width, number and height of

overburden cracks are quantified after they are fully

mined. According to analysis, Fig. 8 shows a devel-

oped crack in the overlying rock after mining.

5.1 Distribution of Fracture Dip Angle

After fully mining, there are 34 mining fissures in the

entire overburden, with different inclination angles of

the fissures. Figure 9 shows the distribution curve

based on the inclination of the fissures.

It can be seen from the distribution curve of fracture

dip angle and quantity in Fig. 9 that among the 34

fractures after fully mining, 6 fractures with dip angle

less than 30 account for 17.65% of all fractures, 8

fractures with dip angle of 30–39 account for 23.53%

of all fractures, and 9 fractures with dip angle of 40–49

account for 26.47% of all fractures with dip angle of

50 It accounts for 11.76% of all fractures, including 2

fractures with dip angle of 60–69, 5.880%, 3 fractures

with dip angle of 70–79, 8.830%, and 2 fractures with

dip angle of 80–90, accounting for 5.880% of all

fractures.

5.2 Distribution of Crack Width

The crack width reflects the degree of crack develop-

ment. Under mining, the crack development width

near the coal seam was larger. Figure 10 shows the

distribution curve based on the crack width.

Figure 10 shows that there are 6 cracks with width

less than 1 mm, accounting for 17.65% of all cracks, 9

cracks with width of 1–1.9 mm, accounting for

26.47%, 11 cracks with width of 2–2.9 mm, account-

ing for 32.35% of all cracks, and 7 cracks with width of

3–3.9 mm, accounting for 20.59% of all cracks.

Fig. 7 Abutment pressure distribution cures different advance

distance Fig. 8 Mining-induced fractures under overburden

123

Geotech Geol Eng (2022) 40:73–82 79



5.3 Number of Fractures and Overburden Height

The change characteristics of the height of the

overburden and the number of fractures reflect the

degree of the overburden affected by mining. Fig-

ure 11 shows the relationship between the number of

mining cracks and the height of the overlying strata.

It can be seen from Fig. 11 that the coal seams at

close distances are greatly affected by mining, so there

are a large number of cracks, which are mainly

concentrated in the overburden about 90 m.

5.4 Distribution of Mining Fractures

In order to visually describe the development of

mining fractures, the fracture density (bars/m) was

used to represent the development of fractures.

According to the experimental data, the curve of

fracture density at different advance distances was

shown in Fig. 12.

Figure 12 shows the crack density distribution

curve of the overburden: during the mining process,

the overburden moves, breaks, collapses, and develops

into three stages:

(1) Within about 60 m, the roof overburden

changes from elastic deformation to plastic

deformation, failure and instability until the

cracks transition, the number and width of the

cracks increase simultaneously in the process.

Fig. 9 Dip angle distributions of fissure

Fig. 10 Distributions of fracture width

Fig. 11 Relationship curves between overburden height and

quantity of fractures

Fig. 12 Distribution law of overlying fissure density
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(2) With the continuous advancement of the work-

ing face, the mining fissures develop to the high

level. When pushed to a certain distance, the

mined-out area was compacted by the roof

overlying rock, and the density decreases

rapidly.

(3) In the area near the coal wall, due to the

supporting effect, the crack density was still

high.

6 Conclusions

(1) A similar simulation study was carried out on a

fully mechanized caving mining face with large

mining height and composite roof of Yuwu Coal

Industry, and it was concluded that the height of

the caving zone was 32.6 m and the height of the

fracture zone was 64.6 m.

(2) The width of the mining cracks in the overbur-

den of the coal seam roof was mainly medium

width, and the inclination angle was mainly the

middle angle, and the number of cracks grad-

ually decreases with distance from the coal

seam. In this area, the density curve of overlying

rock fractures was in a ‘‘wave’’ shape.

Data Availability Data will be made available on reasonable

request.
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