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Abstract The main purpose of this study was to

compare and evaluate the performance of two multi-

criteria models for landslide susceptibility assessment

in Constantine, north-east of Algeria. The landslide

susceptibility maps were produced using the analytic

hierarchy process (AHP) and Fuzzy AHP (FAHP) via

twelve landslides conditioning factors, including the

slope gradient, lithology, land cover, distance from

drainage network, distance from the roads, distance

from faults, topographic wetness index, stream power

index, slope curvature, Normalized Difference Vege-

tation Index, slope aspect and elevation. In this study,

the mentioned models were used to derive the

weighting value of the conditioning factors. For the

validation process of these models, the receiver

operating characteristic analysis, and the area under

the curve (AUC) were applied by comparing the

obtained results to The landslide inventory map which

prepared using the archives of scientific publications,

reports of local authorities, and field survey as well as

analyzing satellite imagery. According to the AUC

values, the FAHP model had the highest value (0.908)

followed by the AHP model (0.777). As a result, the

FAHP model is more consistent and accurate than the

AHP in this case study. The outcome of this paper may

be useful for landslide susceptibility assessment and

land use management.
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1 Introduction

Landslides are the most common and prejudicial

geohazards in many parts of the world (Anis et al.

2019). This phenomenon has several direct and

indirect effects on the natural and urbanized environ-

ment. Landslides have recently become a major

preoccupation for geoscientists, engineers and civil

authorities around the world. The growing interna-

tional interest in landslides is due to the growing

awareness of the socio-economic severity of these

phenomena and the increasing pressure of develop-

ment and urbanization on the environment (Aleotti

and Chowdhury 1999). In order to mitigate the damage

associated with landslide hazards, it is important to

develop tools or techniques that help decision-makers

make the right town planning and development

decisions. For this reason, the development of a

Landslide susceptibility Map (LSM) is used to assess

and indicate the degree of vulnerability of the area to

landslide occurrences, taking into account the effect of

causative factors. To achieve the mentioned. To

achieve the mentioned objectives, three main

approaches are generally discussed in the literature,

quantitative, semi-quantitative, and qualitative

approaches.

The quantitative approach is based on probabilistic

and statistical calculation rules and the concept of

homogeneous units. According to Thiery et al. (2014),

this method has some limitations due to the tendency

to simplify environmental factors and assumptions

that landslides occur under the same combination of

variables. While the qualitative approach is based on

expert knowledge of the phenomena, this type of

analysis can give very different results depending on

the experts (Van Westen 2000). The semi-quantitative

approach makes it possible to formalize the rules

defined by the experts. It retains the flexibility of the

expert approach but is considered more objective by

the formal framework it imposes on its application

(Poiraud 2012). Over the past decade, several studies

have been conducted to assess the landslide suscep-

tibility in different regions using different methods.

Sema et al. (2017) used the Fuzzy gamma operator

model. Sahana and Sajjad (2017) evaluated the

effectiveness of the frequency ratio, fuzzy logic and

logistic regression models for the landslide suscepti-

bility assessment. Moradi et al. (2012) proposed the

Analytic Hierarchy Process (AHP) method to produce

the LSM. Demir et al. (2013) employed likelihood-

frequency ratio model and analytical hierarchy pro-

cess. Bourenane et al. (2015) carried out a landslide

susceptibility zonation (LSZ) by using bivariate

statistical and expert approaches. Stanley and Kirsch-

baum (2017) used heuristic fuzzy approach to create a

global landslide susceptibility map.

With geological and geomorphological specificity,

Algeria is classified among one of the countries most

affected by landslides (Hadji et al. 2013). For this

reason, numerous studies were conducted to assess the

landslide susceptibility in this country such as

Merghadi et al. (2018), Achour et al. (2017), Karim

et al. (2019), Dahoua et al. (2017a, b), El Mekki et al.

(2017), Manchar et al. (2018), Mahdadi et al. (2018),

Hadji et al. (2013), Hadji et al. (2014) and Dahoua

et al. (2017a, b). The city of Constantine in north-

eastern Algeria, has a long history of destructive

landslides in various important districts such as

Belouizded, Kaidi Abdellah, Belle vue, Ciloc, Bou-

draa Salah, Boussouf, Benchergui et Bardo (Fig. 1)

(e.g., Machane et al. 2008). Few studies were carried

out to assess the landslide susceptibility in Constan-

tine. As example Bourenane et al. (2016) used FR,

WoE, LR and weighting factors (WF) [frequency ratio

(FR), weighting factors (Wf), logistic regression (LR),

weights of evidence (WOE), and analytical hierarchy

process (AHP)] methods to evaluate landslide suscep-

tibility in Constantine city. Achour et al. (2017) used

analytic hierarchy process and IV methods to assess

landslide susceptibility along A-1 highway. Manchar

et al. (2018) assessed the landslide susceptibility for

the east of Constantine Province, using the WoE, IV

and FR models. This paper aims to assess and map

landslide susceptibility in the city of Constantine using

Geo informatics technology and the AHP and FAHP

model which limit vagueness of semi qualitative

models. Twelve landslides conditioning factors are

considered for this study, such as lithology, slope

gradient and aspect, distance from the road, drainage

distance and stream power index. The database was

compiled from satellite images and existing thematic

information.

2 Study Area

The city of Constantine is one of the most important

cities in north-eastern Algeria (Fig. 1), home to
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important economic, cultural and scientific aspects of

Algerian activities. This city covers an area of about

183.063 km2 extends between longitudes of 6�320 to
6�450, and latitudes of 36�270 to 36�160. The area

concerned in this study is the perimeter of the master

city’s plan, which represents 60.14 km2. The study

area is situated between 6�330 and 6�390 longitudes,
and 36�170 to 36� latitudes, with an elevation ranging

from 328 to 952 m, and slope varied between 7.08 and

59.88. This region is characterized by complex

morphology combining mountains, deep gorges, hills,

plains and plateaus. In the study area the climate is

semi-arid, with mainly two seasons rainy and dry,

characterized by high temperatures and humidity

(Bourenene et al. 2015). The dry season is long, lasts

from March to September with annual mean temper-

ature around 16 �C. The short rainy season was

usually between October and February, in which the

average annual precipitation was about 600 mm/year

(Mezhoud 2006).

The study region fits in the external domain of the

Tellean Atlas chain belongs to the North African Alps,

formed during the main paroxysmal compressional

phases of Eocene, Miocene, and Quaternary periods

(Bourenene et al. 2016). The lithology of this study

area presents four main lithostratigraphic units: The

Cretaceous-Eocene marls and calcareous marls of the

Tellian thrust sheet unit; the Mio-Pliocene sandy

clays, marls and conglomerates; and the Quaternary

alluvial terraces and lacustrine calcareous formations

(Bourenene et al. 2015; Bougdal et al. 2006). Due to

the particular natural conditions and human activities,

the city of Constantine has a long history of landslides.

Like the Bardo landslide, the landslide from the Sidi

Fig. 1 Geographical setting of the study area
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Fig. 2 Photographs of inventoried landslides in Constantine city a and b landslide in Boussouf; c and d landslide in Massinissa

Table 1 details of the data

used for the susceptibility

analysis

Sources Data Causative factors

https://earthexplorer.usgs.gov/ Digital Elevation Model

(DEM)

Slope gradient

Elevation

Topographic wetness index

Distance from rivers

Stream power index

Slope curvature

Slope aspect

Distance from road

Distance from fault

Satellite images Normalized vegetation

index

Land use and land cover

Geotechnical studies (DUC

2004)

Lithological formation map Lithology
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Rached bridge to Constantine railway station are

examples of landslides in the region (Fig. 2).

3 Methodology

The objective of this study was to create a suscepti-

bility map for the perimeter of the master city’s plan.

Firstly, a landslide inventory was prepared based on

the combination of the field survey, satellite images

analysis and an analysis of available data: scientific

publications, archives from the direction of town

planning of Constantine city. Then the variability

maps of twelve conditioning factors were created after

the data collection in from source the form of satellite

images and/or spatial data (Table 1). Then, two

landslide susceptibility maps were modelled by

applying the AHP and fuzzy AHP models under the

influence of the conditioning factors. The final step

was to verify and compare the results of the suscep-

tibility analysis by applying the receiving operating

characteristics (ROC) curve analysis using a landslide

inventory. The Fig. 3 presents the methodology

flowchart.

Fig. 3 Flowchart of the proposed Methodology

Table 2 Fundamental scale for pair-wise comparisons (following Saaty and Vargas 1991)

Scale Degree of

preference

Explanation

1 Equally Two activities contribute equally to the objective

3 Moderately Experience and judgement slightly to moderately favour one activity over another

5 Strongly Experience and judgement strongly or essentially favour one activity over another

7 Very strongly An activity is strongly favoured over another and its dominance is showed in practice

9 Extremely The evidence of favouring one activity over another is of the highest degree possible of an

affirmation

2, 4, 6 and 8 Intermediate values Used to represent compromises between the references in weight 1, 3, 5, 7 and 9

Reciprocals Opposites Used for inverse comparison

123

Geotech Geol Eng (2021) 39:5675–5691 5679



3.1 Data Layers

3.1.1 Landslide Inventory

The landslide inventory map (Fig. 4) is an important

level to assess the mutual relationship between

landslide occurrence and its conditioning factors. In

this task the landslides inventory map has been

produced based on the combination of a field survey

using GPS, analyzing satellite imagery derived from

Google Earth and analysis of available data such as

archives of scientific publications, and local authori-

ties: Town planning Direction of the Wilaya of

Constantine.

3.1.2 Slope Gradient

The slope is presented by the angle between the earth’s

surface and a horizontal data, there is a limit slope

beyond which there is an optimum favorable for

landslides (Chen et al. 2019). The value of the slope

cannot be used as a determining factor, it is associated

with other factors such as the lithological nature and

the presence or absence of water. The slope map layer

(Fig. 5a) shows the slope values, presented in degrees

of inclination with the horizontal. In this study area,

there are five (5) classes according to the slope.

3.1.3 Lithology

Lithology is one of the most important factors

influencing landslides. Each lithological formation is

different from the others in its properties and structure,

so that there are different degrees of susceptibility to

landslides depending on the lithology. The lithological

map (Fig. 5b) defined ten (10) formations (reference).

An analysis of the percentage density of landslides

shows that it is mainly observed in the Miocene clay

marl formation (61.22%), the calcareous marls of the

Tellian thrust sheet Cretaceous-Eocene formation

(17.30%), Miocene conglomerates (9.04%), recent

alluvial terraces of the Quaternary (4.64%) and

lacustrine calcareous formations of the Quaternary

(4.53%). The most prevalent lithology is the Miocene

marly clay and conglomerates (Bourenane et al. 2016)

(DUC 2004), which makes this region vulnerable to

landslides.

3.1.4 Land Use/Land Cover

Different land use has a different impact on landslides,

and is therefore a key factor in assessing landslide

susceptibility in many studies (Pawluszek and Bor-

kowski 2017). Forested land is less sensitive to

landslides, because plant roots are considered to be

soil protection, they reduce the presence of water in

the soil, and also evapotranspiration controls slope

Table 3 Pair-wise comparison matrix and factor weights of the data layers for the AHP

A B C D E F G H I J K L Criteria weight

A 1.00 2.00 3.00 4.00 5.00 5.00 6.00 6.00 6.00 7.00 7.00 8.00 0.2784

B 0.50 1.00 1.00 2.00 3.00 3.00 4.00 4.00 4.00 5.00 5.00 6.00 0.1633

C 0.33 1.00 1.00 1.00 2.00 2.00 3.00 3.00 3.00 4.00 4.00 5.00 0.1238

D 0.25 0.50 1.00 1.00 1.00 1.00 2.00 2.00 2.00 3.00 3.00 4.00 0.0867

E 0.20 0.33 0.50 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 3.00 0.05950

F 0.20 0.33 0.50 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 3.00 0.05950

G 0.17 0.25 0.33 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 0.04472

H 0.17 0.25 0.33 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 0.04472

I 0.17 0.25 0.33 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 0.04472

J 0.14 0.20 0.25 0.33 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.03457

K 0.14 0.20 0.25 0.33 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.03457

L 0.13 0.17 0.20 0.25 0.33 0.33 0.50 0.50 0.50 1.00 1.00 1.00 0.025510

A: slope gradient; B: lithology; C: land cover; D: distance from drainage; E: distance from road; F: distance from faults; G:

topographic wetness index; H: stream power index; I: slope curvature; J: NDVI; K: slope aspect; L: elevation
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moisture (Moradi et al. 2012), and it is an important

issue for marly and clay soils, the dominant lithologic

formations in the south of Constantine city. Land use

transformation, due to human activities, has an

influential relationship with landslide occurrences. In

this city, there are five land use classes: dense forest,

urban area, discontinuous urban individual, vegetation

cover and agricultural land (Fig. 6a).

3.1.5 Distance from Drainage

Potential slope failure areas extend along drainage

lines. High pore pressure in water leads to a degrada-

tion of the shear strength of the soil, which causes a

landslide (Bourenane et al. 2015). The city of

Constantine has an intensive drainage network, where

the distance from rivers varies from 0 to 1644.55

(Fig. 6b), which is an important indicator of the high

risk of slope failure in this region.

3.1.6 Distance from Road

Road construction in hilly terrain severely affects the

stability of slopes as anthropogenic factors; during

their construction, there are some common actions that

occur along the road network, such as major excava-

tions, vegetation removal and the application of

external loads (Bourenane et al. 2015). They have a

significant impact on reducing the resistance of the

slope (Pawluszek and Borkowski 2017); the further

away from the road the slope is, the more stable it is.

Therefore, a road map was prepared for the covered

distance (Fig. 7a). the distance from roads varies from

0 to 128.72.

3.1.7 Distance from the Fault

Geological structures include faults, fractures, shear

zones, etc., is considered to be a factor triggering

landslides. In the vicinity of these structures, the

landslide phenomenon increases due to weakness and

soil degradation due to erosion and water movement in

these structures (Chawla et al. 2017). The closer the

slope is to defects, the more likely it will fail. For this

reason, the distance from the fault map was generated

(Fig. 7b), it varies from 0 to 3217.806.

3.1.8 Topographic Wetness Index (TWI)

The topographic moisture index (Fig. 8a) is a hydro-

logical factor, which is mainly used in landslide

studies, it presents the saturated source zone due to

surface runoff under the influence of topographical

conditions. The presence of water in the soil causes

soil to release and mechanically degrade, so the TWI

map was created to identify potentially wet areas and

define those with high sensitivity to landslides, using

the Eq. 1 (Pawluszek and Borkowski 2017):

TWI ¼ ln As= tan bð Þ ð1Þ

where As is the specific catchment’s area (m2/m), and

b is the slope gradient (in degrees).

Table 4 the values of the ratio index according to number of factors

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59

Fig. 4 Landslide inventory map of the study area
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3.1.9 Stream Power Index (SPI)

One of the most important hydraulic parameters in

assessing landslide susceptibility is the stream power

index (Mohammady et al. 2012) (Fig. 8b), which

indicates the erosive power (tearing off particles) of

surface water flows and expresses the susceptibility of

a terrain to erosion by runoff. The erosion effect on

slope stability is by reducing the stabilizing forces at

the toe of the slope.

3.1.10 Slope Curvature

The curvature of the line formed by the intersection of

the surface with a random plane sets out the slope

curvature. In general, the curvature map is divided into

three classes where negative values were classified as

concave, positive values as convex and zero values as

flat as shown in (Fig. 9a). Positive and negative

curvature values indicate that the surface is more

sensitive to landslides. After heavy rainfall, a concave

slope maintains the water for a long time, leading to

soil saturation and decreasing the mechanical proper-

ties of the soil. On the other hand, the mechanism that

triggers landslides for a convex slope is explained by

the disintegration and decomposition of rocks, due to

frequent expansion and contraction processes (Lee

et al. 2004).

3.1.11 Normalized Difference Vegetation Index

Vegetation cover (Fig. 9b) is of considerable impor-

tance to stabilize slopes, as roots strengthen and fix

soil layers. The denser the vegetation, the more

stable the banks are with respect to landslides. The

normalized difference vegetation index is a well-

adapted tool to differentiate and classify the density of

vegetation cover in a region. The values of the NDVI

are between - 1 and 1, the negative values corre-

sponding to non-plant surfaces, such as snow, water,

for bare soils, the NDVI presents values close to 0.

Plant formations have positive NDVI values, gener-

ally between 0.1 and 0.7. The highest values corre-

spond to the densest cutlery (Hu et al. 2019).

3.1.12 Slope Aspect

The sloping terrain direction is described by the slope

aspect map (Fig. 10a) and has an indirect effect on theT
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slope instability with respect to other parameters such

as sun exposure, rainfall and dry winds (Sema et al.

2017). The slope aspect is divided into eight direc-

tional classes: flat, north, northeast, east, south,

southeast, southwest, southwest, west and northwest.

3.1.13 Elevation

Elevation is identified by the spatial variation of

altitude (Fig. 10b); it is the most inherent factor

causing a landslide. Elevation influences on landslides

are often presented as indirect relationships or by other

factors such as slope gradient and aspect (Pawluszek

and Borkowski 2017). In this study area the elevation

varies from 328 to 952 m.

3.2 The Analytic Hierarchy Process (AHP)

The analytic hierarchy process invented by the math-

ematician Thomas Saaty (Saaty 1977; Demir et al.

Table 6 The percentage of the study area for each degree

The susceptibility degree AHP model FAHP model

Very low susceptibility 12.53 9.84

low susceptibility 23.41 19.93

Moderate susceptibility 28.36 25.74

High susceptibility 26.27 29.21

Very high susceptibility 9.43 15.28

Fig. 5 Causative factor maps of the study area: a slope gradient,
b lithology: (1) Quaternary colluviums, conglomerate and thick

fill. (2) Quaternary recent alluvial terraces. (3) Quaternary

ancient alluvial terraces. (4) Quaternary lacustrine calcareous

formations. (5) Pliocene lacustrine calcareous formations. (6)

Miocene marly clay. (7) Miocene conglomerates, (8) Flysh

Massylian formations (Upper cretaceous). (9) Tellian Calcare-

ous marls (Cretaceous Eocene). (10) Neritic limestone (Ceno-

manian–Turonian)
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2013), is a semi-quantitative method that makes it

possible to make the best decision among several,

according to the needs and understanding of the

problem to be addressed.

Step 1 Define and structure the problem and its

objectives into factors.

Step 2 Prioritize the factors according to their

importance.

This step involves prioritizing factors according to

the principle of importance (Table 2). Let I1, I2,…,…,

Ii…, be all the factors whose weight coefficient is

sought. According to the principle of hierarchization,

I1 is more important than I2 which is more important

than Ii-1 which is more important than Ii. In the end, In
is the least important factor.

Step 3 Pair comparison of factors by importance.

To determine preferences, a scale of values must be

chosen to specify the degree of importance of one

factor in relation to another. The scale of values from 1

to 9 was adopted, which allows to introduce the

decision-maker’s assessments as closely as possible to

reality. The comparison between all the factors gives

the pairwise matrix (Table 3).

Step 4 Determine the weights associated with each

factor.

In this step, the weights for each factor (w1, w2…
wn) were calculated. Each element of the matrix was

divided by the sum of the values of the corresponding

column and then averaged per line. At the end, the sum

of the weights must be equal to 1. Table 3 shows the

weights of the different factors.

Step 5 Check the consistency of the matrix.

One of the main advantages of the method is the

possibility to evaluate the calculations made and to

calculate a consistency index. In other words, it is

possible to check whether the values of the scale (1–9)

assigned by the decision-maker are consistent or not.

For this purpose, the CI consistency index and the CR

consistency ratio were calculated with the Eqs. 2 and

3.

CI ¼ kmax � n

n� 1
ð2Þ

n: number of factors; kmax: is the largest eigenvalue

CR ¼ CI

RI
ð3Þ

Fig. 6 Causative factor maps of the study area: a land cover, b distance from drainage
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RI: depending on the number of factors (Table 4).

3.3 Fuzzy AHP Model

In his article, Chang (1996) presented an approach

based on the fuzzy AHP method by introducing

triangular fuzzy numbers for the binary comparison

between factors. For the first time, it proposes a

method for calculating priorities for triangular fuzzy

comparison matrices.

Step 1 Compare performance scores using odd

fuzzy triangular numbers.

Step 2 Construct the fuzzy comparison matrix �A(aij)

(Eq. 4):

A ¼
1; 1; 1ð Þ � � � ðl1;nmlnuln

..

. . .
. ..

.

ðln1mn1un1 � � � 1; 1; 1ð Þ

2
64

3
75 ð4Þ

Avec aij ¼ a�1
ji eta�1

ji ¼ 1
uij
; 1
mij

; 1lij

� �
.

Step 3Realize the sum (Ri) on the line ith (for all the

rows) of the matrix �A(aij) (Eq. 5):

Ri ¼
Xn
j¼1

aij ð5Þ

Ri is obtained by the arithmetic of the fuzzy numbers

(Eq. 6)

Ri ¼
Xn
j¼1

aij ¼
Xn
j¼1

alij; a
m
ij ; a

u
ij

� �
¼

Xn
j¼1

alj¼1;
Xn
j¼1

amij ;
Xn
j¼1

auij

 !

Ri ¼ li;mi; uið Þ
ð6Þ

Step 4 calculate the sum of the matrix (A) (Eq. 7)

A ¼
Xn
i¼1

Xn
j¼1

aij ð7Þ

Step 5 The fuzzy synthetic extension for a factor i is

defined by the Eq. 8

Si ¼ Ri � A�1 ð8Þ

Step 6 The weight of a factor i is

Fig. 7 Causative factor maps of the study area: a distance from roads, b distance from faults

123

Geotech Geol Eng (2021) 39:5675–5691 5685



Fig. 8 Causative factor maps of the study area: a topographic wetness index, b stream power index

Fig. 9 Causative factor maps of the study area: a slope curvature, b distance from NDVI
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Wi ¼ minV Si � Skð Þ where; k ¼ 1; . . .n; k 6¼ i

ð9Þ

where V is the degree of possibility for Si to be greater

than Sk;

V Si � Skð Þ ¼

1; if Si � Sk
0; if lkmi

lk � ui
mi � uið Þ � mk � lkð Þ

8>><
>>:

ð10Þ

Step 7 Normalize the weights of the factors, for a

factor i:

W
0

i ¼
WiPn
i¼1 Wi

ð11Þ

3.4 Standardization

The standardization technique is used to translate

various inputs of a decision problem to a common

scale, to allow comparison and overcome the incom-

mensurability of data (Rahman et al. 2012). The

standardization process allows the scaling of all

evaluation dimensions between 0 and 1 the

standardization of factors was established based on

fuzzy logic. The new features of Arcgis10.2 in the

operator (Fuzzymember ship) have been introduced in

the spatial modelling of landslide risk to standardize

the criteria on the same scale to measure them, on the

one hand, and to convert the semantic description of

landslide risk into a numerical model of spatial

prediction, on the other hand.

3.5 Weighted Linear Combination

After calculating the factor weights for the AHP and

FAHP models, landslide susceptibility maps were

created using the weighted linear combination (WLC)

on the GIS platform. The WLC concept consists of

combining all the factor maps to determine the value

of the landslide susceptibility coefficient using the

following equation (Rodcha et al. 2019)

WLC ¼
Xn
i¼1

WiXi ð12Þ

where n is the number of factors, Wi is the weight

value of the i factor, and Xi is the score of the i factor.

Fig. 10 Causative factor maps of the study area: a slope aspect, b elevation
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3.6 Validation

The final and most essential step in the landslide

assessment is to validate the accuracy of the model

using known landslide locations. There are various

methods available for this step, such as the Seed Cell

Area Index (SACI) method, the spatially agreed areas

approach and the Receiving Operating Characteristics

(ROC) curve. The method used in this study is the

ROC curve, which was first developed during the

Second World War for the development of effective

means of detecting Japanese airplanes.

It was then applied more generally in signal

detection and then in medicine, where it is now

widely used. The ROC curve is a graph representing

the performance of a classification model for all

threshold settings. This curve traces the real positive

rate as a function of the false positive rate. The True

Positive Rate (RPR) (Mohammady et al. 2012), the

equivalent of the recall is defined by Equation X. The

false positive rate (FPR) is defined as follows:

TPR ¼ TP

TPþ FN
ð13Þ

FPR ¼ FP

TN þ FP
ð14Þ

The AUC is a synthetic index calculated for the

ROC curves. The performance of the model is

evaluated by calculating the AUC, which varies

between 0 and 1. For an ideal model AUC = 1; for a

random model AUC = 0.5. The model is generally

considered good if the AUC value is greater than 0.7.

A discriminating model must have an AUC between

0.87 and 0.9. A model with an AUC greater than 0.9 is

excellent.

4 Results

The objective of this study was to create a landslide

susceptibility map, using the AHP model and the

Fuzzy AHP model taking into account a set of factors

triggering landslides, and to compare the results of the

two models used.

Fig. 11 Landslide susceptibility map created using: a the AHP model, b the FAHP model
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4.1 AHP Model Results

The AHP model was obtained by following the steps

described previously. The factors were ranked in order

of importance, as shown in (Table 3). A pairwise

comparison matrix (Table 3) was elaborated and used

to determine the weight of each factor (Table 3). The

last step is to check the consistency of the matrix, by

calculating the consistency index (0.0252) and the

consistency ratio (0.0165). The maps produced with

the AHP model (Fig. 11a) show five degrees of

susceptibility to landslides: very high, high, moderate,

low and very low. Table 6 shows the percentage of

each degree.

4.2 FAHP Model Results

The FAHP model was obtained by following the steps

described previously. First prioritize the factors in

order of importance, then a fuzzy comparison matrix

was built. The weight of each factor (Table 5) was

calculated using the fuzzy comparison matrix. The last

step consists in checking the consistency of the

comparison matrix by calculating the consistency

index CI = 0.02112. The maps produced with the

FAHP model (Fig. 11b) show five degrees of suscep-

tibility to landslides: very high, high, moderate, low

and very low sensitivity. Table 6 shows the percentage

of each degree.

4.3 The Validation

The accuracy of the results was assessed using a

prepared landslide inventory and analysis of the ROC

curves. Figure 12 shows the ROC curve correspond-

ing to the AHP model and the Fuzzy AHP model. The

AUC calculated for the AHP model and the Fuzzy

AHP model are 0.777 and 0.908 respectively.

5 Discussion

In this study, twelve conditioning factors from differ-

ent origins were combined to map landslide suscep-

tibility, using the AHP and Fuzzy AHP models. The

result maps of the AHP and the Fuzzy AHP model

show that large part of the study area was threat by the

landslide hazards. The study region was divided into

five zones of landslide susceptibility degree: very

high, high, moderate, low and very low susceptibility

degree.

The model’s accuracy is validated using the ROC

method, and its results show that both models can be

used for this purpose. The comparison between the

two models using AUC values shows that the results

obtained are satisfactory (0.777 for the AHP model

and 0.908 for the FAHP model). However, the fuzzy

AHP model is more accurate than the AHP model,

meaning that the fuzzy AHP model predicts landslide

susceptibility with minimal subjectivity and impreci-

sion in the process (Bouamrane et al. 2020).

Based on the results of the most accurate model, the

high and very high susceptibility classes were dom-

inated in the south-central, extreme west and extreme

northeast. This part of the study area is characterized

by complex topography with steep slopes. The most

common lithological formations in this region class

are Miocene marl clay, Miocene conglomerate and

Quaternary colluviums, conglomerates and thick fill.

These formations have poor geotechnical characteris-

tics that favor landslides. The area under consideration

is agricultural land with an intense network of rivers

and faults. The TWI and SPI values are high due to the

presence of water and the complex topography.

Therefore, the combination of all these factors

increases the risk of landslides.

Regarding the expected landslides predominated in

the central-western and south-eastern regions, they

were classified as moderately susceptible. They are

characterized by Miocene conglomerates, Miocene

marl clay and Quaternary ancient alluvial terraces

lithological formation with steep slopes. This part of

the region is an urban area with an intense road

network. In this area, distances from faults and

watercourses are small. Therefore, the combination

of these two factors has led to the degradation of the

mechanical characteristics of the soil. The TWI and

SPI values are high due to the presence of water and

the rugged topography in this region.

The zone of low and very low susceptibility degree

full in the central eastern and some parts of the south

western, the lithologic formations dominant in this

part of the study area were: The Quaternary ancient

alluvial terraces, Quaternary lacustrine calcareous

formations, Tellian Calcareous marls (Cretaceous–

Eocene) and the Neritic limestone (Cenomanian–

Turonian). This region was characterized by gentle

slopes and that minimize the impact of the hydrologic
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conditioning factors such as the TWI and the SPI. This

zone was considered as an urban area with intense

traffic network. According to the relation between the

variability map of the conditioning factors and the

susceptibility maps, the most influencing factors were

the slope degree, lithology, land use and the distance

from drainage. Based on the results of these models,

and the percentages of the study area in each degree, it

can be concluded that the city of Constantine is

exposed to the risk of landslides.

6 Conclusion

In this study, landslide susceptibility zoning was

performed for the urbanized region of the city of

Constantine in north-eastern Algeria, using the AHP

and FAHP models. To this end, a set of natural and

anthropogenic conditioning factors were considered

for the development of the models such as slope

gradient, lithology, land cover, distance from drai-

nage, distance from the road, distance from faults,

topographic wetness index, stream power index, slope

curvature, NDVI, slope aspect and elevation. The

landslide susceptibility zoning map created by the

AHP model shows five zones with different degrees of

susceptibility: very high (9.43%), high (26.27%),

moderate (28.36%), low (23.41%) and very low

(12.53%) in the study area. The map obtained with

the FAHP model shows the five degrees with different

percentages of the study area: very high (9.84%), high

(19.93%), moderate (25.74%), low (23.41%) and very

low (15.28%). The application of the ROC method

shows that the models applied could be used to assess

landslides susceptibility. Based on the AUC values of

the AHP model (0.891) and the FAHP model (0.982),

it can be concluded that the second model is more

accurate than the first. The results of the study show

that the city of Constantine is exposed to the risk of

landslides, and to minimize the impacts and risks of

this phenomenon, a susceptibility map was also

created.
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