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Abstract Basalt rocks as building stones were used

in many historical buildings in Jordan, and mainte-

nance of these buildings is usually required with time.

As part of the effort to collect the necessary informa-

tion that is needed for future works in repair/

strengthen the basaltic structures against any possible

future damage. The dry density, Ultrasonic Pulse

Velocity, Schmidt Hammer Rebound test, Brazilian

Tensile Strength Test, Slake durability, and Point

Load test were recorded for specimens tested in the lab

to develop indirect methods of estimating the rocks

Unconfined Compressive Strength (UCS). Simple

regression (SR) analyses were performed to establish

correlations between UCS and the results of each

above-mentioned rock indices. The SR results showed

that a regression model with multiple inputs is needed.

In this study, the Back Propagation-Artificial Neural

Network (BP-ANN) approach was utilized to predict

the USC of Basalt Rock. Two ANN models were

developed; one using the physical properties of rocks

and the other one using the mechanical properties of

rocks. Part of the data collected was used to train the

ANN, and a set of independent data was used to

validate the developed model. The performance of the

ANN model in predicting UCS was compared to that

of Multivariate Regression (MVR). The obtained

results showed that the ANN model gave higher

prediction performance compared to other models. A

sensitivity analysis for the developed ANNmodel was

performed to verify the importance of each input. The

prediction of UCS can be used to design the proper

conservation and repair/strengthen strategies that will

allow dealing with the current conditions and the

future natural hazards to which these structures are

exposed.

Keywords Basalt rock � Historic buildings �
Unconfined compressive strength (UCS) � Artificial
neural network (ANN) � Multivariate regression

(MVR)

1 Introduction

Basalt as a building stone was used in many historical

and ancient cities in Jordan. However, many of these

heritage structures are susceptible to damage by
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different environmental events such as earthquakes.

Therefore, parts or sometimes the entire of these un-

retrofitted structures were damaged extensively during

significant seismic events, while others showed better

performance (Bani-Hani and Barakat 2006). The

engineering properties of these structures are an

essential input in the stability analysis of these

structures to analyze the risk and to define the

necessary repair/strengthening requirements. For the

structural stability analysis, the compressive strength

is the main input parameter to describe the structural

behavior in any numerical analysis to be performed on

the desired structure (Vasanelli et al. 2016).

The UCS test is an expensive and time-consuming

test that requires intact core samples (Momeni et al.

2015), and it is not always possible to obtain the

appropriate core samples, especially in weak, foliated,

weathered and fractured rocks, or not allowed in the

historical buildings (Karakuş and Akatay 2013;

Azadan and Ahangari 2014; Fakir et al. 2017; Heidari

et al. 2018; Jing et al. 2020). As a result, the

determination of the UCS through correlation with

non-destructive, simple tests that require minimal to

no sample preparation became a more desired

approach (Dinçer et al. 2004; Yilmaz and Civelekoglu

2009; Monjezi et al. 2012). Different prediction

models using regression techniques were developed

to predict the UCS from simple or non-destructive

tests such as Porosity (g), dry density (c), Ultrasonic
Pulse Velocity (VP), Point Load Index (Is(50)), Brazil-

ian tensile strength (BTS), Schmidt Hammer Rebound

hardness (SHR), slake durability index (SDI), shore

Scleroscope hardness, and Brinell hardness tests, etc.

(Yaşar et al. 2004; Shalabi et al. 2007; Sharma and

Singh 2008; Kılıç and Teymen 2008; Yurdakul et al.

2011; Singh et al. 2012, 2017; Karaman and Kesimal

2015; Endait and Juneja 2015; Fereidooni 2016;Wang

et al. 2017; Heidari et al. 2018; Fereidooni and

Khajevand 2018; Kong and Shang 2018; Seif et al.

2018; Umrao et al. 2018; Wang and Wan 2019).

However, using regression models in UCS predic-

tion may result in several shortcomings. As such, these

models predict the mean values only, and this will

result in overproduction or under-prediction of the low

and high UCS values, respectively (Meulenkamp and

Grima 1999; Majdi and Rezaei 2013; Momeni et al.

2015). Moreover, these models are not suitable to deal

with highly nonlinear problems (Majdi and Rezaei

2013). Recently, the soft computing methods;

Artificial Neural Networks (ANNs), adaptive net-

work-based fuzzy inference system (ANFIS), Genetic

Programming (GP), and regression trees have been

utilized in developing predictive models for complex

problems.

ANN is a non-parametric model with a high

capability to learn complex nonlinear relationships

among variables implicitly. ANN with backpropaga-

tion (BP) learning algorithm is a well-established

method for solving different classification and fore-

casting problems (Han and Yin 2018). Researchers

used ANN to address various problems for many

applications in Civil Engineering. In geotechnical

engineering, in particular, Maji and Sitharam (2008)

developed two ANN models (using Feed Forward

Back Propagation (FFBP) and Radial Basis Function

(RBF) methods) for prediction the elastic modulus of

jointed rocks considering different joint configurations

and confining pressures.

Ferentinou and Fakir (2017) used ANN to develop a

correlation between UCS and rock basic indices such

as Is(50), c, BTS, and lithology for sedimentary and

igneous rocks. Heidari et al. (2018) used multiple

linear regression (MLR) and the Sugeno-type fuzzy

algorithm for UCS prediction for different types of

rocks using rock indices (block punch index (BPI),

Is(50), SHR and Vp). Both the fuzzy model and the

MLR analyses gave a better prediction for the UCS

than the SR. Umrao et al. (2018) used ANFIS for UCS

and modulus of elasticity prediction for sedimentary

rocks. Experimental data for density, g, and Vp were

used in the proposed model. Jahed Armaghani et al.

(2015) developed three different nonlinear techniques;

Nonlinear Multiple Regression (NLMR), ANN, and

ANFIS to predict the UCS of rocks for a tunnel project

in Malaysia. Data of SHR, Is(50), Vp, and UCS

properties of granitic rocks were used in the analysis.

The analysis results showed that the ANFIS model

predicted the UCS with the highest accuracy among

the other models.

In this study, six physical and strength parameters,

including c, Vp, SDI, SHR, BTS, and Is(50), were

determined in the laboratory. Correlations between the

test results for these indirect indicators with UCS test

results were assessed by simple, Multiple Regression

Analysis, and ANN. Two ANN models utilizing the

physical and mechanical properties of the tested rock

have been developed through this study. The devel-

oped models can be used for UCS prediction in the

123

4780 Geotech Geol Eng (2020) 38:4779–4792



restoration/ rehabilitation of existing heritage

structures.

2 Materials and Methods

2.1 Materials

During the Roman period, basalt stones were used to

build many historical and ancient cities in Jordan such

as Um-Qais city located to the north of Jordan, Qaser

Al Mashta, Um- Al Jimal (east of Al-Mafraq), Qaser

Al Hallabat and Qastal (south of Jordan), and Qasr Al-

Azraq (Tarrad et al. 2012), as presented in Fig. 1.

Basalt rock covers about 11% of Jordan’s area (about

11,400 km2), as shown in Fig. 2, particularly in the

northeast of Jordan (HarratAl-Sham) and northwest

(Harrat Irbid) (AL-Malabeh 2003; Abu-Mahfouz et al.

2016).

To establish the necessary physical and mechanical

properties for future stability analysis of these struc-

tures, 56 block samples with a minimum dimension of

approximately 30 cm, were collected from the neigh-

boring areas with similar in lithology to the nearby

basalt historic buildings and cities. From each boulder,

three cylindrical rock core specimens with diameter

64.0 mm and length of 130.0 mm were prepared to

obtain a length/diameter ratio of 2:1, according to

Fig. 1 Picture of some basalt historic buildings and cities in Jordan A) Um- Qais city located to the north of Jordan, B) Qasr Al-Azraq,

C) Qaser Al Hallabat and Qastal, D) Um- Al Jimal (east of Al-Mafraq)
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ISRM (2007) and ASTM D4543. The extracted cores

were ground to remove all surface irregularities.

2.2 Experimental Tests

X-ray Fluorescence Spectrometry (XRF) was used to

determine the dominant andminor oxides in these rock

samples, and the XRF results are presented in Table 1.

The XRF analysis shows that the majority of oxides

are Augite and Feldspar, whereas Hematite, Calcite,

and Zeolite occur in little amounts. Based on results

the basalt rock in the study is classified as magic

alkaline basalt rock.

Figure 3. is showing a sample of a micropho-

tograph of minerals components. Plagioclase is the most abundant minerals with a lath-like phenocryst

Fig. 2 General Geological Map showing the distribution of the primary rocks types in Jordan (Alnawafleh et al. 2013)

Table 1 XRF analysis of

studied basalt samples
Mineral Percentage, %

SiO2 40.0–43.0

Fe2O3 13.2–14.3

Al2O3 11.8–12.7

CaO 9.9–11.8

MgO 9.15–9.80

TiO2 2.80–3.30

Na2O 0.62–2.50

K2O 0.53–1.30

P2O5 0.57–0.65

MnO 0.19–0.22
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shape. Pyroxene is second abundant minerals, and

lower amounts of Olivine, Iddingsite, Calcite, Mag-

netite, and Chlorite were also found (Al-Zyoud 2012).

The specimen’s dry weight (c) was determined

after drying the specimens at 105 �C for 24 h. The (c)
values were calculated by dividing the specimens’ dry

weight by its volume. The Vp test measures the

velocity of the primary wave through the rock.

However, the (Vp) of rocks is influenced by the

particle sizes (Vajdová et al. 1999). The ISRM (2007)

recommended that wave travel distance should be

greater than ten times the particle size. Since Basalt

rocks is an extrusive with fine-grained textures,

therefore, the length of the sample satisfies the ISRM

(2007) recommendation. Two transducers with

54 kHz frequency were used in this study to perform

the Vp test according to both ISRM (2007) and ASTM

specifications.

ASTM D 5731 Standard Test Method was adopted

to conduct the Is(50) test on core samples irregular

lumps resulted from broken cores. The obtained

results of the point load test had been corrected to a

diameter of 50 mm.

Slake durability tests were performed based on

ISRM specifications to measure the resistance of the

rock to disintegration after drying and wetting cycles.

During the test, ten basalt pieces, each weighing

between 40 and 60 g with a total weight of about

500 g, were used to conduct the test.

Since the Schmidt hammer rebound test is a cheap,

nondestructive, quick, and easy to apply in either site

or laboratory that can be used in rock strength

assessment. Therefore, many researchers developed

numerous correlations between SHR, either linear or

nonlinear, with UCS and Et for a different type of

rocks (Kılıç and Teymen 2008; Gupta 2009; Karaman

and Kesimal 2015; Fereidooni 2016; Singh et al. 2017;

Heidari et al. 2018; Fereidooni and Khajevand 2018;

Kong and Shang 2018; Wang and Wan 2019). The

BTS tests were conducted on 1:2 for length/diameter

ratio on core specimens according to ASTM D3967

with a rate of the applied load of 200 N/s.

The ASTM D-7012 procedure was adopted to

conduct the USC tests using a computerized MTS

compression machine (Fig. 4) on core specimens with

flat, smooth, and parallel ends with length to diameters

ratio of 2:1 at an applied rate of 0.2 MPa/s.

3 Results and Discussion

3.1 UCS Prediction from Simple Regression (SR)

Analysis

SR analyses were used to investigate the type of

correlation between UCS (dependent variable) and

each one of the index parameters (independent vari-

ables), where the SPSS program was utilized to

Fig. 3 Microphotograph of mineral components. (Ol.: Olivine;

Idd.: Iddingsite; Pl.: Plagioclase; Cal.: Calcite; Mag.: Magnetite;

Cpx.: Pyroxene and Chl.: Chlorite) (Al-Zyoud 2012)

Fig. 4 Uniaxial compression test using the MTS machine
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develop the regression models. However, parametric

statistical methods, such as regression analysis, the

analysis of variance, and hypothesis testing, require

that the dependent variable is normally distributed.

Two tests, Kolmogorov–Smirnov test, and Sha-

piro–Wilk test were used by SPSS to check for

normality. Table 2 presents the results for both tests.

0.05 was selected as the significance level throughout

this study; the Null hypothesis: The data is normally

distributed. Table 2 shows that the calculated p-values

of both tests are greater than 0.05, so the null

hypothesis is retained at the 0.05 level of significance.

Therefore, the two tests indicated that the data

obtained for the dependent variable (UCS) is normally

distributed, and the appropriate parametric tests can be

used (Table 3).

Different sorts of regression relationships such as

linear, power, exponential, and logarithmic relation-

ships between the UCS and rock indices were used to

select the best relationship to fit the UCS of the rock.

Both the coefficient of determination (R2) and Root

Mean Square Error (RMSE) were used in this study to

evaluate the performance of these relationships.

R2 ¼
PN

i¼1 Mi�M
� �2

h i
�

PN
i¼1 Mi�Pið Þ2

h i

PN
i¼1 Mi�M

� �2
h i ð1Þ

RMSE ¼
ffiffiffiffi
1

N

r
XN

i¼1

Mi � Pið Þ2 ð2Þ

where Mi is the measured UCS values, Pi is the

predicted UCS values obtained from the predictors, �M
is the average of the Mi, and N = number of the data

points.

Figure 5 shows the developed equations to predict

the UCS based on different independent variables.

Table 3 shows the selected equations for UCS

prediction based on the highest obtained R2 values,

and the lowest RMSE values compared to other

equation types. As can be seen, the SR analyses give

good correlation coefficients between UCS and most

of the independent variables. The Is(50) resulted in the

best estimation of the UCS.

From the above analyses, it is noticeable that the

tested samples showed low variability of properties,

and the performances of most indices were reasonably

good in predicting UCS. However, to obtain higher R2

(lower RMSE), Multivariate Regression Analysis

(MVR) could be used to establish a predictive model

for predicting UCS amongst relevant rock properties.

3.2 Multivariate Regression Model (MVR)

MVR is an extension to SR by considering multiple

independent variables to obtain the best-fit equation

with the highest R2 and lowest RMSE values between

the input and output variables. The general form of the

MVR model can be written as follows:

y ¼ b0 þ b1x1 þ b2x2 þ . . .::þ bnxn ð3Þ

where, y is the dependent variable (UCS), b0,1,2…n are

the regression parameter coefficients, and x1,2…n are

the independent variables. In this study, the statistical

package for Social Science (SPSS) program was used

to develop the MVR models.

Multicollinearity is a common problem in multiple

regression analyses, where a high correlation between

independent variables exists. The possible multi-

collinearity of the input independent variables was

evaluated in the MVR model using the variation

influence factor (VIF). In this study, all the proposed

models were checked for multicollinearity, a VIF

value of 8 was consider to check for multicollinearity

problem (Hines and Montgomery 1990).

For regression models, the value of R2 can be

improved by increasing the number of parameters

(Feng and Jimenez 2014). However, fitting too many

variables could result in overfitting problems (Yang

et al. 2019). Overfitting results from adding too many

independent variables that account for more variance

but add nothing to the model. In this study, two

separate predictive models were developed. One

model was developed to predict the UCS based on

rock physical indices (c, Vp, and SDI), and the other

model was developed based on rock’s mechanical

Table 2 Tests of normality for the dependent variable (USC)

Tests of normality

Kolmogorov–Smirnova test Shapiro–Wilk test

Statistic df Sig. Statistic df Sig.

UCS 0.062 50 0.200 0.989 50 0.919

df degree of freedom, sig. significant level ( 0.05 as chosen in

this study)
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strength indices (BTS, SHR, and Is(50)). These vari-

ables were selected for MVR analysis because they are

the most common rock’s indices that are used to

estimate the UCS for the rock. The two developed

MVR models are shown in Table 4.

For the same set of data, higher R2 was obtained

using MVR compare to SR. In MVR, the dependent

variables work together in a combined manner,

whereas the other independent variables take care of

any shortcoming of any other independent variable

(Mishra and Basu 2013). This explains the benefits of

using MVR over SR.

As can be seen, the results are statistically mean-

ingful, but to develop higher performance models,

ANN models are built to develop a more accurate

model for UCS prediction.

Table 3 The developed equations for estimating UCS

Predictor Range Mean Std. Dev Equation R2 RMSE

Dry density (c), gm/cm3 2.59–2.74 2.66 0.034 UCS = 413.49 c-1015.6 0.71 9.26

P-wave velocity (Vp), m/s 4364–5920 5163 403.0 UCS = 194.93 ln(Vp)-1579.5 0.81 7.48

Slake durability index (SDI), % 97.9–99.5 98.6 0.41 UCS = 34.98 SDI-3363.7 0.74 8.88

Schmidt hammer rebound number (SHR) 32–46.9 40.5 2.97 UCS = 0.01 SHR 2.45 0.81 7.43

Brazilian Tensile Strength (BTS), MPa 2.11–14.33 7.57 2.59 UCS = 5.92 BTS ? 41.63 0.82 7.31

Point load index (Is(50)), MPa 4.71–7.3 5.99 0.60 UCS = 26.46 Is(50)-72.11 0.87 6.20

(a) (b) (c)

(d) (e) (f)

y = 413.49x - 1,015.59
R² = 0.71

40

60

80

100

120

2.55 2.6 2.65 2.7 2.75

U
C

S 
(M
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)

Dry Densirty, γ(g/cm3)

y = 0.0377x - 108.1
R² = 0.81
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120
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Fig. 5 The developed equations for estimating UCS using a Dry density (c), b P-wave velocity (Vp), c Slake durability index (SDI),

d Schmidt hammer rebound number (SHR), e Brazilian Tensile Strength (BTS), and f Point load index (Is(50))
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Table 4 MVR equations in addition to the coefficient of correlation for the two models

Model Developed a relationship R2 RMSE

Physical MVR model UCS (MPa) = -1994.4 ? 24.32xSDI ? 0.033xVp-182.8xc 0.92 4.65

Mechanical MVR model UCS (MPa) = -57.65 ? 14.08xIs(50) ? 2.39 BTS ? 1.03 SRH 0.95 3.67

Dry density (γ)

P-wave velocity (Vp)
Unconfined 

Compressive StrengthSlake durability 
index (SDI)

Fig. 6 Physical

Properties—Based ANN

model

Point load index 
(Is(50))

Unconfined 
Compressive Strength

Schmidt hammer rebound 
number (SHR)

Brazilian Tensile Strength 
(BTS)

Fig. 7 Mechanical

Properties—Based ANN

model
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3.3 ANN Models

Artificial Neural Network offers superior capabilities

over the traditional regression methods in capturing

the nonlinear relationship between variables.

The ANN analysis was performed for the data set

used in the MVR model to form correlations for UCS

(dependent variable) prediction using six independent

variables (ls(50), BTS, SRH, SDI, Vp, and c). Two
ANN models were developed to predict the UCS. The

first model was based on experimental results of the

physical properties, including (c, VP, and SDI). The

second model was based on the mechanical properties

of the rock, namely (Is(50), BTS, and SHR). The

experimental data were divided into two parts, training

and testing data. The training data were used to teach

the ANN the nonlinear relationships between the input

parameters (Physical and Mechanical measures) and

output node; the UCS. The validation data were used

to validate the developed ANN models. In addition to

the two ANN models, two MVR models based on

physical and mechanical properties were developed

using the same data sets, as was discussed before.

The back-propagation learning (BP) algorithm was

used for supervised learning to train the weights of the

multilayer feed-forward neural network using gradient

descent. BP algorithm searches for the minimum value

of the error function by adjusting the weights. The

gradient of the error function is calculated with respect

to the neural network’s weights. Tangent-Sigmoid

activation function was used in the hidden layer. The

final ANN models are shown in Figs. 6 and 7.

An ANN model and a multivariate regression

model (MVR) were developed, as discussed earlier.

Because of the highly nonlinear correlation between

the UCS and the physical and mechanical properties, a

total of three layers have been used, including one for

input, one hidden layer, and one nodded output (UCS)

layer. The weights and biases of both ANNmodels are

listed in Tables 5 and 6, respectively.

Table 7 shows the results of R2 and RMSE for all

models developed for the training/testing/validation

data used in MATLAB. It is clear from the results that

both the mechanical and physical ANN models were

able to predict the experimental results with high

accuracy.

The R2 and the RMSE values for both models of

0.99, 0.94, 1.54, and 1.73 suggest that the ANN

models learned the relationship between the physical

and the mechanical properties of rock and the UCS

with a slight advantage for the Mechanical over the

physical ANN model. Figures 8, 9 show the perfor-

mance of the results obtained from the Mechanical

ANN and the Physical ANN models for the data

employed to train, test, and validate the models in

MATLAB. The ANN results of the experimental UCS

(x) plotted against the predicted UCS (y) are also

shown. The two figures show a great agreement with

the 45� line of equality, which represents the points

where Y equals X. Both ANN models learned and

predicted the experimental data very well.

For further investigation in the capability of the

developed ANNmodels in predicting the UCS, a set of

10 independent data points that have not been used in

the development or validating of the previously

discussed four ANN models were used to predict the

UCS values. Figure 10 shows the results of the ANN

models for independent data. It is evident from the

figure that the results of ANN models for the UCS

values are in good match with the experimental

results. ANNmodels seem to give a precise prediction

for the rock’s UCS using both the physical and

mechanical properties.

Table 8 below presents the RMSE values for the 10

points independent data used to verify both ANN

models. The RMSE values suggest that ANN models

are a very powerful tool for predicting the UCS from

unseen physical and mechanical data points. Once

again, the Mechanical ANN model seems to give a

slightly better prediction for USC that the ANNmodel.

Although ANN is often labeled as a ‘‘black box’’,

several methods have been used by researchers for

identifying the input variables contribution. In the

present study, the Connection weight approach pre-

sented in Oña and Garrido (2014) has been used to

identify the importance of the input variables in UCS

prediction. Based on the weights listed in Tables 5, 6,

the importance and relative ranking of input variables

of both ANN models are shown in Table 9. It can be

concluded that Dry Density (c) and Schmidt hammer

rebound number (SHR) are ranked as the most

important parameters while P-wave velocity and

Brazilian Tensile Strength (BTS) as the least

important.

As shown in Table 9, among input parameters, the

most influential parameters on the UCS are DD for the

ANN physical model and SHR for the ANN mechan-

ical model. This may be attributed to the fact that the
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dry density indicates the state of compactness of the

rock (Momeni et al. 2015). As shown in the ANN

analysis, the UCS is much more strongly correlated

with SHR and Is(50) than with BTS. This may be

attributed to the fact that in BTS, the mode of failure is

different from the UCS (Mohamad et al. 2015). The

same results were obtained by Jing et al. (2020) when

as sensitivity analysis was performed to show the

relative influence of the Vp, Is(50), and SHR on the

UCS, where the results show that the SHR was the

most influential parameter on the UCS prediction.

Table 5 Weights and biases of the Physical Based ANN model

Hidden neuron Weights: input to the hidden layer Hidden to output layer Bias

Dry density P-wave velocity Slake durability index Hidden neuron Weights

1 -0.6971 3.0235 -4.5906 1 -0.5342 0.3240

2 -8.7934 -7.5433 -4.3911 2 -1.5688 -1.5011

3 -4.7989 -0.6850 -14.8862 3 1.3680 -1.9231

4 -6.2844 5.4093 11.1425 4 5.2494 0.5806

5 7.2995 -17.0102 -8.6992 5 7.6934 0.6555

6 2.4658 0.5486 -13.9914 6 1.5433 -0.8179

7 7.3245 12.1211 14.6807 7 3.8575 6.8060

8 -0.2850 2.4199 3.9030 8 1.9290 -9.7247

9 -0.5170 3.5282 -1.2143 9 1.5529 -3.5177

10 -6.2410 2.6945 1.9630 10 -6.2101 -0.6029

Output Node -3.3099

Table 6 Weights and biases of the Physical Based ANN model

Weights: Input to the hidden layer Hidden to output layer Bias

Hidden

neuron

Schmidt hammer rebound

number (SHR)

Brazilian Tensile

Strength (BTS)

Point load index

(Is(50))

Hidden

neuron

Weights

1 0.0675 -1.2094 2.6636 1 0.6361 -3.1854

2 -0.5977 1.2037 -3.5213 2 0.8166 -1.1535

3 3.8984 -0.6817 -2.2937 3 0.7989 -1.4188

4 -1.4841 -2.0155 -2.0079 4 0.4550 1.8586

5 1.8826 0.0575 2.2472 5 0.8822 -0.5922

6 -2.2747 0.6363 2.6171 6 1.1925 -0.1768

7 -0.8491 2.2973 2.1769 7 1.2736 -1.6350

8 -2.5660 -2.4149 -1.3277 8 0.4634 -0.7980

9 3.4539 0.0518 -1.0712 9 1.5613 2.2550

10 -1.5399 0.9431 -1.3893 10 -0.2002 -3.7176

11 -3.2118 0.5033 -0.1577 11 -0.7191 -3.0240

Output Node 0.3680

Table 7 Performance of ANN models

Model R2 RMSE

Mechanical ANN model 0.99 1.54

Physical ANN model 0.94 1.73
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4 Summary and Conclusion

Extensive laboratory tests for the estimation of UCS

were conducted on 56 Basalt sample sets. The

experimental program included UCS, Is(50), BTS,

SHR, SDI, Vp, and c measurements. A reasonable

relationship was found between inputs and output by

performing an SR analysis. However, the results of the

SR analysis showed that there is a need to propose

models with multiple inputs. To predict UCS indi-

rectly from multiple inputs, two MVR and ANN

models were proposed. In the first model, the labora-

tory tests of rock physical properties (c, Vp, and SDI)

were used as inputs for the network while the UCS

value set to be the output. Whereas in the second

proposed predictive model, the laboratory tests of rock

mechanical properties (Is(50), BTS, SHR) were used as

inputs for the network while the UCS was set to be the

output. The following conclusions can be drawn from

this work:

(1) Both Multivariate Regression analyses and the

ANN exhibited better predictive performances than

SR analyses as far as the estimation of UCS from

rock physical and mechanical indices with higher

advantage for the ANN models over the MVR

models as it can be seen by higher R2 and lower

RMSE.

(2) Both physical and mechanical properties based-

ANN models can be used to predict the UCS value

of Basalt rock with high accuracy. However, the

mechanical based-ANN model showed slightly

better performance in predicting the UCS of rock

over the physical based-ANN model.

(3) ANN was able to predict the nonlinear relation-

ship between the UCS value and both of the

mechanical and physical measures of Basalt Rock.

(4) Sensitivity analysis was performed to find the

relative effect of input parameters used in the USC

prediction model. The obtained results suggest that

Fig. 8 Mechanical ANN

Model performance results
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all input considered that SHR and c have the highest
influence on the prediction of the UCS values.

(5) The Artificial Neural network’s high capabilities

of learning and capturing the nonlinear relationship

explains the superiority of ANN models over the

MVR models in predicting the UCS values.

Fig. 9 Physical ANN Model performance results
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Fig. 10 Independent data results for both the Mechanical ANN

models and the Physical ANN model

Table 8 Independent data RMSE comparison

Model ANN

Mechanical models 0.59

Physical models 0.74
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Kılıç A, Teymen A (2008) Determination of mechanical prop-

erties of rocks using simple methods. Bull Eng Geol

Environ 67:237–244. https://doi.org/10.1007/s10064-008-

0128-3

Kong F, Shang J (2018) A validation study for the estimation of

uniaxial compressive strength based on index tests. Rock

Mech Rock Eng 51:2289–2297. https://doi.org/10.1007/

s00603-018-1462-9

Majdi A, Rezaei M (2013) Prediction of unconfined compres-

sive strength of rock surrounding a roadway using artificial

neural network. Neural Comput Appl 23:381–389. https://

doi.org/10.1007/s00521-012-0925-2

Maji VB, Sitharam TG (2008) Prediction of elastic modulus of

jointed rock mass using artificial neural networks. Geotech

Geol Eng 26:443–452. https://doi.org/10.1007/s10706-

008-9180-9

Meulenkamp F, Grima MA (1999) Application of neural net-

works for the prediction of the unconfined compressive

strength (UCS) from Equotip hardness. Int J Rock Mech

Min Sci 36:29–39. https://doi.org/10.1016/S0148-

9062(98)00173-9

Mishra DAD, Basu A (2013) Estimation of uniaxial compres-

sive strength of rock materials by index tests using

regression analysis and fuzzy inference system. Eng Geol

160:54–68. https://doi.org/10.1016/j.enggeo.2013.04.004

Mohamad ET, Armaghani DJ, Momeni E, Abad SVANK (2015)

Prediction of the unconfined compressive strength of soft

rocks: a PSO-based ANN approach. Bull Eng Geol Environ

74:745–757

Momeni E, Jahed Armaghani D, Hajihassani M, Mohd Amin

MF (2015) Prediction of uniaxial compressive strength of

rock samples using hybrid particle swarm optimization-

based artificial neural networks. Measurement 60:50–63.

https://doi.org/10.1016/J.MEASUREMENT.2014.09.075

Monjezi M, Amini Khoshalan H, Razifard M (2012) A neuro-

genetic network for predicting uniaxial compressive

strength of rocks. Geotech Geol Eng 30:1053–1062.

https://doi.org/10.1007/s10706-012-9510-9

Seif E-SSA, Bahabri AA, El-Hamed AE-HE-SA (2018)

Geotechnical properties of Precambrian carbonate Saudi

Arabia. Arab J Geosci 11:500. https://doi.org/10.1007/

s12517-018-3821-y

Shalabi FI, Cording EJ, Al-Hattamleh OH (2007) Estimation of

rock engineering properties using hardness tests. Eng Geol

90:138–147. https://doi.org/10.1016/j.enggeo.2006.12.006

Sharma PK, Singh TN (2008) A correlation between P-wave

velocity, impact strength index, slake durability index and

uniaxial compressive strength. Bull Eng Geol Environ

67:17–22. https://doi.org/10.1007/s10064-007-0109-y

Singh PK, Tripathy A, Kainthola A et al (2017) Indirect esti-

mation of compressive and shear strength from simple

index tests. Eng Comput 33:1–11. https://doi.org/10.1007/

s00366-016-0451-4

Singh TN, Kainthola A, Venkatesh AV (2012) Correlation

between point load index and uniaxial compressive

strength for different rock types. Rock Mech Rock Eng

45:259–264. https://doi.org/10.1007/s00603-011-0192-z

Umrao RK, Sharma LK, Singh R, Singh TN (2018) Determi-

nation of strength and modulus of elasticity of heteroge-

nous sedimentary rocks: An ANFIS predictive technique.

Measurement 126:194–201. https://doi.org/10.1016/J.

MEASUREMENT.2018.05.064
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