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Abstract The traditional methods for analysing

rectangular piles (Barrettes) are mainly modelling

the barrette and surrounding soil using 3D-FE. 3D-FE

for barrette foundations needs a huge computational

effort. Consequently, a huge system of equations

required to be solved. In this paper, a composed

coefficient technique (CCT) is developed for analys-

ing laterally loaded barrettes. The technique takes into

account the three-dimensional full interactions

between the barrette and the surrounding soil. In the

technique, the three dimensional coefficients of the

stiffness matrix of the barrette are decomposed to be

one-dimensional. This enables easily adding these

coefficients to those of stiffness matrix of the soil.

Besides the practical application and efficiency of the

technique, the nonlinear response of the barrette using

any load-settlement relation can be considered. The

technique may be also applied for single barrette,

barrette groups or barrette raft. A series of validations

is carried out to verify the application of CCT for

analysing single barrettes. It is found that treating the

barrette by CCT, gives nearly the same results

compared with the measured values from load tests

and FE results. The proposed technique is imple-

mented in the program ELPLA El Gendy M and El

Gendy A (Analysis and design of raft and piled Raft-

Program ELPLA, GEOTEC Software Inc., Calgary,

2019).

Keywords Soil structure interaction � Deep
foundation � Rectangular pile � Barrette � Single
barrette � Composed coefficient technique

1 Introduction

Early researches on single barrettes were performed

using 3D-FE to analyse single barrette. This technique

takes into account full interactions between barrettes

and the surrounding soil, but it leads to a huge stiffness

matrix. Therefore, huge systems of equations have to

be solved. Consequently, this analysis is time con-

suming even for the fast computers of today. A similar

foundation element of pile maybe considered as a less

complicated problem than that of the barrette cross

section. Piles, in most cases, are circular in shape with

small cross-sectional area, while that of the barrette is

mainly rectangular, with large cross-sectional area.

Therefore, the pile can be treated as a beam member

subjected to point loads on its nodes, while barrettes

are treated as block members. Many methods are

available for the analysis of piles, most of them are

used also to analyse barrettes with equivalent cross

section area to that of the pile.
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Thasnanipan et al. (1998) reported construction

practice and the performance of barrette constructed in

Bangkok metropolis. Using trial trenching near a canal

for assessment of trench stability and soil deformation.

Also discussed choice of barrette and common defects

found in barrette.

Zhang (2003) performed a 3D analysis of two

laterally loaded barrettes tested in Hong Kong using

FLPIER software based on p-y curves. He reported

that the lateral response of the barrette is influenced by

loading direction and the lateral load capacity is the

greatest when the loading is along the major axis.

Similar results were reported by El Wakil and Nazir

(2013) on a small scale model of barrette tested in

laboratory.

Lei et al. (2007) presented an approximate three-

dimensional semi analytical method for the analysis of

load–displacement behaviour of single barrettes, bar-

rette group and barrette-soil-cap interaction system.

Basu et al. (2008, 2007, 2008), Choi et al.

(2014, 2015) and Seo et al. (2009) developed an

analysis for laterally and vertically loaded piles and

barrettes embedded in a multi-layered soil medium,

based on the solution of differential equations gov-

erning the displacements of the pile-soil system

derived from energy principles.

Lin et al. (2014) studied the axial performance of

two heavily instrumented barrettes, with and without

grouting, socket into gravel layer in Taipei, which is

evaluated based on the results of barrette load tests.

And also simulated the t–z curves interpreted from the

measured data along depth by the hyperbolic model.

Conte et al. (2013) proposed a 3D-FE approach to

predict the response of reinforced concrete piles to

horizontal loading. Then he used the proposed

approach to analyse the results from some loading

tests documented concerning a large-diameter pile and

a large-section rectangular pile (barrette) embedded in

sandy soils.

Rafa and Moussai (2018) use Plaxis 3D to evaluate

the interaction between barrette load test and the

reaction system using the finite element code by

comparing load test results in Bangkok, Thailand

subsoil with those using the Hardening Soil model

(HS).

Znamenskii et al. (2019) use MIDAS GTS NX to

show the principal possibility of application of this

method for the analyses of barrettes with an accuracy

admissible for practical purposes by comparing

barrette load test results in Moscow, Russia subsoil

with those using a modified Mohr–Coulomb

elastoplastic.

Poulos and Small (2019) examined the use of

simple means of analysis based on conventional piles

of circular cross-section by chosen equivalent dimen-

sions for the circular piles to represent the barrette.

They compared the behaviour of the equivalent piles

to finite element results for the barrettes.

Composed Coefficient Technique (CCT) developed

by El Gendy (2007) was a modification of the

technique proposed by Russo (1998). El Gendy

(2007) applied the technique on single pile, pile group

and piled raft to reduce the size of the entire soil

stiffness matrix. In this technique, the pile is treated as

a rigid member having uniform settlement for all

nodes along its shaft and base. CCT enables to

assemble pile coefficients in composed coefficients.

This technique was examined and applied efficiently

in many studies, some of them are those by Abdel et al.

(2009), Rabiei (2015), Rabiei and Choobbasti

(2018, 2019), El Kamash et al. (2014), Ibrahim et al.

(2009), El Gendy et al. (2010a, b, 2013, 2014),

Mohamedien et al. (2013).

Recently, this technique is also further developed

by El Gendy et al. (2016, 2017, 2018, 2019) to be used

for analysing single barrettes under vertical load as a

rigid and elastic body. In the technique, the elasticity

of the barrette body is considered by the finite element

method, while that of the soil by flexibility coefficient

method. The technique is applied efficiently for

barrette group and barrette raft.

In this paper, the CCT is modified for analysing

laterally loaded single barrettes. In which, the three-

dimensional full interactions between the barrette and

the surrounding soil are taken into consideration.

Besides, CCT reduces considerably the number of

equations to be solved, it enables applying the

nonlinear response in lateral direction of the barrette

by a hyperbolic relation between the load and

displacement of the barrette.

2 Mathematical Modeling

The mathematical modelling of vertically loaded

barrettes have been explained by El Gendy et al.

(2016, 2017, 2018, 2019). The barrette is divided into

a number of shaft and base elements with n nodes as
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shown in Fig. 1, each one is acted upon by a

distributed stress. To carry out the analysis, the

stresses acting on the shaft and base elements are

replaced by a series of concentrated forces acting on

the nodes.

The displacement of the soil at any node i of the

barrette is written in general form as:

ui ¼
Xns

j¼1

Ixi;j Qxj ð1Þ

where ui soil displacement in x-direction on any shaft

or base node i, m; Qxj contact force in x-direction on

any shaft or base node j, kN; n total number of nodes;

and Ixi,j flexibility coefficient of node i due to a

concentrated force in x-direction on node j, m/kN.

Equations (1) for displacements of the soil adjacent

to all nodes of the barrette is rewritten in a matrix form

as:

uf g ¼ Ix½ � Qxf g ð2Þ

where {u} n displacement vector in x-direction; {Qx}

n contact force vector in x-direction; and [Ix] n 9 n

soil flexibility matrix.

2.1 Flexibility Coefficients

Mindlin (1936) presented a mathematical solution for

determining stresses and displacements in soil due to a

point load acting beneath the surface of semi-infinite

mass. The solution is often employed in the numerical

analysis of piled foundations. Russo (2016) used this

solution to predict the pile-soil interaction, based on a

hybrid BEM approach.

According to Mindlin’s solution, the displacement

factor fxij of point i due to a point load Qxj, kN, acting

at point j beneath the surface (Fig. 2) can be expressed

as:

fxij ¼
1

16pGsð1� msÞ
3�4 ms
R1

þ 1

R2

�
þ ðx Þ2

R3
1

þ ð3�4 msÞðx Þ2 þ2cz

R3
2

� 6czðx Þ2

R5
2

þ 4ð1� msÞð1� 2 msÞ
R2 þzþ c

� 4ð1� msÞð1� 2 msÞðx Þ2

R2ðR2 þzþ cÞ2

!

ð3Þ

Where R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þðz� c Þ2

q
;R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þðzþ c Þ2

q
; c

depth of the point load Qj, kN from the surface, m; z

depth of the studied point i from the surface, m; r radial

distance between points i and j, m; x horizontal

distance in x-direction between points i and j, m; fxij
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Fig. 2 Geometry of point load beneath the surface
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displacement factor of point i due to a unit load in x-

direction at point j, m/kN; ms Poisson’s ratio of the

soil.and Gs shear modulus of the soil, kN/m2.

Gs ¼
Es

2ð1þ msÞ
ð4Þ

where Es Modulus of elasticity of the soil, kN/m2.

Now, the displacement in x-direction uij, m, at point

i due to a point load Qxj, kN, acting at point j beneath

the surface (Fig. 2) can be expressed as:

uij ¼ Ixij Qxj ð5Þ

or in matrix form:

uf g ¼ Ix½ � Qxf g ð6Þ

Inverting the soil flexibility matrix in Eqs. (6) leads

to:

Qxf g ¼ kx½ � uf g ð7Þ

where [kx] are n 9 n soil stiffness matrix,

[kx] = [Ix]-1.

2.2 Soil Stiffness Matrix

To describe the formulation of composed coefficients

for generating the soil stiffness matrix of the barrette in

this case, consider, as an example, the simple barrette

shown in Fig. 3a, which has a total of n = 33 surface

nodes in this case. The barrette of 3D is converted into

a 1D model as presented in Fig. 3b, which has nb= 4

nodes in 4 levels only. Each node has a force and a

displacement in the horizontal direction. The

unknowns of the problem will be reduced to nb contact

forces Qxbi on soil-barrette interface and nb horizontal

displacements ubi on all nodes of the barrette.

The soil stiffness matrix of Eq. (7) for the barrette

shown in Fig. 3a can be expanded in the matrix form

as:

where kxi, j is stiffness coefficient of the soil stiffness

matrix, kN/m.

To reduce the size of the problem, the barrette is

represented by a vertical line member having a

variable horizontal displacement along its height.

Then, the displacement in every barrette level node in

1D is considered to be constant. Another point of view

in choosing this idea is that the designer is interested in

the soil displacement and contact forces at different

levels on the barrette height not at each barrette node.
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This assumption can establish the relationship

between the displacement and force on each node in

1D. It can be done by equating all displacements in

each barrette level in 3D by a uniform displacement. In

Eq. (8), the summation of rows and columns corre-

sponds to the barrette node i in 1D, leads to:

Accordingly, Eq. (9) of the soil stiffness matrix can

be rewritten for the barrette of 1D in composed

coefficients as:
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¼
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where Kxi, j composed coefficient, kN/m; ubi displace-

ment in x-direction in node i of 1D barrette, m; ub1 =

u1= u2=… = u8, ub2 = u9= … = u16,……, ub4 =

u25= … = u33; Qxbi contact force on node i of 1D

barrette, kN; Qxb1= Qx1? Qx2?… ? Qx8, Qxb2=
Qx9 ?… ? Qx16,……, Qxb4= Qx25?… ? Qx33;

Equation (10) shows that the soil stiffness matrix in

Eq. (8) of size 33 9 33 is reduced considerably to an

equivalent soil stiffness matrix of size 4 9 4. It could

be written in a compacted form as presented in Eq. (7).
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Fig. 3 Surface mesh of the barrette with node numbering, lateral loads and displacement
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2.3 Barrette Stiffness Matrix

The finite element method is used for analysing the

barrette body, which is exposed to external forces on

the soil-barrette interface as soil reactions in addition

to the applied load on its head as an action. The

compatibility between the horizontal displacements of

the barrette and the soil displacements at the soil-

barrette interface is taken in the horizontal direction.

The composed coefficient technique is used to formu-

late the soil stiffness matrix for the barrette as a line

member from the original soil stiffness matrix of

Eq. (8). This soil stiffness matrix takes also into

account the interaction effect among all the soil-

barrette interface nodes.

From the finite element, the beam stiffness matrix

of the barrette element i can be expressed as (Fig. 4):

kx½ �i¼
Ep � Ipi
L3i

12 6L �12 6L
6L 4L2 �6L 2L2

12 6L �12 6L
6L 2L2 �6L 4L2

2
664

3
775 ð11Þ

where Ep Modulus of Elasticity of the barrette

material, kN/m2; Ipi moment of inertia of the barrette

element i, m4; and Li length of the barrette element i,

m.

According to the finite element method, the

assembled stiffness matrix equation for the barrette is:

kx½ � dxf g ¼ Pxf g � Qxbf g ð12Þ

where {dx} nb deformation vector; {u1, h1, u2, h2, u3,
h3, u4, h4}; {Px} nb vector of applied load on the

barrette, {Px1, Mx1, 0, 0,…, 0}; and [kx] (2 9 nb)-

9 (2 9 nb) beam stiffness matrix.

Substituting Eqs. (7) into (12), leads to:

kx½ � dxf g ¼ Pxf g � kxb½ � ubf g ð13Þ

Fig. 4 Finite element mesh of barrette and element geometry

l1

l2 j

Layer (1)
Es1, vs1

Layer (2)
Es2, vs2

Layer (3)
Es3, vs3

Fig. 5 Geometry of shaft element lies between two layers
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Assuming full compatibility between barrette dis-

placement ui and soil displacement ubi, the following

equation can be obtained:

kx½ � þ kxb½ �½ � dxf g ¼ Pxf g ð14Þ

Solving the above system of linear equations, gives

the displacement and rotation at each node, which is

equal to the soil deformation at that node. Substituting

soil displacement from Eqs. (14) into (12), gives

contact forces Qxbi on the barrette.

2.4 Multi-layered Soil

In case of vertical loads Mindlin’s solution is applied

for isotropic elastic half-space soil medium. For finite

layer, flexibility coefficients for vertical load may be

obtained as described by Poulos and Davis (1968). As

an example, for a point k in a layer of depth h, the

flexibility coefficient is then:

fk;j hð Þ ¼ fk;j 1ð Þ � fh;j 1ð Þ ð15Þ

where fk, j(h) flexibility coefficient for a point k in a

layer of depth h due to a unit vertical load on point j,

m/kN; fk, j(?) flexibility coefficient for a point k due to

a unit vertical load on point j in a semi-infinite mass,

m/kN; fh, j(?) flexibility coefficient for a point within

the semi-infinite mass directly beneath k, at a depth

h below the surface due to a unit vertical load on point

j, m/kN.

For horizontal loads, when computing displace-

ment ui,j, the Mindlin’s solution is applied by charac-

terizing the soil layers around the barrette by Young’s

Modulus and Poisson’s ratio of points j, where ui,j is

lateral soil displacement on any shaft or base node

i due to a lateral point load at point j.

If the shaft element cross two soil layers as shown in

Fig. 5, the soil properties will take as a ratio of the

length of the cross element to each layer.

Es ¼
Es1 l1 þEs2 l2

l1 þ l2
ð16Þ

vs ¼
vs1 l1 þ vs2 l2

l1 þ l2
ð17Þ

where Es and vs are soil properties, which applied in

the Mindlin’s solution.

2.5 Nonlinear Analysis of Barrette

Russo (1998) presented a numerical method for the

analysis of piled raft where piles were modelled as

interactive linear or non-linear springs. The nonlinear

relation between the load and settlement of a barrette

may be determined by considering a hyperbolic

relation between load on the barrette head Ph and

the settlement wn as shown in Fig. 6 and Eq. 18. Russo

et al. (2012) and Russo (2018) applied efficiently the

hyperbolic relation to re-assessment of foundation

settlements for the Burj Khalifa, the tallest building all

over the world.

Russo (2016) developed a computer code, based on

a hybrid BEM approach, to predict the pile-soil

interaction. The code is used to throw light on the

mechanism of the pile-soil interaction under horizon-

tal loading. He considered the nonlinear response of

pile load settlement in horizontal direction through the

hyperbolic relation.

The nonlinear behavior of the barrette load-settle-

ment in vertical direction is:

Nonlinear settlement wn [m]

Nonlinear analysis

Linear analysis

Limit barrette load Qlim [kN]

ks

B
ar

re
tte

lo
ad

 P
h

[k
N

]

Fig. 6 Load-settlement curve of a barrette (hyperbolic relation)

Table 1 Loads and barrette geometries

Case Load (kN) Height (m) Cross section

1 3000 15 0.5 m 9 0.5 m

2 2500 10 0.7 m 9 0.7 m

3 10,000 40 2.8 m 9 0.8 m

4 8000 30 2.7 m 9 1.2 m
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Ph ¼
wn

1
ks
þ wn

Qlim

ð18Þ

while in horizontal direction is:

Px ¼
un

1
kx
þ un

Hlim

ð19Þ

where wn is nonlinear settlement of the barrette, m;

Qlim is vertical limit load, kN; un is nonlinear

displacement in x-direction of the barrette, m; Hlim is

horizontal limit load, kN.

In Fig. 6, the initial tangent modulus for barrette is

easily obtained from linear analysis of the barrette,

which is equal to the modulus of soil stiffness ks. the

vertical limit load Qlim is a geometrical parameter of

the hyperbolic relation. This can be applied also for

horizontal direction.

3 Numerical Results

The developed program ELPLA is used to analyse

single barrettes with both linear and nonlinear subsoil

models under vertical and lateral loads using flexibil-

ity coefficient and composed coefficient technique

(CCT). To verify the validity of this program and its

mathematical methods and subsoil models, some

Table 2 Barrette material properties

Modulus of Elasticity of the barrette material Ec = 2.5 9 107 kN/m2

Poisson’s ratio of the barrette material mc = 0.20-

Table 3 Subsoil properties

Case Layer No. Soil type z m Es kN/m
2 ms

1 1 Stiff clay 2 10,000 0.40

2 Loose sand 5 15,000 0.35

3 Silt 10 30,000 0.30

4 Dense sand ? 100,000 0.15

2 1 Stiff clay 1 10,000 0.40

2 Loose sand 5 15,000 0.35

3 Silt 8 30,000 0.30

4 Dense sand ? 80,000 0.20

3 1 Very stiff clay 5 20,000 0.35

2 Loose sand 15 25,000 0.30

3 Silt 35 30,000 0.30

4 Dense sand ? 80,000 0.20

4 1 Very stiff clay 2 15,000 0.40

2 Loose sand 12 25,000 0.30

3 Silt 22 30,000 0.30

4 Dense sand ? 100,000 0.15

wl

W L

H

h

Fig. 7 Surface element of the barrette for the four cases
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problems published previously by researchers using

different methods of analysis and models are

compared with the results obtained by the analysis

used in this paper.

3.1 Validity of Linear Analysis of Vertically

Loaded Single Barrette

An analytical analysis of a single barrette having a

rectangular cross section embedded in a multi-layered

soil medium is available in the reference Basu et al.

(2008). In the analytical analysis, the differential

equations governing the displacements of the barrette-

soil system were obtained using the variation princi-

ples. Closed-form solutions for barrette deflection and

axial force along the barrette shaft were then produced

by using the method of initial parameters.

The barrette is considered and analysed for four

different cases under different loads, geometries and

subsoil conditions. The load on the barrette head and

barrette geometry for the chosen cases are listed in

Table 1. The barrette material properties are listed in

Table 2. The subsoil of each case consists of four

layers, each layer has a different Modulus of Elastic-

ity, Es and Poisson’s ratio, ms are listed in Table 3.

A comparison of results of the single barrette in a

multi-layered soil medium of the present analysis with

those by Basu et al. (2008) is presented herein. The

height of the barrette is divided into equal elements of

h = 1 m each in all cases. Both the barrette length and
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width are divided into four equal elements in each

case, as shown in Fig. 7. In the analysis, barrette

material is considered to be elastic and the barrette is

analysed as 1D finite elements.

The barrette settlement, s along the barrette height

obtained from the present analysis for the four cases of

analysis are compared with those by Basu et al. (2008)

in Figs. 8, 9, 10 and 11.

From these results, it can be concluded that the

absolute difference between the computed barrette

head settlements in the present analysis and those by

Basu et al. (2008) is 0.01 cm for all cases. In addition,

the absolute differences between the computed bar-

rette base settlements is 0.02 cm for the first case,

0.01 cm for the second and fourth cases, and 0.06 cm

for case (3).

These results show also that results of the present

analysis are in a good agreement with the analytical

results obtained by Basu et al. (2008). Results of the

barrette head settlements are similar to those by Basu

et al. (2008). However, regarding results of the base

settlements, the difference reached 15.0% in case of a

barrette having a great aspect ratio in the cross section,

case (3). The difference in this case is very small when

compared to the barrette dimensions, which equals to

0.06 cm.

3.2 Validity of Linear Analysis of Laterally

Loaded Single Barrette

To verify the present analysis of a laterally loaded

single barrette in multi-layered soil, the barrette

displacements with barrette heights obtained by the

present analysis of a laterally loaded single barrette

using flexibility coefficient and CCT are compared

with those obtained by Basu and Salgado (2007, 2008)

and Choi et al. (2014, 2015).

An analytical analysis of a laterally loaded single

barrette embedded in a multi-layered soil medium is

available in the references Basu and Salgado

(2007, 2008) and Choi et al. (2014, 2015) and

compared with those by equivalent 3D-FE using

ABAQUS. In the analytical analysis, the differential

equations governing the displacements of the barrette-

soil system were obtained using variational principles.

Closed-form solutions for barrette displacement and

forces along the barrette shaft were then produced by

using the method of initial parameters for analysis a

circular pile with an equivalent diameter with the same

second moment of inertia as that of the barrette.

The single barrette shown in Fig. 12 is analysed for

seven different cases with different geometries, lateral

loads, and subsoil conditions. Barrettes geometry,

lateral loads on the barrettes head and modulus of

elasticity of barrettes Ep for the chosen cases are listed

in Table 4. The subsoil of each case consists of

different layers, each layer has a different modulus of

elasticity Es and Poisson’s ratio ms are listed in

Table 5.

A comparison of results of the laterally loaded

single barrette in a multi-layered soil medium of the

present analysis with those by Basu and Salgado

(2007, 2008) and Choi et al. (2014, 2015) is presented

here. Both the barrette length and width are taken as

two elements and the height of the barrette is divided

into equal elements with h = 0.5 m, in all cases as

shown in Fig. 13 except case (3) the barrette length

and width are taken as four elements and the height of

the barrette is divided into equal elements with

h = 2 m as shown in Fig. 7. In the analysis, the

barrette material is considered to be elastic and the

barrette is analysed as 1D finite elements as shown in

Fig. 14.

The barrette displacement u and bending moment

along the barrette height obtained from the present

Table 4 Barrette

geometries, loads and

material

Case Cross section Height (m) Ep (kN/m
2) Load (kN)

1 0.50 m 9 0.50 m 10 24 9 106 300

2 0.70 m 9 0.40 m 15 24 9 106 300

3 2.80 m 9 0.80 m 40 25 9 106 3000

4 0.70 m 9 0.40 m 10 25 9 106 300

5 0.53 m 9 0.53 m 10 25 9 106 300

6 0.70 m 9 0.40 m 15 24 9 106 300

7 0.50 m 9 0.50 m 15 25 9 106 500
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analysis using flexibility coefficient and CCT for the

seven cases of analysis are compared with those by

Basu and Salgado (2007, 2008) and Choi et al.

(2014, 2015) as shown in Figs. 15, 16, 17, 18, 19, 20,

21, 22 and 23.

Results show that the absolute difference between

the barrette head displacements in the present analysis

and that by Basu and Salgado (2007, 2008) and Choi

et al. (2014, 2015) is less than 0.05 cm for all cases

except case (3) which is 0.11 cm. This difference

when using FEA is less than 0.08 cm for cases (1), (2)

and (6) and 0.2 cm for case (3).

In addition, the absolute difference between the

computed barrette base displacements in the present

Table 5 Soil properties Case Layer No. Soil type z (m) Es (kN/m
2) ms

1, 2, 4, 5 1 Very stiff clay 2 20,000 0.35

2 Medium sand 5 35,000 0.25

3 Dense sand 8 50,000 0.20

4 Dense sand ? 80,000 0.15

3 1 Very stiff clay 1.5 20,000 0.35

2 Loose sand 3.5 25,000 0.30

3 Medium sand 8.5 40,000 0.25

4 Dense sand ? 80,000 0.20

6 1 Dense sand ? 50,000 0.20

7 1 Medium sand ? 40,000 0.25

W L

H

h 

Fig. 13 Surface element of the barrette for all cases except case

(3)

h 

H
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Fig. 14 Barrette representing by 1D finite elements
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analysis and those by Basu and Salgado (2007, 2008)

and Choi et al. (2014, 2015) is less than 0.04 cm for all

cases except case (3) which is 0.06 cm. This differ-

ence when using FEA is less than 0.03 cm for cases

(1), (2) and (6) and 0.07 cm for case (3).

Comparing the maximum bending moment using

the present analysis and those from Basu and Salgado

(2007, 2008) and Choi et al. (2014, 2015), the

differences is less than 11%.

In general, it can be concluded that results of the

present analyses using flexibility coefficient and CCT
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are in a good agreement with both analytical results

and numerical results using full 3D FEA.

3.3 Validity of Nonlinear Analysis of Single

Barrette

To verify the present nonlinear analysis of a vertically

and laterally loaded single barrette, the barrette results

obtained by the present nonlinear analysis are com-

pared with those obtained by Poulos and Small (2019)

using 3D FE and using an equivalent circular shafted

pile to represent the barrette.

The barrette geometry, material and soil properties

are shown in Fig. 24. The subsoil is consisting of two

layers, each layer having a different Modulus of

Elasticity Es and Poisson’s ratio ms.
A comparison between results of the present

analysis with those by Poulos and Small (2019) are
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Fig. 22 Bending moment kN.m with the barrette height (case
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presented herein. The height of the barrette is divided

into equal elements, each element has a height of

h = 1.0 m. Both the barrette length and width are

taken as two elements, as shown in Fig. 13. In the

analysis, barrette material is considered elastic and the

barrette is analysed as 1D Finite Element. The

barrettes are analysed nonlinearly using a hyperbolic

function to represent the real load–displacement

relation. Limit vertical loads was Qlim = 15 MN,

while for lateral loads wereHlim = 14.5MN for load in

x-direction and Hlim = 10 MN for load in y-direction.

These limit loads are assumed from the load–dis-

placements curves presented by Poulos and Small

(2019) .

The lateral load–displacement curves of the barrette

20 m height in both X and Y-directions obtained from

the present analysis are compared in Figs. 25 and 26

with those obtained by Poulos and Small (2019) .

Figure 27 shows the vertical load–displacement

curves for the barrettes obtained from the present

Table 6 Barrette geometries and material

Cross section Height (m) Ep (kN/m
2) References

3.0 m 9 1.5 m 57.5 37 9 106 Rafa and Moussai (2018)

2.82 m 9 0.64 m 52.5 37 9 106 Znamenskii et al. (2019)

Table 7 Subsoil properties, Bangkok, Rafa and Moussai (2018)

Layer No. Soil type z (m) Es (MN/m2) ms C (kN/m2) � sat (kN/m
3) unsat (kN/m

3)

1 Soft clays 13.5 5 0.3 10 23 16.5 16

2 Stiff clays 26.0 60 0.3 25 26 18 17

3 Dense sands 36.0 90 0.3 – 36 19.5 18.5

4 Hard clays 54.0 100 0.3 40 24 20 19

5 Dense sands 100.0 100 0.3 – 36 20 19

Table 8 Subsoil

properties, Moscow,

Znamenskii et al. (2019)

Where Rc is ultimate

strength in uniaxial

compression

Layer No. Soil type z (m) Es (MN/m2) ms C (kN/m2) (�) (kN/m3)

1 Fine sands 4.0 7 0.3 13 17 18.1

2 Very soft loam 8.5 21 0.3 2 27 19.2

3 Sands 16.5 30 0.3 1 29 19.9

4 Half hard clays 20.5 56 0.3 79 16 18.1

5 Hard clays 24.5 51 0.3 93 21 18.6

6 Hard clays 47.5 56 0.3 66 21 21.7

7 Limestone 70.0 6800 0.25 Rc = 34 MPa 18.5
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analysis with that obtained by Poulos and Small

(2019).

These results show that the present nonlinear

analyses are in a good agreement with those by Poulos

and Small (2019).

In case of laterally loaded barrette, the load–

displacement curve depends on the direction of

loading. As reported before by Zhang (2003), El

Wakil and Nazir (2013) and Poulos and Small (2019),

when the barrette is loaded along the major axis, it is

predicted to carry more load and have a stiffer

response than when loaded along the minor axis. This

is due to the high resistance of the barrette loaded

along the minor axis.

In case of axially loaded barrette, Poulos and Small

(2019) use a value of Rf = 0.8 in the Equivalent

circular pile model to make the curve flatter, were Rf is

the ratio between limit load and ultimate load. As

reported before by Poulos and Small (2019), the effect

of having no interface elements make the curve steeper

when using 3D-FE.

3.4 Comparative Examination Between

the Present Analysis and Vertical Load Tests

Load tests of single barrettes having a rectangular

cross section embedded in a multi-layered soil

medium are available in the references of Rafa and

Moussai (2018) and Znamenskii et al. (2019). In these

load tests, results of barrette load tests are obtained

from Bangkok, Thailand subsoil area and Moscow,

Russia subsoil area respectively.

Barrettes geometry and modulus of elasticity of

barrettes Ep for the chosen cases are listed in Table 6.

The subsoil of each case consists of different layers,

each layer has different properties as listed in Tables 7

and 8.

Comparisons of the results of single barrettes in a

multi-layered soil medium of the present analysis with

those obtained by Rafa and Moussai (2018) and

Znamenskii et al. (2019) are presented herein, the

height of the barrettes is divided into equal elements,

each element has a height of h = 2 m. Both the

barrettes length and width are divided into four equal

elements, as shown in Fig. 7. Barrettes are analysed

nonlinearly using a hyperbolic function to represent

the real load-settlement relation. In the analysis, in

case of comparing with Rafa and Moussai (2018) the

barrette is assumed to be fully rigid having a uniform

settlement, while in case of comparing with Znamen-

skii et al. (2019) the barrette is analysed as elastic body

due to the very high strength of the limestone layer.

The limit barrette loadsQlim are considered to be 80

and 110 MN, which are assumed from the load

settlement curves of Rafa and Moussai (2018) and

Znamenskii et al. (2019) respectively.

The barrette load-settlement relations obtained

from the present nonlinear analysis are compared

with those by the load tests carried out by Rafa and
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Fig. 28 Load settlement curve, Rafa and Moussai (2018)
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Fig. 29 Load settlement curve, Znamenskii et al. (2019)

Table 9 Barrette geometries

Case Cross section Height (m) Ep (kN/m
2)

1 2.80 m 9 0.80 m 51 30.3 9 106

2 2.70 m 9 1.20 m 30 35 9 106
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Moussai (2018) and Znamenskii et al. (2019) in

Figs. 28 and 29, respectively. From these figures, it

can be concluded that the difference in settlements

values were 0.4 cm and 0.14 cm compared with those

by Rafa and Moussai (2018) and Znamenskii et al.

(2019), respectively. They are very small when

compared to the barrette dimensions.

The verification shows that the load-settlement

behaviour of the present nonlinear analyses are in a

good agreement with the measured load-settlements

carried out by Rafa and Moussai (2018) and Znamen-

skii et al. (2019).

Table 10 Soil properties

case Layer No. Soil type z (m) Ava. SPT Es (kN/m
2) ms

1 1 Fill (Clayey silty sand with gravel and occasional cobble/boulder) 1.5 19 13,600 0.3

2 8 53 27,200 0.3

3 11 10 10,000 0.3

4 Fill (Cobbles) 15 29 17,600 0.3

5 Alluvium (Clayey silty sand with gravel) 23 13 11,000 0.3

6 Completely decomposed granite (Silty sand with gravel) 29.5 40 22,000 0.3

7 32.5 77 36,600 0.3

8 34 104 47,600 0.3

9 40 144 63,900 0.3

10 100 194 83,600 0.3

2 1 Fill (Clayey silty sand with gravel and occasional cobble/boulder) 15 27 33,200 0.3

2 Marine deposit (Clayey silty sand) 19.5 18 24,000 0.3

3 Alluvium (Clayey silty sand with gravel) 28 35 40,750 0.3

4 Completely decomposed granite (Silty sand with gravel) 29.5 63 69,000 0.3

5 34 46 52,000 0.3

6 100 68 74,000 0.3
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Fig. 30 Linear load displacement curve of the barrette, case (1)
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Fig. 31 Nonlinear load displacement curve of the barrette, case
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Fig. 32 Load displacement curve of the barrette, case (2)
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3.5 Comparative Examination Between

the Present Analysis and Lateral Load Tests

Lateral load–displacement relation of the barrette

obtained by the present analysis is compared with that

obtained by Zhang (2003) from load tests of a laterally

loaded single barrette and from numerical analysis

using 3D FE.

Load tests of single barrettes having a rectangular

cross section embedded in a multi-layered soil

medium are available in the reference Zhang (2003).

In the load tests, results of barrette load tests are

obtained from Hong Kong subsoil areas.

The barrette is considered and analysed for differ-

ent cases. The barrette geometry and modulus of

elasticity Ep for the chosen cases are listed in Table 9.

The soil properties, modulus of elasticity Es and

Poisson’s ratio ms are listed in Table 10. Es was

estimated from SPT according to Bowles (1996).

The height of the barrette is divided into equal

elements, each element has a height of h = 2.0 m for

case (1) and 1.0 m for case (2). Both the barrette length

and width are taken as two elements as shown in

Fig. 13. The barrettes are analysed nonlinearly using a

hyperbolic function. Horizontal limit loads have been

assumed from load displacement curves of Zhang

(2003). These were 6 MN and 5.45 MN for the first

case and 3 MN for the second case.

The horizontal load–displacement relation of the

barrette obtained from the present analysis is com-

pared in Figs. 30, 31 and 32 with that obtained from

load tests and from 3D FE carried out by Zhang

(2003).

From comparison of the linear analysis, it found

that the absolute difference between displacements

presented by Zhang (2003) and those of the present

analysis is less than 0.1 cm in case (1) and 0.05 mm in

case (2).

For nonlinear analysis, the difference between the

displacement of the present analysis for Hlim = 6 MN

and the measured displacement is less than 0.31 cm in

case (1), except when the load is 4330 kN, the

difference is 3.21 cm. However, for Hlim = 5.45 MN,

the absolute difference is increased to 1.90 cm, when

the load is 4000 kN. Then, the difference decreased to

0.05 cm, when the load is 4330 kN. In case (2), the

difference is less than 0.43 mm. These differences are

very small when compared to the barrette dimensions.

Finally, the verification shows that the lateral load–

displacement behaviour of the present linear and

nonlinear analyses are in a good agreement with those

of the measured load tests and 3D FE carried out by

Zhang (2003).

4 Conclusions

An application on laterally loaded single barrettes

using the composed coefficient technique and flexi-

bility matrix is presented. The proposed technique

considers the three dimensional full interactions

between the single barrette and the soil. From

application of CCT technique, it can be concluded

that:

• The technique can be effectively used in linear and

nonlinear analyses of vertically and laterally

loaded single barrette in layered soil medium.

• Due to the lower number of nodes in the converted

one dimensional model rather than three dimen-

sional finite element model, the first model

consumes less computation time in the analysis.

This enables the technique to be used for analysing

large barrette foundations such as barrette group

and barrette raft.

• As in the technique, the barrette elements are

composed in one member, the analysis can be used

easily for predicting the nonlinear response of the

lateral load-displacement of the barrette using a

hyperbolic relation between the lateral load and

displacement under both axial and lateral loads.

• Verification examination of the present analysis for

analysing vertically and laterally loaded barrettes

show that results are in a good agreement with

those obtained numerically by 3D FE.

• Good agreement is noticed between results of the

nonlinear analysis for analysing both vertically and

horizontally loaded barrette and measured values

obtained from barrette load tests.

• Although the barrette head displacements of the

present linear analysis for laterally loaded barrettes

are very close when compared with those obtained

numerically by 3D FE, the distribution of barrette

lateral displacements along the barrette length is

relatively softer (giving higher displacements) in

the present analysis. However, the absolute differ-

ence in results of the base displacements is very

123

Geotech Geol Eng (2020) 38:4617–4635 4633



small, which is less than 0.1 cm, when compared to

the barrette dimensions. In which, the barrette head

displacement is the effective displacement is this

case of analysis.
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