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Abstract In this study, the four landslide suscepti-

bility (LS) mapping methods, frequency ratio (FR),

analytic hierarchy process (AHP), artificial neural

networks (ANN) and fuzzy logic (FL) method, are

compared. The study has been conducted in Taşkent

(Konya, Turkey) Basin which is located between

36.88 N to 36.95 N latitudes and 32.35 E to 32.53 E

longitudes. The survey area is approximately 80 km2.

The FR, AHP, ANN and FL methods are used to map

LS. Thematic layers of fourteen landslide conditioning

factors including landslide inventory, elevation, slope,

slope aspect, plan, and profile curvature, sediment

loading factor, stream power, and wetness index,

drainage, and fault density, distance to drainage, and

fault, geological units, and land use-land cover are

used for preparing the LS maps. Estimation power of

models has been evaluated by the relative operating

characteristic curve method. The areas under the curve

for FR, AHP, ANN and FL method have been

computed as 0.926, 0.899, 0.916 and 0.842, respec-

tively. These results showed that FR method is

relatively good, whereas FL method is a relatively

poor estimator for susceptibility. The validity of the

LS maps was evaluated by test landslides. The 58 test

landslides (76 pixels), 43 training landslides (200

pixels), and 101 total landslides (276 pixels) have been

put onto the LSmaps prepared by the various methods.

The percentages of the existing landslide pixels within

the different landslide occurrence potential classes

were determined. It is determined that a significant

portion of all landslides (76% in the ANN, 83% in the

FR, 87% in the AHP and 89% in the FL method)

belong to the high and very high LS class. The

produced four susceptibility maps were also compared

using cross-correlation methods. The cross-correlation

coefficients were found to be 0.82, 0.70, 0.63, 0.54,

0.48, and 0.45 for AHP versus FR, FR versus FL, AHP

versus FL, AHP versus ANN, FR versus ANN, and FL

versus ANN maps, respectively. Here, the confidence

level is 0.95. The FR and AHP methods have been

assessed to be more suitable methods among other

used methods.

Keywords Landslide susceptibility � Frequency
ratio � Analytical hierarchy � Artificial neural
networks � Fuzzy logic

1 Introduction

Landslides cause a lot of loss of life in the world. At

the same time, landslides are damaging the environ-

ment. In some countries, landslides can cause more

lives and property losses than earthquakes, and floods

(Garcı́a-Rodrı́guez et al. 2008). Therefore, it is very

important to identify landslide sensitive areas and to

A. Ozdemir (&)

Department of Civil Engineering, Necmettin Erbakan

University, Konya, Turkey

e-mail: aozdemir3@hotmail.com

123

Geotech Geol Eng (2020) 38:4129–4157

https://doi.org/10.1007/s10706-020-01284-8(0123456789().,-volV)( 0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10706-020-01284-8&amp;domain=pdf
https://doi.org/10.1007/s10706-020-01284-8


make LS maps (Mohammady et al. 2010). Landslide

susceptibility (LS) mapping provide information to

the relevant executive administrations to locate the

landslide susceptible areas and make decisions about

preventive plans (Mahdavifar 1997). Particularly in

the last two decades, numerous methods have been

developed and applied in LS studies. In recent years,

LS methods combined with GIS have been used more

frequently. These methods are summarized by Guz-

zetti et al. (1999). In this study, FR, AHP, ANN and FL

methods have been used and compared for LS

mapping in Taşkent (Konya, Turkey) Basin.

There have been many studies using the frequency

ratios (FR) (Akgun et al. 2008; Dahal et al. 2008; Van

Westen et al. 2008; Vijith and Madhu 2008; Oh et al.

2009; Ozdemir 2009; Pirasteh et al. 2009; Youssef

et al. 2009; Pradhan and Youssef 2010; Regmi

et al.2010; Yilmaz 2010; and Ozdemir and Altural

2013) and AHP method (Barredo et al. 2000; Mwasi

2001; Nie et al. 2001; Yagi 2003; Gorsevski et al.

2006; Yalcin 2008; Intarawichian and Dasananda

2010) in LS studies The fuzzy set based methods

(Kanungo et al. 2008; Muthu et al. 2008; Pradhan et al.

2009; Pradhan 2010a, b), and ANNs methods (Mel-

chiorre et al. 2006, 2008; Chen et al.2009; Pradhan

et al. 2009; Pradhan and Lee 2010a, b; Poudyal et al.

2010; Pradhan and Pirasteh 2010; Pradhan and

Buchroithner 2010; Pradhan et al. 2010a, b; Yilmaz

2010) have been implemented for landslide suscepti-

bility zone (LSZ) studies. Although there are many

methods in use on the mapping of landslide suscep-

tibility, there is no consensus on the best method yet.

There are also many scientific studies on the

comparison of LS methods (e.g., Suzen and Doyuran

2004; Ayalew et al. 2005; Brenning 2005; Yesilnacar

and Topal 2005; Kanungo et al. 2006; Lee 2007;

Meisina and Scarabelli 2007; Yalcin 2008; Magliuloü

et al. 2009; Rossi et al. 2009; Yilmaz 2009;Miner et al.

2010; Poudyal et al. 2010; Pradhan and Lee 2010b, c;

Van Den Eeckhaut et al. 2010; Yilmaz 2010; Akgun

2012; Pradhan 2011; Yalcin et al. 2011; Mohammady

et al. 2012; Teimouri and Graee 2012; Zhu and Wang

2009; Ozdemir and Altural 2013;). For example, a

comparative study of WOE, AHP, ANN, and Gener-

alized Linear Regression procedures for LS mapping

is presented by the Vahidnia et al. (2009). Kanungo

et al. (2006) compared ANN, fuzzy combined neural

and fuzzy weighting procedures. Lee (2005a, b), Lee

and Sambath (2006), Lee and Pradhan (2007) and Oh

et al. (2009) compared logistic regression with a FR

approach and found out that logistic regression was

generally more accurate. Pradhan and Lee (2010a)

compared ANNs with FR and regression method.

Similarly, Yilmaz (2010) compared ANNs with con-

ditional probability, logistic regression and support

vector machine and found logistic regression to be the

most accurate. Nefeslioglu et al. (2008) compared

logistic regression with an artificial neural network

(ANN) and found that while the ANN has over-

predicted the susceptibility whereas the logistic

regression model has under-predicted. Paulin and

Bursik (2009) combined the logistic regression model

with an ANN in a GIS framework. Suzen and Doyuran

(2003) made a comparison of bivariate and multivari-

ate methods in the same study area.

The main objectives of the study are: (1) to prepare

LS maps of Taşkent Basin; (2) to evaluate, compare

and verify some LS mapping methods. In this study,

AHP, FR, ANN and FL methods were studied and the

results were compared; (3) to determine the best

methods for evaluating the LS in the research area, and

(4) to assess and map the LS areas based on the best

method of the considered methods.

2 Study Area

The research area is located approximately between

latitudes from 18� 060 0000 N to 18� 380 2400 N and

longitudes from 98� 040 1200 E to 98� 380 2400 E,

covering an area of about 80 km2 in the vicinity of

Taşkent, Konya (Fig. 1).

Based on the meteorological data of 22 years in the

vicinity of Taşkent region, In the region, the coldest

month is February with an average of 6.7 �C and the

hottest is August with 23.2 �C. The annual average

temperature of the study area is 17.9 �C. According to
precipitation measurements between 1975 and 2015, it

was determined that precipitation height ranged

between 587 and 700 mm. The annual average

precipitation of Taşkent town is 838 mm. Precipita-

tion usually falls in winter as snow and rain. In the

Taşkent basin, the topographic altitude ranges from

1063 m to 2111 m. Slope angles range from 0� to 63�
(average angle 19�). In the northern part of the Taşkent
basin, the aspect of the slope is in general to the north

and in the southern part of the basin to the north.

Dominant vegetation includes grapes and mixed
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deciduous trees below 1500 m, a mixed pine forest

from 1500 to 2000 m alternating with the hills, and an

evergreen forest that extends up to 2100 m.

3 Materials and Methodology

The methodology used in this study includes seven

steps: (1) Preparation of landslide inventory map of

the study area from field surveys; (2) Identification of

conditioning factors and the use of GIS to produce the

landslide conditioning factor maps; (3) Application of

various methods (FR, NN, FL and AHP) for the

mapping of LS; (5) Use of GIS to produce the LS

maps; (6) Testing reliability of the LS maps produced

in a location of Taşkent (Konya-Turkey) vicinity and;

(7) Comparison of results obtained from the LS maps.

In the following section, information about the

landslide inventory map, used in the investigation, and

the factors affecting the landslide formation, are given.

3.1 Preparation of Landslide Inventory Map

There was no landslide inventory map of the study

area. Landslide scars areas were mapped by field

studies. A total of 101 landslide areas (Table 1, Fig. 2)

and 37 non-landslide areas were mapped and used in

this study. Landslides combined cover an area of

72913 m2, accounting for 0.09% of the total study

area. The minimum, mean and maximum landslide

areas are 18 m2, 904 m2 and 20419 m2, respectively.

The polygonal areas of landslides and non-landslides

were converted into points using GIS software. This

resulted in 377 points (276 points for landslides and

101 points for non-landslides). 76 random numbers

were generated between 1 and 276, and the landslide

point numbers corresponding to these generated

numbers were used as the test landslides. Similarly,

38 random numbers were generated between 1 and

101, and the non-landslide point numbers correspond-

ing to these generated numbers were used as the test

non-landslide points (Table 2). In other word, the

landslide and non-landslides points were randomly

sampled from the inventory. In the FR, AHP and FL

methods, 276 landslide points (200 for analysis and 76

for testing) have been used. In the ANN method, 263

points (200 landslide and 63 non-landslide points) for

training and 114 points (76 landslide and 38 non-

landslide points) for testing have been used.

3.2 Selected Landslide Conditioning Factors Used

in the Susceptibility Mapping

The causes of landslides are directly or indirectly

related to slope angle, slope aspect, stream power

index, topographic wetness index, sediment loading

factor, geology, distance from drainage system,

distance from lineament, and land use (Poudyal et al.

2010). In this study, 14 factors which are considered to

be effective in landslide formation were selected and

used. These are elevation, slope gradient, slope aspect,

plan curvature, profile curvature, sediment loading

capacity index, stream power index, wetness index,

drainage density, distance to the drainage, geology,

Fig. 1 Location map of study area

123

Geotech Geol Eng (2020) 38:4129–4157 4131



Table 1 Coordinates of landslide points in the study area

ID Area (m2) X Y ID Area (m2) X Y

1 4354 455,669 408,6280 51 1230 456,762 408,7710

2 452 455,019 408,641,0 52 782 456,875 408,764,0

3 558 455,088 408,640,0 53 985 456,787 408,791,0

4 104 455,419 408,645,0 54 718 456,921 408,788,0

5 657 455,471 408,648,0 55 1254 457,313 408,755,0

6 834 455,538 408,652,0 56 806 457,364 408,760,0

7 283 455,579 408,654,0 57 599 457,387 408,767,0

8 411 455,626 4086540 58 1028 457425 408,775,0

9 947 455,660 408,657,0 59 574 457,120 408,809,0

10 20419 455,751 408,671,0 60 5142 457,320 408,807,0

11 740 455,653 408,687,0 61 2402 457,349 408,849,0

12 1623 455,715 4086900 62 922 457,645 408,839,0

13 341 455,789 408,690,0 63 7652 457,844 408,848,0

14 1783 455,882 408,688,0 64 1608 457,604 4088610

15 698 455,545 408,678,0 65 561 457,636 408,878,0

16 173 455,571 4086710 66 680 457,922 408,868,0

17 182 455,562 408,673,0 67 762 457,983 408,875,0

18 73 455,588 408,673,0 68 547 458,001 4088820

19 54 455,597 408,674,0 69 461 455,120 408,508,0

20 52 455,578 408,674,0 70 120 454,875 408,489,0

21 54 455,614 4086730 71 53 454,826 408,459,0

22 108 455,597 408,671,0 72 190 454,640 408,452,0

23 149 455,623 408,671,0 73 258 454,580 408,363,0

24 52 455,640 4086720 74 153 453,147 408,390,0

25 45 455,655 408,671,0 75 269 453,283 408,547,0

26 54 455,645 408,674,0 76 103 453,420 408,475,0

27 42 455,628 408,674,0 77 45 454,962 408,686,0

28 18 455,556 408,675,0 78 35 454,245 408,714,0

29 38 455,593 408,676,0 79 72 451,737 408,809,0

30 40 455,610 408,676,0 80 120 450,351 408,777,0

31 52 455,631 408,678,0 81 24 450393 408,783,0

32 60 455,624 408,677,0 82 36 452,905 408,764,0

33 139 455,644 408,677,0 83 79 452,865 408,765,0

34 98 455632 408,675,0 84 94 451,906 4087830

35 27 455,618 408,674,0 85 39 451,878 408,794,0

36 137 455,585 408,679,0 86 81 451,850 408,796,0

37 89 455,605 408,680,0 87 67 457,197 4087490

38 160 455,624 408,681,0 88 111 455,622 408,474,0

39 1496 455,830 408,701,0 89 172 455,553 408,427,0

40 929 455,947 4086980 90 28 456,466 408,381,0

41 1185 456,042 408,706,0 91 50 456,182 408,374,0

42 1660 455,973 408,711,0 92 133 456,433 408,378,0

43 1628 456,140 408,721,0 93 515 446,740 408,613,0

44 1999 456,239 408,712,0 94 40 446,399 408,612,0

45 1211 456,376 408,732,0 95 55 453,988 4087210
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fault density, distance to the fault and land use/land

cover. Some of the landslide conditioning factors were

derived from the geology map. The geology and land

use maps are prepared by digitizing the hard copy

maps manually.

3.2.1 DEM and Its Derivatives

The DEM was prepared by digitizing topographic

maps of the area. Some landslide conditioning factors,

such as elevation, slope aspect, slope angle, plan, and

profile curvature, sediment loading factor, wetness

index and stream power index were derived from the

DEM.

3.2.1.1 Elevation Due to the fact that precipitation,

freezing and thawing phenomena are higher, more

landslides can occur in high altitude areas (Menendez

Duarte and Marqinez 2002; Lin and Tung 2003).

However, due to the presence of more durable

lithologies in high altitude terrain, sometimes fewer

landslides can also occur in these areas. (Dai and Lee

2002; Zhou et al. 2002; Cevik and Topal 2003;

Ayalew et al. 2004; Lan et al. 2004). Some researchers

have suggested that topographic height has little

contribution to the formation of landslides (Guzzetti

et al. 1999; Lineback Gritzner et al. 2001; Ayalew and

Yamagishi 2005). However, in the investigated area,

there are higher strength lithologies in the high land

Table 1 continued

ID Area (m2) X Y ID Area (m2) X Y

46 956 456,624 408,737,0 96 88 453,528 408,749,0

47 824 456,678 4087500 97 71 453,483 4087560

48 648 456,722 408,759,0 98 115 453,476 408,760,0

49 704 456,631 408,766,0 99 158 452,806 408,499,0

50 9622 456,592 408,783,0 100 212 452,104 408,425,0

101 50 451,905 408,441,0

Fig. 2 Landslide inventory map
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sections. The range of elevation is from 1063 to

1961 m, gradually increasing from North-East to

South-West (Fig. 3a). Landslides below 1508 m are

dominant (94%) for lithology of the geological units

that have clay compositions.

3.2.1.2 Slope The slope angle is the main factor in

the formation of landslides (Lee and Min 2001;

Fernandez et al. 2008; Mousavi 2017). The high

slope angle produces a high shear force, which makes

it easier to slip (Jones et al. 1961). Therefore, slope

angle is considered as a factor controlling the

formation of the landslide in the susceptibility

studies (Dai et al. 2001a, b; Cevik and Topal 2003;

Lee 2005a; Yalcin 2008; Nefeslioglu et al. 2008). The

slope angle map was prepared for angles ranging from

0� to 63� (Fig. 3b).

3.2.1.3 Slope Aspect Some authors reported that the

slope aspect is the important factors in preparing LS

maps (Guzzetti et al. 1999; Nagarajan et al. 2000; Saha

et al. 2002; Cevik and Topal 2003; Lee et al. 2004; Lee

2005a). In the northern hemisphere, the north-facing

slopes have less sunshine, and as a result, these slopes

can be colder. On these slopes, snow can melt more

slowly and as a result of this, the infiltration of water

into the soil may be more (Mousavi 2017). For these

reasons, the slope aspect is considered as an effective

factor in the formation of landslides (Clerici et al.

2006). In this study, the slope aspect map of the

investigated area was produced and used for LS

analysis (Fig. 3c).

3.2.1.4 Plan and Profile Curvature Ercanoglu and

Gokceoglu (2002) defined that ‘‘the term curvature is

generally defined as the curvature of a line formed by

the intersection of a random plane with the terrain

surface. A value of positive, negative and zero

curvature indicate that the surface is upwardly

convex, concave and flat at that pixel, respectively.

In this study, plan and profile curvature raster maps,

produced from DEM were classified in two classes as

positive and negative curvature areas (Fig. 3d, e). In

the Taşkent Basin, it was determined that the

landslides occur more in negative curvature areas.

3.2.1.5 Sediment Transport Capacity (STI), Stream

Power Index (SPI), and Topographical Wetness Index

(TWI) These indices are hydrological based terrain

indices. Detailed information about these indices is

given in Wilson and Gallant (2000) and Saaty and

Vargas (2001). Details about the use of these indices in

susceptibility maps are given by Pradhan (2010a, b, c),

Yilmaz (2010) and Gritzner et al. (2001).

The STI index is used to express the erosion power

of surface runoff water. This index gives information

about the degree of soil erosion. The values of STI are

found to vary between 0 and 232 and STI map is

classified into five classes (Fig. 3f). SPI gives infor-

mation about the eroding power of flowing water from

the stream (Moore et al. 1993). The values of SPI are

found to vary between 0 and 23420 and SPI map is also

classified into five classes (Fig. 3g). TWI provides

information on where more surface water can be

collected (Nefeslioglu et al. 2008).

Table 2 Polygone and point landslide numbers and its percent in this study used

Polygone numbers Polygone numbers (%) Point (cell) numbers Point (cell) numbers (%)

Training landslides (A) 43 42.5 200 72.5

Test landslides (T) 58 57.5 76 27.5

Total landslides 101 100 276 100

Training nonlandslides (AN) 22 38.6 63 62.4

Test nonlandslides (TN) 15 40.5 38 37.6

Total non-landslides 37 100 101 100

cFig. 3 Some factor maps that affect landslide formation:

a elevation; b slope; c slope aspect; d plan curvature; e profile
curvature; f sediment loading factor; g stream power index,

h wetness index; i drainage density and j distance to drainage
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3.2.2 Proximity Maps (Distance to Drainage

and Distance to Faults)

Two proximity-based factors evaluated in this study:

distance to drainage lines and faults. As you approach

the drainage lines, the water content of the slope

material increases, and even becomes saturated with

water. Again, as the drainage lines approach, the

erosion increases in the slope toe. For these reasons,

drainage lines may adversely affect slope stability

(Gokceoglu and Gokceoglu 1996; Dai et al. 2001a;

Saha et al. 2002). The drainage lines used in the study

were extracted with GIS software (Tarboton 2003). In

the investigated area, the distance to the drainage lines

varies between 0 and 916 m (Fig. 3j). The disconti-

nuity of the slope material increases in the areas close

to the faults. The more discontinuities in the slope

material, the easier the slope will slide (Van Westen

and Bonilla 1990; Pachauri and Pant 1992; Luzi and

Pergalani 1999; Uromeihy andMahdavifar 2000; Saha

et al. 2002). On the other hand, fault density and

distance to faults affect the seismicity of the region.

Especially in area with active faults or in area close to

active faults, landslides may occur depending on the

triggering of earthquakes (Mousavi et al. 2011;

Mousavi et al. 2018). For this reason, seismicity of

the region can also be evaluated as a factor in slope

susceptibility studies especially in tectonically active

regions. However, the study area is located in the

region of lower seismicity in Turkey. Therefore,

seismicity was not considered as a factor in this study.

The faults have been drawn from the geological map.

In the map of proximity to the faults, the distance

values were found to be between 0 and 2233 m

(Fig. 4b).

3.2.3 Density Maps (Fault and Drainage Density

Maps)

Density maps, such as fault and drainage density

maps, are a major parameter in LS analysis. They are

generally used in producing LS maps (Pachauri et al.

1998, and Nagarajan et al. 2000). Drainage density

was considered as an influential parameter (Suzen and

Doyuran 2004; Melchiorre et al. 2010) in this study.

Drainage lines are extracted from the DEM. The

drainage density map was produced by calculating the

cumulative lengths of stream segments of the drainage

network falling within unit areas of 1 km2. They are

grouped into five classes (Figs. 3i, 4a).

3.2.4 Land Use Map

Land use is the most commonly used human-induced

factor on the slope instability (Tangestani 2004;

Begueria 2006). This map is generally used in

producing LS maps. This map provides information

about the land cover. Again, this map provides

important information about the purpose of the land

use. Several researchers (Jakob 2000; Tangestani

2004; Begueria 2006; Bathurst et al. 2010) have

revealed a clear relationship between vegetation cover

and slope stability, especially for shallow landslides.

Slopes lacking vegetation are more unstable than

forest areas (Anbalgan 1992; Turrini and Visintainer

1998; Cannon 2000; Nagarajan et al. 2000; Dai et al.

2001a; Glade 2003).Land cover and land use are

thought to be an effective factor in landslide forma-

tion. Therefore, this factor was chosen and evaluated

in this study on LS. This map was prepared using Land

Use (wealth, richness) map of Konya Province. The

land use map is classified as follows: ‘‘residential

area’’, ‘‘forest’’, ‘‘rocky land’’, ‘‘pasture land’’, ‘‘irri-

gated agriculture land’’, and ‘‘dry agriculture land’’

(Fig. 4c).

3.2.5 Geology of the Study Area

Lithology and structure are very important in the

formation of landslides. Many researchers have used

geology and structure as a factor in LS analysis

(Anbalgan 1992; Pachauri et al. 1998; Dai et al. 2001a;

van Westen et al. 2003; Ayalew and Yamagishi 2005;

Ayenew and Barbieri 2005; Ermini et al. 2005; Lee

and Talib 2005).

Distribution of the geological units-formations is

given in Fig. 4d. In the Tashkent region, the age of the

rocks varies between Upper Devonian and Quater-

nary. The investigated region geologically consists of

volcanic, metamorphic and sedimentary rocks. The

detailed study of the geology of the Taşkent basin has

been given by Turan (1990).

cFig. 4 Some factor maps that affect the landslide formation:

a fault density; b distance to fault; c land use and d geological

map
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Bedrock in the region is represented by rocks of

Gevne Group (Upper Devonian to Lower –Middle

Triassic sedimentary rocks), Sinatdağı Group (Upper

Permian to Upper Cretaceous), Hocalar Group (Tri-

assic) and Taşkent Group (Mesozoic to Paleocene).

These rock sequences are separated by thrust faults.

Gevne Group is sub-divided into six formations as

Asarlık Yaylasi, Yarıcak, Arpalık, Kuşakdağı, Gök-
çepınar and Göztaşı Formations. The Asarlık yaylası
formation (Da) and its member, the Gölboğazı Lime-

stone (Dag), are the oldest units in the study area. The

Lately–Devonian aged Asarlık Yaylası formation

consists of sedimentary units, such as dolomitized

limestone, sandstone with quartzite, grey and black

shale and white limestone. The Yarıcak Formation

(Cy, Carbiniferous) and its member, Kirazpınarı
limestone (Cyk, Carboniferous), conformably overlies

to the Asarlık yaylası Formation. The formation

consists of grey-black limestone and an alternating

sequence of limestone with sandy, sandstone and

limestone. This formation is mapped eastern parts of

the investigated area. Yarıcak formation is overlain by

the Arpalık Formation (Pa). Arpalık Formation

(Lower Permian) mainly consists of greenish-yellow

medium to thick limestone bedding with fossils,

reddish-black yellow sandstone with quartzite. It is

conformably overlain by the Kuşakdağı Formation

(Upper Permian). Kuşakdağı Formation (Pk) consists

of medium to thick, jointed, hard, grey-black lime-

stone beds, sandy shale, sandy limestone and sand-

stone with quartzite. As can be seen from Fig. 4d, 35%

of the total surface of the study area is covered by this

formation. Gökçepınar Limestone (Lower Triassic)

conformably overlies to the Kuşakdağı Formation.

The Gökçepınar Limestone (Trg) is composed of grey

and purple limestone beddings. Gökçepınar Lime-

stone is observed in south western part of the study

area. This formation is overlain by the Göztaşı
Formation (Trgt, Lower-Middle Triassic). Gevne

Group is thrusted over the Sinatdağı Group. Sinatdağı
Group is sub-divided into five formations as Kahtepe

Formation (Upper Permian), Kartallıca Limestone

(Triassic), Sinatdağı Formation (Jurassic-Lower Cre-

cacous), Türbetepe Limestone (Upper Cretaceous)

and Söğütyayla Formation (Upper Cretaceous). Kah-

tepe Formation (Pka) consists of dark grey, partly

oolitic and dolomitize limestone, shale and sandstone

with limestone intercalations. Kartallıca Limestone

unconformably overlies the Kahtepe Formation.

Kartallıca Limestone (Trk) is formed of grey, purple

crystallized limestone beds. The Sinatdağı formation

(Tod) of Jurassic Lower Crecacous unconformably

overlies the Kartallıca Limestone and consists of

sedimentary units such as reddish sandy and muddy

conglomerate, sandstone, siltstone, andmudstone. The

Sinatdağı Formation (Jks) starts with a basal con-

glomerate on an erosional surface of pre-Jurassic rocks

and continues upward with an alternation of various

lithologies such as sandstone, siltstone, and mudstone.

The conglomerates are grey- and yellow in colour.

Pebbles are rounded to sub-rounded. At the top, it is

overlain unconformably by Türbetepe limestone (Kt).

Söğütyayla formation (Krus) starts with detrital sed-

iments, laminated mudstone, conglomerate, sand-

stone, shale and dark grey clayey mudstone and

continues upward with an alternation of mudstone and

sandstone beds. At the top, it mainly consists of a

flysch matrix and limestone olistolites. Sinatdağı
group is thrusted over the Hocalar group. Hocalar

Group is sub-divided into two formations as Zindancık
meta-olistostrome-limestone blocks (Trhzb, Triassic)

and Kayraktepe Quartzite (Trhk). The Triassic meta-

olistostrome and limestone rocks mainly consist of a

flysch matrix and limestone olistolites. The flysch

matrix is also composed of meta-sandstone, phyllite

and slate with quartzite, chlorite, marble, sandy

mudstone, and recrystallized limestone. Kayraktepe

quartzite mainly consists of dark grey, reddish

quartzite and siltstones. Hocalar Group is thrusted

over the Taşkent Group. Taşkent Group are sub-

divided into three formations as Dedemli (Md, Meso-

zoic), Korualan (Mk, Mesozoic) and Taşkent ofiolitic

complex (Kpt, Upper Cretaceous-Paleocene).

Dedemli formation is formed of the various rocks

such as tuff, tuffite, basic volcanic, limestone, and

chert. Hocalar Group is tectonically overlies the

Dedemli formation. Korualan formation starts with a

medium to thick beds of limestone, clayey limestone

intercalations, and continues upward with an alterna-

tion of various lithologies such as white dolomite and

dolomitic limestone. At the top, it mainly consists of

nodular cherty limestones. This formation is thrusted

over the Hocalar group. The Taşkent Melange rocks

mainly consist of a flysch matrix, serpentine, pyroc-

senite, chert and limestone olistolites. The flysch

matrix is also composed of sandstone and mudstone

intercalations and conglomerate. The Taşkent Mel-

ange were folded and fractured. The rocks are
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intensively fractured. Quaternary alluvial discordantly

overlie the Taşkent Melange rocks (Fig. 4d).

3.3 Susceptibility Mapping Models Used

In this paper, four different methods, FR, FL, AHP,

and ANN, were applied to LS mapping analysis and

their performances were compared. Details of these

applications have been presented below.

3.3.1 Frequency Ratio (FR) Model

Bonham-Carter (1994) and Lee and Pradhan (2007)

have been described Frequency Ratio (FR) method as

follows ‘‘the ratio of relative frequency of landslide

cells in a category (NLi/NL) to the relative frequency of

all landslide cells in the area (NCi/NC).

FR ¼ ðNLi=NLÞ=ðNCi=NCÞ ð1Þ

where NLi is the number of landslide cells in the class i.

NL is total number of landslide cells. NCi is the total

number of cells in the class i. NC is the total number of

cells.

FR values greater than 1 indicate that landslide

formation is high. FR values were calculated for each

class of each factor (Table 3). Values of the FR were

than summed to calculate the LS index (Lee and

Pradhan 2007). Produced LS map was given in

Fig. 5a.

3.3.2 Analytic Hierarchy Processes (AHP)

The Analytic Hierarchy Process (AHP) is developed

by Saaty (1980). Daneshvar and Bagherzadeh (2010)

has been determined that ‘‘AHP is a multi-objective,

multi-criteria decision-making approach to arrive at a

scale of preference among a set of alternatives.’’

Yalcin (2008) describes the use of this method as

follows: ‘‘this method is widely used in site selection,

suitability analysis, regional planning, and landslides

susceptibility analysis.’’ Factor weights for each

criterion are determined by a pairwise comparison

matrix as described by Saaty (1990, 1994) and Saaty

and Vargas (2001). The detailed information for the

application of the AHP for LS mapping was given by

Barredo et al. (2000), Mwasi (2001), Nie H et al.

(2001), Yagi (2003), Yalcin (2008), Moradi et al.

(2012) and Teimouri and Graee (2012).

According to the Voogd (1982) the steps of the

method are as follows: ‘‘(1) the complex unstructured

problem is broken down into its component factors.

The 14 landslide conditioning factors were chosen in

this study; (2) each factor is classified into sub classes

based on their relative influence on landslide; (3) the

relative importance of each class of factors is quan-

titatively determined by pairwise comparison; (4) the

weights of each class on each factor are calculated; (5)

the weights of all of the factors are calculated; (6)

values of the landslide susceptibility index (LSI) for

each considered factor is calculated by summing each

factor’s weight multiplied by the class weight of each

referred factor (for that pixel).’’

The obtained weights of conditioning factors (Wj)

and the ratings (wij) of various classes are also given in

Table 3. The LSI map is established according to

Eq. 1. In this study, the CR is found to be 0.068, a ratio

which indicates a reasonable level of consistency in

the pair-wise comparison that was good enough to

recognize the factor weights (Intarawichian and

Dasananda 2010). For all the cases of the gained class

weights, the CRs are less than 0.1, a ratio which

indicates a reasonable level of consistency in the pair-

wise comparison that was good enough to recognize

the class weights (Pourghasemi et al. 2012; Intar-

awichian and Dasananda 2010).

LSI ¼
Xn

i¼1

Wi � Rið Þ ð2Þ

where LSI is the landslide susceptibility index of a

given pixel, Ri and Wi are the class weights. The

factor weights are given in Table 3. The produced LS

map is given in Fig. 5b.

3.3.3 Artificial Neural Network (ANN) Method and Its

Implementation

The multi-layer ANN model is typically composed of

three types of layers: input hidden, and output layers.

ANN algorithms calculate the weights for the input

values and for the layer nodes of input, hidden and

output layers by introducing the input in a feed

forward manner, which propagates through the hidden

layer to the output layer (Pajanowski et al. 2002). The

hidden layer gives an ‘‘activation function. It trans-

forms the sum of the input data into feature using one

of many possible functions, including exponential,
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sine, logistic (sigmoid), hyperbolic, and square root.

The Multi-Layer Perceptron (MLP) with a feed-

forward Back-error Propagation (BP) type of learning

algorithm is a commonly used and are widely avail-

able neural network structure in the geospatial analysis

(Pradhan et al. 2010a). Modelling of complex and

nonlinear functions can be done through MLPs

(Mousavi et al. 2016). The BP algorithm randomly

selects the initial weights, and then compares the

calculated output for a given observation with the

expected output for that observation (Pajanowski et al.

2002). The differences between the expected and

calculated output values across all observations are

summed up using a loss function. After all observa-

tions are presented to the network, the weights are

modified according to a generalized delta rule

(Rumelhart et al. 1986), so that the total error is

distributed among the various nodes in the network.

These processes of feeding forward the features and

back-propagating the errors are repeated iteratively (in

some cases, many thousands of times) until the error

stabilizes at a low level (Pajanowski et al. 2002).

According to the Chauhan et al. (2010) ‘‘there are

three stages involved in ANN data processing for a

classification problem: the training stage, the weight

determination stage, and the classification stage. The

training process is initiated by assigning arbitrary

values to the connection weights which are constantly

updated until an acceptable training accuracy is

reached.’’ The details of the method were given by

Paola and Schowengerdt (1995), and Atkinson and

Tatnall (1997).

The method was used to the determination predic-

tion of LS in four phases: (1) designing of the network

and preparing the inputs data; (2) training the network

using the training set; (3) testing the network using the

test data set; and (4) using the information from the

neural network to forecast landsliding. For this study,

the neural networks were constructed using the neural

network toolbox of MATLAB (Pao 1999).

In this study, similar to the earlier studies (e.g.,

Nelson and Illingworth 1990; Haykin 1994; Masters

1994; Dowla and Rogers 1995; Looney 1996;

Swingler 1996; Chauhan et al. 2010), we used 70%

of the samples in the dataset as the training and 30% as

the test sets.. The dataset consisted of 377 points

denoting the presence and the absence of landslides.

263 points (200 landslide and 63 non-landslide

points), 70% of the dataset) were kept for training

(Table 2). The MLP_BP learning algorithm is pre-

ferred for the analyses. Learning rate and momentum

factor were selected as 0.01 and 0.9, respectively

(Polykretis and Chalkias 2018).

Detailed information on the application of the

method to LS studies can be obtained from Aleotti

et al. (1996), Mayoraz et al. (1996), Lee et al. (2001),

Fernandez-Steeger et al. (2002), Ermini et al. (2005)

and Bartolomei et al. (2006).

In this study, 14 inputs, 28 hidden, and 1 output

neuron structure has been used for the network

(Fig. 6). The initial weights were randomly selected.

The numbers of epochs in the software were set to

2000, and the root mean square error (RMSE) goal for

the convergence criterion was set to 0.01. All of the

iterations satisfied the 0.01 root mean square error

condition with 2000 epochs. After the training, the

model become ready to be used for the study area.

Finally, the LS map was prepared using the training

set (Fig. 5d). The values were classified and grouped

into four equal areas (first highest 10%, second highest

10%, third highest 20% and the remaining 60%) for

visual interpretation. Some properties related to the

application of artificial neural networks are also given

in Table 4.

5000 points were randomly generated for the study

area. The produced 5000 points were crossed with 14

factor maps and values of 5000 points on the factor

maps have been determined. The newly determined (=

5000 9 14) 70000 data points were used in the

simulations performed by the trained network. The

sensitivities of the landslides corresponding to 5000

points were determined from the artificial neural

network. The determined 5000 data points were

interpolated to create a LS map (Fig. 5d). LS map

was classified into 4 classes of LS regions: very low

(no LS), low, medium and high.

3.3.4 Fuzzy Logic (FL) and Its Application

to Landslide Susceptibility

In this paper, LS in the basin of Taşkent was also

examined using fuzzy logics. For this purpose,

reasoning engine named Mamdani has been utilized.

Using the factors controlling the formation of

Fig. 5 Landslide susceptibility maps a FR model; b AHP

model; c FL model; and d ANN model
b
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landslides given above, LS map is also created by

Fuzzy Logic (FL) model. The analyses were per-

formed using MATLAB fuzzy toolbox and GIS

software.

According to the Karkazi et al. (2001) ‘‘in order to

solve a problem using a knowledge-based fuzzy

system, it is necessary to describe and process the

influencing factors in Fuzzy terms and provide the

result of these processes in a usable form.’’ The

application steps of this method are given by Mendel

(1995) as follows: ‘‘The basic elements of a knowl-

edge-based FL consist of four major parts: (1) fuzzier,

Table 4 ANN model

characteristics used
Number of hidden layer nerons used 28

Input layer data EGS (263 9 14)

Output layer data ECS (263 9 1)

Training function TrainLM

Adaptation learning MSE

Number of layers 3

Transfer function LOGSIG

Used data EGS: 263 and ECS: 263

Fig. 6 Input and output layers of the ANN network
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(2) rules, (3) inference engine, and (4) defuzzifier.

Firstly, a crisp set of input data are gathered and

converted to a fuzzy set using fuzzy linguistic

variables, fuzzy linguistic terms and membership

functions. The assignment of a membership function

to every variable of the problem is called fuzzification

process.’’ The concept of the linguistic variable

illustrates particularly and clearly how fuzzy sets can

form the bridge between linguistic expression and

numerical information (Karkazi et al. 2001). This step

is known as fuzzification. Membership functions are

used in the fuzzification and defuzzification steps of a

FLS, in order to map the non-fuzzy input values to

fuzzy linguistic terms and vice versa. A membership

function is used to quantify a linguistic term. There are

different forms of membership functions such as

triangular, trapezoidal, piecewise linear, Gaussian, or

singleton (Saraswathi and Senthil 2017). However, the

most common types of membership functions are

triangular, trapezoidal, and Gaussian shapes. The type

of membership function can be context dependent and

is generally chosen arbitrarily according to the user

experience (Mendel 1995). The functions used in the

production of Fuzzy membership values are given in

Eastman (2006).

In this study, the triangle shape was selected for all

the membership functions after several trials and

errors to find out the best function shape. Using the FR

coefficients and the identified landslides, the fuzzy

membership functions were constructed. The second

step in this method is to determine how the inputs and

outputs are connected to each other. A fuzzy rule is a

simple IF–THEN rule with a condition and a conclu-

sion. The evaluations of the fuzzy rules and the

combination of the results of the individual rules are

performed using fuzzy set operations.’’ Zimmerman

(1996) discussed a variety of combination rules, and

Bonham-Carter (1994) discussed five operators,

namely the fuzzy and, fuzzy or, fuzzy algebraic

product, fuzzy algebraic sum and fuzzy gamma

operator. The mostly- used operations for OR and

AND operators are max and min, respectively (Men-

del 1995). This study uses the fuzzy OR operator for

combining the fuzzy membership functions. After the

inputs were fuzzified, If–Then rules have been

assigned (Riad et al. 2011). These if–then rule

statements are used to formulate the conditional

statements that comprise fuzzy logic (Pao 1999). 112

rules (if–then) were assigned in this study, Fuzzy OR

operator was used in all the rules. After the inference

step, the overall result should be defuzzified to obtain a

final crisp output. Defuzzification is performed

according to the membership function of the output

variable (Alreshoodi et al. 2015). There are different

algorithms for defuzzification. The frequently used

algorithms are Center of Gravity, Center of Gravity for

Singletons, Left Most Maximum, and Right Most

Maximum (Mendel 1995). The most popular defuzzi-

fication method which was also applied in here is the

centroid calculation which returns the center of the

area under the curve. As a result of the analysis, a map

showing the calculated fuzzy values was provided.

These fuzzy values have been ‘‘defuzzyfied’’ into

different LS levels. Defuzzyfication means to translate

the calculated fuzzy values back to the ‘‘real world’’

(Schernthanner 2007). In LS mapping, fuzzy logic

defines the instability factors as members of a set

ranging from 1, expressing the highest susceptibility,

to 0, expressing no susceptibility of landsliding,

allowing different degrees of membership (Schern-

thanner 2007). Finally, the produced map (Fig. 5c)

was compared with the existing landslide location map

for verification of the prediction accuracy.

4 Validation of the Models

The validity of the produced LS maps was checked by

test landslides which were not used in the production

of LS maps. Again, the Receiver Operating Charac-

teristics (ROC) curves method was used in the

comparison process. As a result of this comparison,

the performances of the LS maps produced by

different methods were determined.

ROC values are obtained by plotting the cumulative

True Positive Rates (TPR = sensitivity) versus False

Positive Rate (FPR = 1–specificity) for each model

(Marjanovic and Caha 2011). Figure 7 shows the ROC

curve of the FR, FL, AHP and ANN model. The AUC

values of the ROC curve obtained from FR, ANN,

AHP, and FL models were found to be 0.926, 0.916,

0.899, and 0.842, respectively, with estimated stan-

dard errors between 0.023 and 0.039 (Fig. 7, Table 5).

LS map produced with FR model has higher accuracy.

The models evaluated in this study had a quite

reasonable performance considering the results of

the similar studies available in the literature (Kanungo

et al. 2006; Oh and Lee 2010; Pradhan and Lee
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2010a, 2010b; Yilmaz 2010). Obtaining a relatively

better results using the FR method (AUC of 92.6%)

compared to the other methods is also in agreement

with previous studies.

The accuracy of the LS maps has been also checked

by overlaying them with the landslide inventory map.

Locations of landsides have been intersected with the

susceptibility maps and the number of coincident

landslides was determined for each susceptibility

class. A landslide was classified as the ‘‘correct’’

prediction when at least a part of it was located within

a high or very high probability zone (Dai and Lee

2002). Otherwise, the prediction was considered as the

‘‘wrong’’ one. The 58 test landslides (76 pixels), 43

training landslides (200 pixels), and 101 total land-

slides (276 pixels), were overlaid onto the LS maps

produced, and the existing landslide pixels within the

different landslide occurrence potential classes were

determined. The results of these inspections are given

in Fig. 8. The results obtained by overlaying the

predicted LS maps produced by AHP, FR, FL, and

ANN methods onto all existing landslides, indicated

that 87%, 83%, 89%, and 76% of the observed

landslides were concentrated in the high and very high

LS classes, respectively (Fig. 8). For the test land-

slides, these percentages were 74%, 60%, 87%, and

33% for AHP, FR, FL, and ANN methods, respec-

tively. During the validation process, it was shown that

93%, 91%, 89%, and 93% of the training or analysis

landslides were predicted correctly, as shown in

Fig. 8. Poudyal et al. (2010) found that the accuracies

of the LS maps produced by the frequency ratio and

neural networks methods had been 82.21 and 78.25%,

Fig. 7 ROC curves of the FR, FL, AHP and ANN model

Table 5 Area under the

curve

a Under the nonparametric

assumption; b Null

hypothesis; true area = 0.5

Test result variable(s) Area SEa Asymptotic sig.b Asymptotic 95% CI

Lower bound Lower bound

AHP 0.899 0.029 0.000 0.842 0.955

FR 0.926 0.023 0.000 0.880 0.972

FL 0.842 0.039 0.000 0.766 0.918

ANN 0.916 0.025 0.000 0.868 0.965

Fig. 8 The distribution of the produced landslide susceptibility

classes of test, analysis and all landslides
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respectively. In addition, the validation results of the

study by Mohammady et al. (2012) showed that ‘‘the

prediction accuracy of the Frequency Ratio, Demp-

ster–Shafer, and Weights of Evidence models had

been 80.13%, 78.32%, and 74.60% respectively.’’ In

the determination of landslide sensitivity, The FR

method was found to be reliable.

The LS maps produced by different models have

also been compared with each other (Table 6). Pear-

son’s correlation coefficients for AHP versus FR, AHP

versus FL, and AHP versus ANN were found to be

0.82, 0.63, and 0.54, respectively. The correlation

coefficients were found to be 0.70 and 0.48 for FR

versus FL and FR versus ANNmaps, respectively. The

correlation coefficient was found to be 0.45 for FL

versus ANN map. Interpretations of correlation coef-

ficients are given by ILWIS, (2001). According to this

definition, if the correlation coefficient is between

0–0.2, 0.2–0.4, 0.4–0.7, 0.7–0.9, and 0.9–1, the

correlation is evaluated as very weak, weak, medium,

high and very high, respectively. As can be seen from

the results, there are high correlations between the

maps produced by FR-AHP, and FR-FL methods. The

susceptibility map produced by the ANN model was

compared with the susceptibility maps produced by

other models. As a result of this comparison, the

relationship was found to be weak. It is evaluated that

the low number of landslides (the small of the training

set) can be effective in the poor performance of the

ANN method. Detailed information on increasing the

performance of the ANNmethod can be obtained from

Mousavi et al. (2016) and Pradhan and Lee (2010a).

However, when the LSmap produced by the FRmodel

was compared with the sensitivity maps produced with

other models, it was found that the correlation

coefficient was high.

5 Results and Discussions

In this study, four models: (1) the FR, (2) the AHP, (3)

the ANN, and (4) the FL have been used to derive the

relationships between the landslide distribution and

the landslide conditioning factors. The existing and

produced landslide inventory maps were compared to

each other for the verification of the results. Details of

this LS map comparison have been described and

given below (Fig. 9a–n).

Many landslides occurred at the elevations between

1063 and 1508 m, concentrated at elevations between

1063 and 1317 m (Fig. 9a). There are no or few

landslides at elevations between 1508 and 1961 m.

The results were dependent on the geology of the

investigated area. In this area, the elevation is in a

range of 1063–1508 m. The rocks in this area are

generally volcanic rocks with high strength.

Many landslides occurred in the study area at slopes

between 14� and 33� (Fig. 9b). There are no or few

landslides at gentle (slope angle\ 6�) and steep

slopes (slope angle[ 43�). Due to the small shear

stresses, landslides are less common on the gentle

slopes (Lee and Talib 2005). The shear stresses

increase with increasing slope angle. On very steep

slopes, there is generally no soil; there is a high-

strength rock.

Therefore the landslide susceptibility of these

slopes are low (Jones et al. 1961; Pradhan 2010a, b).

The 14�–33� slope categories were the most unsta-

ble areas in the study area. It can be explained by the

fact that most of the geological units with low strength

were outcropped at slope angles between 14� and 33�.
Based upon the landslide distribution, the slopes

facing South (113–203) and North (293–338) were

considered being prone to landslides more than the

others. This condition may be caused by the humidity

(Fig. 9c).

Profile curvature affects the acceleration and

deceleration of flow across the surface (Fig. 9e). Plan

curvature affects the convergence and divergence of

flow across the surface (Fig. 9d). The landslides in the

study area typically had more tendencies to occur in

curvature areas with a negative plan (convergence)

and with negative profile (convex). The convex areas

in the study possess higher LS values than the other

areas possess due to curvature. Convex slopes can be

exposed to repeated dilation and contraction of loose

debris on an inclined surface that can induce creeping

Table 6 Matrix of correlation coefficients obtained from the

comparison of landslide susceptibility maps produced by dif-

ferent methods

Layer AHP FR FL ANN

AHP 1 0.82 0.63 0.54

FR 0.82 1 0.7 0.48

FL 0.63 0.7 1 0.45

ANN 0.54 0.48 0.45 1
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Fig. 9 Distribution of landslides into the classes of conditional factors
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or a mudslide due to heavy rainfall (Pradhan 2011). On

the other hand, the results of this study are in

agreement with those of Havenith et al. (2006), where

the following conclusions were made:’’ (1) landslide

scars match convex areas well (Conforti et al. 2012).

(2) Convex slopes are less stable under similar

hydrogeological conditions (lower factor of safety)

because a larger body (larger driving force) is acting

on the same sliding surface (equal resistant forces). (3)

Convex morphologies might indicate the presence of

accumulation material (colluvium) that is character-

ized by lower shear resistance (Havenith et al. 2006).

LS is higher in areas where the STI ranges from 10

to 60 and lower in areas where the index values are

between 0–10 and 60–232 (Fig. 9f). On the other

hand, it is determined that landslides are abundant

more at the classes of low STI index values than in

other classes. In the case of using a stream power index

(Fig. 9g), the landslide occurrence was higher for

lower stream power index values. High TWI values

indicate areas that are more likely (higher probability)

to drain by the saturated excess flow. Threshold values

for classifying areas where saturation excess overland

flow will occur, though based on empirical soil

properties, are 0.6 (normalized value) and above

(Leh et al. 2008). The landslides had more tendency to

occur TWI values between 4 and 8 (0.26–0.53

normalized). For lower or higher values of wetness

index, the LS areas are small, whereas for middle

values, the areas are large (Fig. 9h). As for the

relationship between landslide occurrence and dis-

tance from the faults, the landslide frequency gener-

ally decreases with increasing distance from fault

(Fig. 9m). This study indicates that most landslides

occur within a fault distance of 0–250 m, whereas

previous studies suggested that most landslides occur

within a fault distance of 250–1000 m (Gupta and

Joshi 1990; Gokceoglu and Gokceoglu 1996; Pachauri

et al. 1998). Khanh (2009) concluded that landslides

are more in the zone where the distance to faults is

between 250 and 1000 m. However, there are many

researchers who state that this determination may not

be accurate for every place and every terrain (Gemitzi

et al. 2010; Uromeihy and Mahdavifar 2000). The

distance to the drainage map shows that landslides are

closely located within the 100 m buffer zone (Fig. 9j).

As for the relationship between landslide occurrence

and the distance from drainage, the landslide fre-

quency generally decreases with the increasing

distance from a drainage line. A distance of less than

100 m indicates a high probability of landslide

occurrence, whereas distances more than 300 m

indicates a low probability. Dai et al. (2001a) has also

indicated that ‘‘streams can adversely affect the

stability by eroding slopes or saturating the lower part

of the material until the water level increases.

Intarawichian and Dasananda (2011) have concluded

that ‘‘landslide occurrence probability is high in areas

where the distance to drainage is between 1500 and

2000 m and the landslides are likely to occur most

often at specific distances from the drainage.’’ Four-

niadis et al. (2007) most likely drew the same

conclusion after observing the terrain modification

caused by gully erosion and the undercutting of slopes

in the study area that might have influenced the

initiation of landslides. The fault density values are

found to vary between zero and 400.5 m/km2. It is

determined that many of the landslides are located in

the 0–300 m/km2 fault density zone (Fig. 9l). In the

study area, it was determined that there is a linear

relationship between drainage density and landslide

formation (Fig. 9i). This result is suitable with the

findings of Sarkar and Kanungo’s (2004). In moun-

tainous regions, drainage density provides an indirect

measure of groundwater conditions which have an

important role to play in landslide activity (Sarkar and

Kanungo 2004). Landslides are mostly formed in

agriculture areas (Fig. 9n). It was determined that the

formation of the landslides decreased with the increase

in altitude, sediment loading factor, plan curvature,

profile curvature, stream power index, distance to

drainage, distance to fault, and fault density values.

The formation of the landslides is found to increase up

to a certain slope, sediment loading factor, and

wetness index value, but then decline. Many land-

slides were formed in Aslakyayla (Da) and Taşkent

(KPt) formations (Fig. 9k).

The generated LS maps are divided into 4 sub-

classes, low, medium, high and very high susceptibil-

ity classes. Landslides were also divided into two

subclasses as test and analysis landslides. The distri-

bution of the landslides, all the landslides, the test

landslides that are not used in the analysis, and the

analysis landslides that are used for the analysis are

given in Fig. 8 according to the landslide subclasses. It

has been determined that 87%, 83%, 89% and 76% of

the analysis landslides are located in the high-to-high

LS subclasses indicated in the LS maps produced by
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the AHP, FR, FL and ANN methods, respectively. It

was also determined that 74%, 60%, 88% and 33% of

the test landslides are located in the high-to-high LS

subclasses indicated in the LS maps produced by the

AHP, FR, FL and ANN methods, respectively. Sim-

ilarly, It was also determined that 93%, 91%, 89% and

93% of the analysis landslides are located in the high-

to-high LS subclasses indicated in the LS maps

produced by the AHP, FR, FL and ANN methods,

respectively (Fig. 8).

6 Conclusions

In this study, LS maps were created with four different

methods, FR, FL, AHP and ANN, using the data

obtained from the same field. The accuracy of the

produced susceptibility maps was tested. The highest

ROC value was obtained from the sensitivity map

produced by the FR method, whereas the lowest ROC

value was obtained from the map generated by the FL

method. Later on, LS maps produced by different

methods were compared with each other. It has been

determined that the highest and lowest correlation

values were obtained for FR and AHP correlation as

0.82, and ANN and FL correlation as 0.45, respec-

tively. Following these evaluations, it was found out

that it was more appropriate to apply the FR as the

primary and the AHP as the secondary method in the

production of the LS maps. Meanwhile, the FR

method is simple, can be easily implemented, and

provides very high accuracy. The accuracy compar-

ison of the FR method with LR and WOE methods in

the production of the LS maps was performed by

Ozdemir and Altural (2013). They found out that the

FR method produces more consistent results than the

others. As a result, it is recommended to use the FR

method in LS studies.
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