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Abstract Slope stability analysis is an enduring

research topic in the engineering and academic

sectors. Accurate prediction of the factor of safety

(FOS) of slopes, their stability and their performance

is not an easy task. The current study aims at

predicting the FOS on the geometrical and geotech-

nical input parameters [unit weight (c), cohesion (C),

slope angle (b), height (H), angle of internal friction

(u) and pore pressure ratio (ru)]. The Markov chain

Monte Carlo (MCMC) methods have become a

ubiquitous tool in Bayesian analysis. This paper

implements MCMC methods for Bayesian analysis

of models using the WinBUGS package, freely

available software. The WinBUGS software is imple-

mented to identify the most appropriate models for

estimating the FOS among twenty (20) candidate

models that have been proposed. The models were

applied to available data given in open source

literature. The unknown parameters of the models

are considered as random variables. The WinBUGS

software which uses Bayesian analysis of complex

statistical models and MCMC techniques is employed

to compute the posterior predictive distributions. The

mean values of the model parameters obtained via

MCMC simulations are considered for the model

prediction performance evaluation. The performances

of the proposed predictive models were examined

according to two performance indices, i.e., coefficient

of determination (R2) and mean square error. Overall,

the results indicate that the proposed FOS model

possesses satisfactory predictive performance.

Keywords Slope stability � Bayesian analysis �
Markov chain Monte Carlo � WinBUGS software �
Factor of safety

1 Introduction

Due to hazardous consequences of slope instability,

the evaluation of slope stability is one of the

challenging issues in rock and geotechnical engineer-

ing. The factor of safety (FOS) based on an appropriate

geotechnical model as an index of stability, is required

in order to evaluate slope stability. Many variables are

involved in slope stability evaluation and the calcu-

lation of the FOS requires physical data on the

geologic materials, information on pore-water pres-

sures, geometrical data and their shear-strength

parameters, etc. Traditionally, the methods available

to solve the FOS of a given slope are classified into the

categories including: limit equilibrium method (LEM)

(Cheng et al. 2007a; Gu et al. 2015; Qi et al. 2016; Yu

et al. 1998; Zhu et al. 2003), material point method

(MPM) (Bhandari et al. 2016; Wang et al. 2016), finite

element method (FEM) (Duncan 1996; Griffiths and
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Fenton 2004; Griffiths and Lane 1999; Luo et al.

2016), discontinuous deformation analysis for rock

failure (DDARF) (Li et al. 2018), probabilistic stabil-

ity analysis (Zhu and Yang 2018), multiple regression

analysis (Marrapu and Jakka 2017), finite element

limit analysis (Tschuchnigg et al. 2015), finite differ-

ence method (Sun et al. 2014), FEM-based shear

strength reduction (Kaya 2017), discrete element

method (Babanouri and Sarfarazi 2018), numerical

limit analysis methods (Lim et al. 2015), boundary

element method (Martel and Muller 2000), strength

reduction FEM (Jiang et al. 2015) and numerical back

analysis (Salmi and Hosseinzadeh 2015). Previously,

several techniques for calculating the safety factor

have been developed. Two well-known methods

which were extensively used for SF analysis include

numerical methods (NM) and LEM (Duncan1996).

Nevertheless, these methods (LEMs and NMs) are

complex and need repetitive operations. Additionally,

they sometimes require a well-fitted constitutive

model and real mechanical parameters which are

difficult to be determined precisely. Recently, soft

computing methods have been successfully applied to

predict slope stability as a complex, non-linear and

multivariate problem (Cheng et al. 2007b; Ercanoglu

and Gokceoglu 2002; Fattahi 2017; Gao 2015; Gelisli

et al. 2015; Hoang and Pham 2016; Kahatadeniya et al.

2009; Kang et al. 2016, 2017; Koopialipoor et al.

2019; Lu and Rosenbaum 2003; McCombie and

Wilkinson 2002; Pradhan 2010; Qi and Tang 2018;

Rukhaiyar et al. 2018; Saboya Jr et al. 2006; Sakel-

lariou and Ferentinou 2005; Suman et al. 2016; Tun

et al. 2016; Wang et al. 2005; Yang et al. 2004;

Zolfaghari et al. 2005). Although, soft computing

techniques have been successfully employed for

prediction of slope stability, the main problem of

most these techniques is that they are black box. This

means that they don’t give a transparent model which

shows the relationship between input and output

parameters.

In recent years, Bayesian methods have attracted

researchers (Cao et al. 2016; Chiu et al. 2012; Zhou

et al. 2014) because of their ability to model and

analyze complex problems that were previously

difficult or impossible to solve. The growth in use of

the Bayesian methods can be attributed mainly to two

reasons. The first reason for the growth in use of

Bayesian statistics is the development of the com-

puter-based Markov chain Monte Carlo (MCMC)

simulation methods, which allow Bayesian analysis to

be performed flexibly and for very complex models

(Herath 2018). The second reason for the growth in the

Bayesian statistics is that traditional data analysis

methods (classical statistics or frequentist statistics)

which rely on null hypothesis significant testing have

known problems (Cashen and Geiger 2004; Kruschke

et al. 2012). In Bayesian statistics, parameters are

viewed as unobserved realizations of the random

processes or random variables with probability distri-

butions. That is, before obtaining data, a prior

distribution is chosen to represent all available infor-

mation regarding the possible value of the parameter.

Then information regarding the parameter is updated

using observed data and is represented by the posterior

distribution, which is used to estimate parameter

values and quantify uncertainty. Bayesian analysis is

hence a more versatile estimation approach because it

uses not only the available data but also existing

knowledge about model parameters (Herath 2018). In

this paper a methodology based on Bayesian MCMC

method using free software package, WinBUGS

(Adoko et al. 2017; Fattahi and Zandy Ilghani

2019a, b; Lunn et al. 2000; Spiegelhalter et al.

2002)) aimed at identifying the most appropriate

models to predict FOS among several selected candi-

date models, is proposed. To validate the performance

of the models proposed, it is applied to field data given

in open source literatures.

2 Methodology

2.1 Markov Chain Monte Carlo (MCMC)

Simulation Approach

Typical statistical problems involve estimating a

vector of parameters, h, using the available data. The

classical approach assumes that the parameters are

fixed, but have unknown values to be estimated.

Classical maximum likelihood estimates generally

provide a point estimate of the parameter of interest.

The Bayesian approach assumes that the parameters

themselves have some unknown distribution. The

approach is based upon the idea that the experimenter

begins with some prior beliefs about the system, and

then updates these beliefs on the basis of observed

data. Using Bayes’ Theorem, the posterior distribution

of the parameters given the data p(h|data) has density
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proportional to the product of the likelihood of the data

given the parameters L(data|h) and the prior distribu-

tion of the parameters p(h): p(h|data) �L(-
data|h) 9 p(h) (Gimenez et al. 2009).

The Bayesian approach does this through integra-

tion using the MCMC algorithm. The high-dimen-

sional integral associated with the posterior density is

actually estimated using appropriate Monte Carlo

integration, which consists of constructing a Markov

chain with stationary distribution equal to the posterior

distribution of interest (Gimenez et al. 2009). Then,

once the chain has converged, realizations can be

regarded as a dependent sample from this distribution.

WinBUGS implements powerful ways of constructing

these chains, adapting to a wide range of target

(posterior) distributions and therefore allowing a large

number of possible models to be fitted. Further details

on Bayesian modeling using MCMC algorithms can

be found in Brooks et al. (2011). Also for more

information about Bayesian modeling using Win-

BUGS can be found in Ntzoufras (2011).

2.2 MCMC Simulation Software

There are numerous kinds of software, both open

source and proprietary, that can be used to implement

Bayesian analysis using Bayesian MCMC simulation.

The popular WinBUGS software is an interactive

Windows program for Bayesian analysis of complex

statistical models (Herath 2018). It uses BUGS

[Bayesian inference Using Gibbs Sampling (Chun

2008)], and samples are drawn from their conditional

(posterior) distribution instead of the marginal poste-

rior distributions. The standard MCMC software such

as WinBUGS uses the Gibbs sampling algorithm, the

Metropolis–Hastings (MH) algorithm (Hastings

1970), or a hybrid of both. In addition, the rever-

sible-jumpMCMC algorithm is gaining acceptance. In

order to overcome the inefficiencies in Gibbs sampling

and MH algorithms, ideas from physics have been

used develop the newer and more robust Hamiltonian

Monte Carlo (HMC) algorithm, which can be used

independently (continuous parameters) or combined

with Gibbs sampling and the MH algorithm for

discrete parameters (Herath 2018). This paper uses

the open source software WinBUGS to derive the

posterior distributions. The WinBUGS software is

currently freely available at https://www.mrc-bsu.

cam.ac.uk/software/bugs/the-bugs-project-winbugs/.

3 The Features of the Database

The main scope of this work was to implement the

methodology in the problem of slope stability estima-

tion. To achieve this, datasets given in previous papers

are borrowed (Fattahi 2017; Madzic 1988; Sah et al.

1994). The parameters that were selected were related

to the geometry and the geotechnical properties of

each slope. More specifically, the parameters utilized

for circular failure were slope angle (b), pore pressure
ratio (ru), angle of internal friction (u), height (H),
cohesion (C) and unit weight (c) (Fig. 1). The output

layer composed of a single output parameter (FOS).

The data set consisted of 62 case studies of the slopes

analyzed for the circular critical failure mechanism.

Partial dataset used in this study are presents in

Table 1. Also, descriptive statistics of the all data sets

are shown in Table 2.

4 Bayesian Models: Inference, Selection

and Prediction

First of all, the database containing 62 datasets were

divided into two. The first part representing 75% of the

total datasets (i.e. containing 47 datasets) was used to

establish the model while the second part served for

the model performance evaluation. Based on the

training database, a Bayesian predictive model was

proposed. Firstly, a preliminary correlation analysis

was performed to investigate the possible type of

relationships between the FOS (dependent) and each

of the independent variable (c, C, u, b, H and ru) in

order to explore the potential candidate terms in

developing the correlation for FOS. The following

candidates are used:

Fig. 1 The parameters utilized for circular failure
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Model #1 FOS ¼ a1ðcb1 � Cb2Þ þ a2ðHb3 � cos ruÞ þ a3

a4 cosðb4qþ b5bþ b6ruÞ þ a5

ð1Þ

Model #2 FOS ¼ a1ðcb1 � Cb2Þ þ a2ðHb3 � cos ruÞ þ a3

a4 cosðb4qþ b5bÞ þ a5

ð2Þ

Model #3 FOS ¼ a1ðcb1 � Cb2Þ þ a2ðqb3 � bb4Þ þ a3

a4Hb5 þ a5 cos ru þ a6

ð3Þ

Model#4FOS¼ a1cb1 þa2C
b2 þa3H

b3 þa4r
b4
u þa5

a6qb5 þa7b
b6 þa8

ð4Þ

Model#5 FOS¼ a1cb1 þ a2C
b2 þ a3H

b3 þ a4r
b4
u þ a5

a6 sinqþ a7 cosbþ a8

ð5Þ

Model #6 FOS ¼ a1cþ a2C þ a3qþ a4bþ a5H

þ a6ru þ a7

ð6Þ

Model#7 FOS¼ a1cb1 þ a2C
b2 þ a3H

b3 þ a4r
b4
u þ a5

a6 sinqþ a7 sinbþ a8

ð7Þ

Model#8FOS¼a1cb1 þa2C
b2 þa3H

b3 þa4 cosruþa5

a6 cosðc1qþc2bÞþa7

ð8Þ

Model#9 FOS¼ a1ðcb1 �Hb2Þþ a2ðCb3 � cos ruÞþ a3

a4 cosðc1qþ c2bÞþ a5

ð9Þ

Model #10 FOS ¼ a1c
b1 þ a2C

b2 þ a3q
b3 þ a4b

b4

þ a5H
b5 þ a6r

b6
u þ a7

ð10Þ

Model #11 FOS ¼ a1c
b1 þ a2C

b2 þ a3 sin q
þ a4 cos bþ a5H

b3 þ a6r
b4
u þ a7

ð11Þ

Table 1 Partial dataset used for constructing the models (Fattahi 2017; Madzic 1988; Sah et al. 1994)

Case no. Input parameters Output parameter Location

c (KN/m3) C (KPa) q (�) b (�) H (m) ru FOS

1 18.68 26.34 15 35 8.23 0 1.11 Congress street, open cut slope, Chicago, USA

2 16.5 11.49 0 30 3.66 0 1 Brightlingsea slide UK

3 16 70 20 40 115 0 1.11 Case 1: Wyoming, USA

4 20.41 33.52 11 16 10.67 0.35 1.4 Seven Sisters Landslide, UK

5 28.44 29.42 35 35 100 0 1.78 Case 1: open pit iron ore mine, India

6 28.44 39.23 38 35 100 0 1.99 Case 2: open pit iron ore mine, India

7 20.6 16.28 26.5 30 40 0 1.25 Open pit chromite mine, Orissa, India

8 14.8 0 17 20 50 0 1.13 Sarukuygi landslide, Japan

9 14 11.97 26 30 88 0 1.02 Case 1: open pit iron ore mine, Goa, India

10 25 120 45 53 120 0 1.3 Mercoirol open pit coal mine, France

Table 2 Statistical description of dataset utilized for con-

struction of models

Parameter Min Max Average

Unit weight (c) (KN/m3) 12.00 28.44 19.71

Cohesion (C) (KPa) 0.00 150.05 22.25

Angle of internal friction (u) (�) 0.00 45.00 26.23

Slope angle (b) (�) 16.00 53.00 32.47

Height (H) (m) 3.66 214.00 44.15

Pore pressure ratio (ru) 0.00 0.50 0.20

Factor of safety (FOS) 0.63 2.31 1.29
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Model #12 FOS ¼ a1cb1 þ a2C
b2 þ a3H

b3 þ a4r
b4
u þ a5

a6 sinðc1qþ c2bÞ þ a7

ð12Þ

Model #13 FOS ¼ a1ðcb1 � qb2Þ þ a2ðCb3 � bb4Þ þ a3

a4Hb5 þ a5 cos ru þ a6

ð13Þ

Model #14 FOS ¼ a1c
b1 þ a2C

b2 þ a3 cos q
þ a4 sinbþ a5H

b3 þ a6r
b4
u þ a7

ð14Þ

Model #15 FOS ¼ a1c
b1 þ a2C

b2 þ a3 sin q
þ a4 sinbþ a5H

b3 þ a6r
b4
u þ a7

ð15Þ
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Fig. 2 Posterior

distributions of the model

parameters (a1, a2,…, a5 and

b1, b2,…, b5) corresponding

to Model #2
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Model #16 FOS ¼ a1ðcb1 � rb2u Þ þ a2ðCb3 � Hb4Þ þ a3

a4 cosðc1qþ c2bÞ þ a5

ð16Þ

Model #17 FOS ¼ a1c
b1 þ a2C

b2 þ a3 cos q
þ a4 cos bþ a5H

b3 þ a6r
b4
u þ a7

ð17Þ

Model#18 FOS¼ a1cb1 þ a2C
b2 þ a3H

b3 þ a4r
b4
u þ a5

a6 cosqþ a7 sinbþ a8

ð18Þ

Model #19 FOS ¼ a1c
b1 þ a2C

b2 þ a3 sinðc1q
þ c2bÞ þ a4H

b3 þ a5r
b4
u þ a6

ð19Þ

Model#20 FOS¼ a1cb1 þ a2C
b2 þ a3H

b3 þ a4r
b4
u þ a5

a6 cosqþ a7 cosbþ a8

ð20Þ

In this study, the unknown parameters of the

different candidate models are considered as random

variables. The aim of this study as stated previously is

to identify objectively the most suitable models that fit

best the FOS datasets using a Bayesian framework

where the inference of model parameters is conducted

in WinBUGS software based on Bayesian MCMC

methods. Therefore, one of the essential tasks in this

study is to sample values of the unknown parameters

from their conditional posterior distribution given the

stochastic nodes that have been observed, after having

specified the model as a full joint distribution on all

quantities for both parameters and observables.

5 Modeling and Results

After specifying the models in WinBUGS language at

the logical nodes, normal (or lognormal or other

distributions) were selected at the stochastic nodes for

c, C,u, b, H and ru respectively. Subsequently, the first

group of the datasets was loaded and the models

compiled and the MCMC sampler was applied to

compute the model parameters. A trial-and error

approach was used to identify the optimal settings of

the modeling. It can be seen that for Model #2, the

mean values of the unknown parameters a1, a2,…, a5
and b1, b2, …, b5 are 24.04, 10.32, - 5.941, - 1.974,

3.888, - 2.058, 0.8093, - 0.05221, - 3.596 and

4.243 respectively. These values are the most probable

the model parameters would take for the predicted

FOS to have maximum accuracy since those values

correspond to the peak of the posterior distributions

which are plotted in Fig. 2. The summaries of the

different models are provided in Table 3.

As the models contain a maximum number of 20,

checking the convergence for every parameter could

be afforded and were monitored. If the trace plots

move around the mode of the distribution and do not

show a trend in the sample space, then the model has

converged as shown in Fig. 3. As seen from Fig. 3, an

example of the dynamic traces of the model

Table 3 Summary statistics for the Model #2 parameters computed with WinBUGS

Model parameters Mean SD MC error Percentiles (%) Start Sample

2.50% 50% 97.50%

a1 24.04 17.19 1.374 1.351 20.61 64.82 4001 10,000

a2 10.32 4.777 0.45 2.594 10.16 21.56 4001 10,000

a3 - 5.941 3.035 0.2719 - 13.16 - 5.782 - 1.177 4001 10,000

a4 - 1.974 1.39 0.1392 - 4.759 - 1.501 - 0.2749 4001 10,000

a5 3.888 2.063 0.207 0.8616 3.52 8.17 4001 10,000

b1 - 2.058 0.5812 0.05712 - 3.269 - 1.973 - 1.095 4001 10,000

b2 0.8093 0.2325 0.02197 0.4757 0.7597 1.399 4001 10,000

b3 - 0.05221 0.01143 9.05E-04 - 0.07804 - 0.0505 - 0.03468 4001 10,000

b4 - 3.596 1.24 0.1218 - 6.133 - 3.581 - 1.741 4001 10,000

b5 4.243 1.308 0.1291 2.165 4.251 6.789 4001 10,000
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parameters corresponding to Model #2 indicating

convergence.

The dynamic trace plots of the sample values versus

iteration suggested that the simulation appears to have

stabilized.

To verify the performance of the models, four

statistical criteria viz. mean squared error (MSE) and

squared correlation coefficient (R2) were chosen to be

the measure of accuracy (Fattahi et al. 2019). Let tk be

the actual value and t̂k be the predicted value of the kth

observation and n be the number of observations, then

MSE and R2 could be defined, respectively, as follows:

a1

iteration
139501390013850

0.0
20.0
40.0
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iteration
139501390013850

0.0
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139501390013850

-30.0
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-10.0

0.0
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iteration
139501390013850

-5.5
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-4.5
-4.0
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139501390013850
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iteration
139501390013850
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0.6
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 -0.1
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139501390013850

-3.0
-2.5
-2.0
-1.5
-1.0
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1.5
2.0
2.5
3.0
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4.0

Fig. 3 Dynamic trace of the model parameters (a1, a2,…, a5, b1, b2, …, b5) corresponding to Model #2
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MSE ¼ 1

n

Xn

k¼1

ðtk � t̂kÞ2 ð21Þ

R2 ¼ 1�
Pn

k¼1 ðtk � t̂kÞ2
Pn

k¼1 t
2
k

Pn

i¼1
t̂2
k

n

ð22Þ

With the purpose of evaluating the prediction

performance of the model, the datasets (training and

testing datasets) were used to assess the optimal

model. Performance analysis of 20 models for training

and testing datasets is shown in Table 4 and Fig. 4.

In general, the results indicated that the proposed

model (Model #2) could be used to predict the FOS.

Finally, the Model #2 is ranked the best candidate

while Model #20 is the worst candidate for predicting

the FOS using the training and testing datasets. It is

evident that the prediction model constructed in this

research is open for more development if more data are

available.

6 Conclusions

Slope stability assessment is a critical research area in

civil engineering. Disastrous consequences of slope

collapse necessitate better tools for predicting their

occurrences. In this paper, a new methodology based

on Bayesian inference was implemented to identify

the most appropriate models for estimating the FOS

among several candidate models that had been

analyzed using the WinBUGS software. The input of

the predictive model included the c, C, u, b, H and ru.

Overall, the results suggest that the proposed models

Table 4 A comparison between the results of models for

training and testing datasets

Model no. Training datasets Testing datasets

MSE R2 MSE R2

#1 0.0166 0.828 0.0332 0.683

#2 0.0147 0.823 0.0290 0.726

#3 0.0164 0.789 0.0605 0.5363

#4 0.0377 0.786 0.0257 0.750

#5 0.0310 0.717 0.0383 0.682

#6 0.0342 0.706 0.0231 0.766

#7 0.0342 0.683 0.0548 0.687

#8 0.0488 0.677 0.0500 0.517

#9 0.0281 0.661 0.0384 0.702

#10 0.0401 0.656 0.0485 0.613

#11 0.0485 0.647 0.0506 0.627

#12 0.0348 0.633 0.0853 0.649

#13 0.0275 0.611 0.0611 0.432

#14 0.0369 0.599 0.0380 0.641

#15 0.0749 0.594 0.0556 0.525

#16 0.0513 0.591 0.0363 0.686

#17 0.0418 0.576 0.0415 0.621

#18 0.0375 0.569 0.0506 0.674

#19 0.0889 0.522 0.0589 0.454

#20 0.0573 0.518 0.0500 0.519
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Fig. 4 A comparison between the results of models for

a training datasets b testing datasets
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FOS possess satisfactory predictive performance.

Based on the R2 and MSE, the model #2 was the most

adequate model (among those considered) which was

in agreement with performance indices. This study

shows that the Bayesian MCMC method can be

applied as a powerful tool for modeling of some

problems involved in rock and soil engineering.
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