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Abstract Stability of rock slopes is a critical issue in

many mining and civil engineering projects. The

current state of practice for slope stability analysis is

based on obtaining the factor of safety (FOS). Stability

charts are widely used by engineers to obtain a FOS for

a quick assessment of the initial stability of slopes. The

stability of rock slopes with vertical walls in urban

areas adjacent to existing structures is another impor-

tant issue in this regard. However, the stability of earth

or rock slopes are usually analyzed ignoring surcharge

loads. The effect of adjacent structures (as surcharge

load) on slope stability (considering these loads) can

be very useful in slope stability analyses in urban or

even non-urban areas. In the present study, it is tried to

investigate the effect of surcharge load on the stability

of rock slopes based on the generalized Hoek–Brown

failure criterion using a finite element numerical

software and the related charts are presented. Since

there is a stability chart for each slope angle, a

comprehensive mathematical model utilizing artificial

neural networks is proposed to predict the stability

factor of rock slopes. The independent variables in this

study were slope angles, slope height, the intensity of

surcharge load, Geological Strength Index (GSI), and

unconfined compressive strength of the intact rock.

Sensitivity analysis showed that the changes in GSI,

effect of surcharge and unconfined compressive

strength of rock have the highest effect on the slope

stability assurance coefficient.

Keywords Rock slope � Stability � Generalized

Hoek–Brown failure criterion � Surcharge load �
Artificial neural networks � Sensitivity analysis

1 Introduction

Stability analysis of rock slopes in geotechnical

engineering is a well-known issue that plays an

important role in the safe design of excavation walls

in open pit mine trenches, railway bridges, dams, and

tunnels. In this regard, studying the conditions of the

equilibrium of natural slopes is of great importance

(Fleurisson and Cojean 2014). Although knowledge

related to stability analysis and monitoring of slope

movements such as stabilization methods has

improved significantly in recent years, failures of rock

slopes may cause heavy social, economic, and envi-

ronmental damages in mountainous regions. One of

the fast methods for examining the stability of slopes is

the use of charts and nomograms produced based on

simple analytical methods (Radoslaw 2002). In almost

all of the proposed methods for the analysis of the
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stability of rock slopes by previous researches, the

effect of surcharge load has not been taken into

account, despite presence of a considerable surcharge

load in urban areas in the immediate vicinity of the

excavations. The stability of the excavated walls also

may jeopardize the safety of nearby structures in

addition to the safe working environment at the bottom

of the excavation. Due to the incidents occurred in a

number of urban projects such as failure of excavation

walls and destruction of the surrounding structures,

identification and analysis of methods and factors that

can be resolved to overcome these problems is of great

necessity. In this study, it is tried to analyze the effect

of the surcharge load on the wall slope stability based

on the generalized Hoek–Brown failure criterion.

Also, using the results of finite element analysis, a

mathematical model based on artificial neural net-

works (ANNs) is proposed in order to analyze the

sensitivity of stability factor to the input parameters.

Accordingly, the objective of this research is to

prepare suitable charts for the design of rock excava-

tions with different slope angles and depths consider-

ing the effect of proximity on the side structures as

surcharge loads and the development of a mathemat-

ical model based on artificial neural networks for

direct use to determine slope stability in general

conditions.

2 Literature Research

Soil slope stability charts were initially first produced

by Taylor (1937). Later, the development of slope

stability charts as a design tool was considered by

many researchers. The stability of the rock slopes has

attracted much attention for several decades. Hoek and

Bray (1981) presented some charts to analyze the

stability of rock and rockfill slopes. Siad (2003)

presented a set of stability charts based on the upper

bound approach for stability analysis of fractured rock

slopes under seismic conditions. Zanbak (1983) pro-

posed a set of design charts for rock slopes susceptible

to toppling based on the original analytical solution.

All these charts have been developed based on the

behavioral model of the Mohr–Coulomb, which is

applied to extract the equivalent friction angle (/) and

the cohesion (c) of the rock mass according to this

model. Sonmez et al. (1998) utilized back analysis of

slope failures to obtain shear strength parameters

mobilized in slope cuts in closely jointed rock

masses and provided a practical procedure using the

classification of the rock mass to estimate the mobi-

lized shear strength according to the Hoek–Brown

failure criteria. Hack et al. (2003) proposed a proba-

bilistic classification method to analyze the stability of

rock slopes in which there is no need for c and / as

input. Li et al. (2008) presented stability charts based

on the Hoek–Brown failure criterion using the upper

and lower bound limit method. Yang et al. (2004a, b)

and Yang and Zou (2006) used the upper bound

analysis to determine the optimum slope height. In this

study, the Hoek–Brown failure criterion and the shear

strength parameters (c and /) were used. Shen et al.

(2013) proposed a set of rock slope stability charts for

stability analysis of rock mass slopes based on

Generalized Hoek–Brown criterion. Sun et al. (2016)

presented stability charts for estimating the stability of

rock mass slopes based on the generalized Hoek–

Brown criterion using the nonlinear strength reduction

technique. The proposed charts in this research can be

used to calculate the factory of safety (FOS) of a slope

directly from the Hoek–Brown parameters, slope

geometry and rock mass properties (Sun et al. 2016).

Jiang et al. (2016) evaluated the rock slope stability

based on the limit equivalent method using the

pseudo-static method and proposed a new chart-based

technique for analyzing seismic stability of rock slope.

The FOS of slopes is calculated directly based on the

parameters of the Hoek–Brown criterion (GSI and mi),

slope geometry (H and b), rock mass properties (rci

and c) and seismic effect (kh). Qian et al. (2017) used a

finite element upper bound and lower bound limit

analysis methods to estimate rock slope stability for

inhomogeneous rock masses based on the Hoek–

Brown failure criterion.

According to the progress of various computational

methods, the ability to assess the sustainability of the

rock slopes and accurate interpretation of the failure

mechanisms have increased recently. In the previous

studies, a wide range of numerical methods including

continuum methods (e.g., finite element and finite

difference methods), the discontinuum methods (e.g.,

distinct element and discontinuous deformation anal-

ysis), and probabilistic analytical method are used to

analyze the stability of rock slopes (Hoek et al. 2000;

Wang et al. 2003; Eberhardt et al. 2004; Stead et al.

2006). ANNs can also be useful tools to predict the

stability of the rock slopes. These networks are
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capable of learning highly complex relationships

through a mass of data and information because of

their sophisticated structure that resembles human

brain. This unique capability has caused ANNs to be

used in sciences such as geotechnics. Qi and Tang

(2018) studied the stability of the soil slopes using

integrated metaheuristic and machine learning

approaches. They proposed and compared six inte-

grated artificial intelligence approaches including

logistic regression, decision tree, random forest,

gradient boosting machine, support vector machine

(SVM), and multilayer perceptron (MLP) neural

network for slope stability prediction.

The problems relating to the analysis of the stability

of soil or rock slopes are usually associated with the

existence of a surcharge load, which has been ignored

by previous researchers or considered as an equivalent

rock layer. In the present study, we tried to investigate

the effect of surcharge load on the stability of rock

slopes based on the Hoek–Brown failure criterion with

the finite elemental software PHASE2 and to provide

stability charts. Also, using the results obtained from

the finite element analysis, a mathematical model

based on artificial neural networks is developed to

predict the stability factor of rock slopes under the

influence of surcharge load.

3 TheGeneralized Hoek–Brown Failure Criterion

Hoek (1994), Hoek and Brown (1997,2018) and Hoek

et al. (2002) presented the following empirical failure

criteria for continuous and jointed rocks by fitting the

curve from the results of the triaxial test results:

r
0

1 ¼ r
0

3 þ rci mb

r
0
3

rci

þ s

� �a

ð1Þ

where r
0

1 and r
0

3 are respectively the effective max-

imum and minimum principal stresses, rci is the

uniaxial compressive strength (UCS) of the intact rock

material, mb is a reduced value (for the rock mass) of

the material constant mi (for the intact rock), s and a

are constants, which depend upon the characteristics

of the rock mass. According to the latest research, the

parameters of the generalized Hoek–Brown criterion

(Hoek 1994; Hoek and Brown 1997,2018; Hoek et al.

2002) are given by the following equations:

mb ¼ mi exp GSI�100ð Þ= 28�14Dð Þ½ � ð2Þ

s ¼ exp GSI�100ð Þ= 9�3Dð Þð Þ ð3Þ

a ¼ 1

2
þ 1

6
exp�GSI=15 � exp�20=3
h i

ð4Þ

where The Geological Strength Index (GSI) is a

simple classification system based on geological

observation introduced by Hook and Brown for both

hard and weak rock masses. The GSI varies from 10

for extremely poor rock masses to 100 for intact rock.

In this study, the GSI values of 25, 50, and 75 were

considered.

The parameter D (disturbance factor) depends upon

the degree of disturbance due to blast damage and/or

stress relaxation and varies from 0 for undisturbed

in situ rock masses to 1 for very disturbed rock masses.

In this study, it was assumed that the environment is

continuous and the rock mass is intact; and so the

parameter D is considered 0 for all models. The

quantity of mi is the constant related to rock material,

obtained using triaxial tests on the core of the rock and

changes from 0.007 to 25. In this work, the quantity of

mi was assumed to be 10 in average.

4 Model Validation

Although three-dimensional analysis software are

widely available, the two-dimensional analyses are

still broadly used today because of the relative ease of

model construction and the relatively fast model run

times. Certainly, the literature mainly shows that 2D

analyses are more conservative than 3D analyses

(Cheng et al. 2005; Nian et al. 2012; Leong and

Rahardjo 2012), particularly in stability analysis of

rock slopes (Shen 2013; Sun 2016; Jiang 2016; Qian

2017). Accordingly, in the present investigation, a

two-dimensional analysis was used to investigate the

stability of rock slopes. In this section, a failed rock

slope presented by Leong and Rahardjo (2012) and

Sonmez and Ulusay (1999) is examined for model

calibration.
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4.1 Slope Failure in Closely Jointed Rock Mass

in Barite Open Pit Mine

The first real case, extracted from Sonmez and Ulusay

(1999), was located at Baskoyak barite open pit mine,

in western Anatolia. Due to the heavily jointed nature

of the schist, the rock mass was assumed as homoge-

neous and isotropic. The mean unit weight (c) and

uniaxial compressive strength (rci) of the heavily

broken part of the schist are 22.2 kN/m3 and 5.2 MPa,

respectively (Sun 2016; Sonmez and Ulusay 1999).

Other parameters required can be obtained from

Sonmez and Ulusay (1999) and Sonmez et al.

(2003), where mi = 7 and GSI = 16. They indicated

that if the overburden material and ore were removed

by an excavator without any blasting, the disturbance

factor was suggested to be D = 0.7. The parameters

for calculating the FOS for a real case rock slope are

summarized and listed in Table 1.

Figure 1 also provides the slip surface obtained

from the present study. The FOS and plastic zone

obtained from the present strength reduction analysis

are in reasonably good agreement with the FOS and

the slip surface from Sonmez and Ulusay (1999).

5 Research Method

In this study, 756 rock slopes were modeled numer-

ically using finite element method (FEM) to study

various physical and geometric factors on the FOS of

rock slopes. The model variables included geometric

variables (e.g., height and slope angle), geomechan-

ical parameters of rocks (e.g., Geological Strength

Index (GSI) and unconfined compressive strength of

the rock rcið ÞÞ; and intensity of surcharge load. Range

of changes of each of the above variables is shown in

Table 2. According to Table 2, the models were

simulated for heights 20, 30, and 40 m and slope

angles of 30�, 45�, 60�, and 75�. Also, the GSI values

of 25, 50, and 75 and unconfined compressive strength

values of 20, 40, and 60 MPa were considered. The

intensity of the surcharge load was considered to be

0.162, 0.324, 0.675, 1.35, 2.7 and 5.4 MPa. In all

mentioned models, the unit weight of the rock mass

was considered to be 0.027 MPa.

One of the most popular techniques for performing

FEM slope analysis is the shear strength reduction

(SSR) approach (Hammah et al. 2005). This method

has many potentialities for studying the stability of the

slopes in complicated conditions. In this method, the

shear strength parameters of soil are reduced so that

the slope is on the verge of instability; hence, the FOS

is defined as the ratio between the initial shear strength

parameter and the final shear strength parameter.

In this study, the finite element method (FEM) with

the SSR technique was used for the stability analysis

of rock slopes. For this purpose, the technique was

implemented in the FEM Phase 2 program. The

geometric dimensions of the models are shown in

Fig. 2.

The model was assumed to have a plane strain and

so the two-dimensional analysis was used to determine

the FOS. The models are named as Sx1x2x3x4x5,

where xi i ¼ 1; 2; 3; 4ð Þ is a two-digit integer that

represents the angle of slope, height of slope, uncon-

fined compressive strength of rock, GSI, respectively

and x5 represents the surcharge load intensity,. The

Fig. 1 Critical slip surface (Screenshot of Phase2 software)

Table 1 Result for real case of rock slope

Input parameters Case study

GSI 16

rci MPað Þ 5.2

mi 7

D 0.7

c kN=m3ð Þ 22.2

Safety factor

Chart from Li et al. (2008)(LAM) 0.90

Chart from Shen et al. (2013) (LEM) 0.95

Chart from Shen et al. (2013) (SR-FEM) 0.93

Shen et al. (2013) (Abaqus 6.10) 0.97

Li et al. (2015) 1.007

Phase2 (validation model) 0.96
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failure mechanism and the maximum shear strain for

the S3020204045 model are shown in Fig. 3. In this

figure, the SSR area is clearly visible. The FOS for this

model is 3.41. After simulating all models, the

obtained results were used for the preparation of

stability charts and training of the artificial neural

network.

6 Results of Analysis

As mentioned for each of the slopes, a stability

chart was prepared to calculate the FOS. Since a large

number of variables exist in the model, for each model,

a dimensionless parameter was defined as:

Ns ¼ cd �
rc

cH þ P
ð5Þ

where Ns is dimensionless parametr, rc is unconfined

compressive strength of rock,c is unit weight of the

rock mass,H is slope height, P is intensity of surcharge

load and cd is reduction coefficient of surcharge load

which is defined as follows:

cd ¼ 1 � P

rc

� �b

ð6Þ

where, b; t he non-dimensional coefficient, is obtained

by fitting the best curve passing through the data and

by the least squares error method.

So, the number of variables was reduced using

this dimensionless parameter. Then, in Fig. 4, the

Fig. 2 The geometrical dimension of the rock slope model

Fig. 3 Typical contours of the maximum shear strain and shear strength reduction area

Table 2 Numerical model

variables
Model variables Range of change

Geometric variables

Slope angle (degree) 30�, 45�, 60�, 75�
Height of slope (m) 20, 30, 40

Geotechnical variables of rocks

Unconfined compressive strength (MPa) 20, 40, 60

Geological Strength Index (GSI) 25, 50, 70

Intensity of surcharge load (kPa) 162, 364, 675, 1350, 2700, 5400
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stability charts are shown for different slopes as

FOS versus Ns.

The best-fit relationship was calculated for each of

the stability curves using the method of least squares.

In all models, the best relationship for fitting the FOS

and the dimensionless parameter (Ns) is the following

power relationship:

Fs ¼ A � Nsð Þn ð6Þ

where, A and n are non-dimensional coefficients,

which are functions of GSI.

Figure 5 presents the variation of the coefficient A

in Eq. (6) versus the GSI index for different slopes.

Also, the variation of the coefficient n versus the GSI

index for various slopes is shown in Fig. 6.

7 Artificial Neural Networks (ANNs)

As cited, ANNs have been used by researchers as a

tool for the development of predictive models on

various geotechnical problems. ANNs are digitized

models of a human brain and required designed

through computer programs to simulate the way

human brain processes information. ANNs learn

through experience with appropriate learning exem-

plars just as people do, not from programming. ANNs

receive and transfer information through some ele-

ments called ‘‘neurons’’. Some inputs to the neuron

may have greater importance than the others. This

difference is modeled by weighting the input of the

neurons (Fig. 7) (Haykin 1999).

A neuron can be a nonlinear mathematical function.

As a result, a neural network formed by the commu-

nity of these neurons can also be a complex and

nonlinear system. The following equation is required

for calculated the output of the neuron.

yj ¼ u
Xm

i¼0

wjixi þ bj

 !
ð7Þ

where wji: connection weight between nodes j and i,

xi: input from node 1, i = 0,1,…m, u: activation

function, bj: bias value or threshold for node j, yj: the

target output node j.

The activation function determines the output of the

neuron and can be linear or nonlinear. There are

several activation functions to transform the output of

Fig. 4 Stability chart of the rock slope a a = 30, b a = 45, c a = 60, d a = 75
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the neuron. An activation function is selected based on

the particular requirement to solve a problem. In this

study, the back propagation (BP) neural network

algorithm is used. The only requirement for this

algorithm is that activation functions are differentiable

everywhere because the derivative of activation func-

tion is used in this algorithm. The BP algorithm is one

of the most widely applied ANNs in which training is

based on the error BP algorithm.

The BP ANN is a conventional method of opti-

mization, which can be described as follows (Li et al.

2012):

Feedforward (FF) The input data are multiplied by

the weight and then accumulated with constant bias

values and the network output is calculated using the

activate functions, which is probably different from

the actual output. At this stage, the difference between

the real output and expected output of the network is

defined as the error signal.

Fig. 5 Curve of non-

dimensional coefficient

(A) for different slopes

Fig. 6 Curve of non-

dimensional coefficient

(n) for different slopes
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Backpropagation (BP) of error BP distributes the

error signal back through the layers, by modifying the

weights at each node.

In a BP ANN, sigmoid or hyperbolic tangent

sigmoid transfer functions are often used. If the

absolute value of the input to the sigmoid function is

[ 6 and the absolute value of the input to the

Hyperbolic tangent sigmoid function is[ 3, then the

derivation of these functions tends to 0. Since the

derivative of the activation functions is used as a

multiple in weight change equations, in this case, the

entered weights of that neuron will not be trained. To

avoid this problem, the input values of the learning

pairs are mapped to the range of [0.1 1] in the mode of

using the sigmoid function and in the mode of using

the Hyperbolic tangent sigmoid hyperbolic function to

the interval [-1 1].

Multi-layer perceptron (MLP) networks with an

intermediate layer of neurons and the sigmoid function

as activation function are capable to model each level

of response through an adequate number of neurons in

the hidden layer. If a mapping is available, the MLP

network could be found it with a hidden layer. This

issue was first proved by Cybenko (1989) and then by

Hornik (1991).

In the present research, only a hidden layer with

different activation functions was used in the inter-

mediate and output layer. In general, this study

consisted of six main types of models for network

training, with their characteristics shown in Table 3.

The number of hidden neurons is the fundamental

question that is generally discussed, especially when

using neural networks to solve technical-engineering

problems. In general, the real and accurate analysis of

this issue is very complex. The reason for this

complexity includes the MLP network itself and the

random and uncertain nature of learning processes.

Therefore, the hidden layer size is generally obtained

experimentally through the trial and error (Nian et al.

2012). In this work, each model was investigated for 2,

3, 4, and 5 neurons in the hidden layer and finally the

best model was selected. The number of neurons in the

hidden layer is as an index after the model name. For

example, LP5 represents a model whose activation

function in hidden and the output layer is log sigmoid

Fig. 7 Neuron model with

weighted inputs and

embedded transfer function

Adapted from Haykin

(1999)

Table 3 The structure of the neural network models used in

this research

Model name Activation function

Hidden layer Output layers

LL Logsig Logsig

LT Logsig Tansig

LP Logsig Purelin

TT Tansig Tansig

TL Tansig Logsig

TP Tansig Purelin
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and linear respectively and has 5 neurons in the hidden

layer.

8 The Mathematical Model Based on Artificial

Neural Networks

In this study, the slope angle að Þ, the dimensionless

parameter NSð Þ, Geological Strength Index (GSI) and

coefficient of surcharge load effect CSL ¼ 1 � P
rc

� �
were considered as the input variables and the FOS

was considered as the output variable. The mean

squared error (MSE) was as network performance

function. To batch the network data, 70% of them were

selected as training data, 15% for validation, and 15%

data for network testing. The BP algorithm of the MLP

architecture was implemented in Matlab Software.

The inappropriate selection of validation values leads

to a lack of generalizability of the network. Since these

values are also selected as a percentage of instructional

data, the program’s response is sometimes not gener-

alized. So, to determine the best response to the

performances, we repeated the model runs. In appro-

priate selection of validation values leads to a poor

generalization of the model. Besides, because these

values are selected as a percentage of training data,

sometimes the response of the program is not gener-

alized and thus we have to execute the best responses

to determine the best response. In selecting the optimal

model, in addition to the mean of squared errors and

correlation coefficient between the actual results and

network outputs, the structure simplicity was also

considered. Accordingly, the best response was

obtained for the TP5 model with five neurons in the

hidden layer, which the activation function of the

hidden and output layers is hyperbolic tangent sigmoid

and linear function, respectively. The weights and

biases of the final network are presented in Table 5.

The weights and biases can be utilized for sensitiv-

ity analysis and framing an ANN model in equation

form. The same will be discussed in the following

sections.

The basic mathematical equation according to the

ANN can be written as:

FOS ¼

�11:27

�2:26

�42:03

0:403

53:96

2
6666664

3
7777775

T

:tansig

0:0188 �0:1044 �0:0021 �43:294

0:0175 �0:0189 �0:0098 �2:264

0:0118 �0:0321 0:0045 �26:893

�0:0013 0:1801 0:0495 4:274

0:0119 �0:0338 0:0068 �28:172

2
6666664

3
7777775
:

0
BBBBBB@

a

Ns

GSI

CSL

2
6664

3
7775þ

50:32

2:82

28:43

�17:39

29:93

2
6666664

3
7777775

1
CCCCCCA

þ 2:2561

ð8Þ

9 The Network Interpretation Diagram (NID)

Ozmesmi and Ozmesmi (1999) proposed the use of

network interpretation diagram (NID) to interpret the

weights attached to each neuron. In the NID, the lines

that connect the inputs to the hidden layer neurons, as

well as the hidden layer neurons to the output layer,

represent the magnitude of the weights. Positive

coefficients are denoted by black lines and negative

coefficients with gray lines, and the thickness of these

lines is proportional to the magnitude of the weight

coefficients. If the hidden layer input and the hidden

layer are both positive and negative, then the input

variable has a positive effect on the output; otherwise,

it has a negative effect. The variables with the positive

effect with a gray background and the negative effect

with a white background are presented. for the model

with the weights as obtained and shown in Table 4, a

NID is presented as shown in Fig. 8.

It can be seen from Fig. 11 that the (GSI), Nsð Þ and

(CSL) have a positive contribution to the FOS and

slope angle að Þ has negative effects on the FOS. Thus

it inferred that (GSI), Nsð Þ and (CSL) are directly and

að Þ is indirectly proportional to FOS value. So, it can

be seen that NID is an effective method in indicating

the physical relationship between inputs with the

output.

123

Geotech Geol Eng (2020) 38:587–604 595



10 Comparison of Stability Charts and ANNs

Statistical analysis can be a good indicator for the

classification of methods proposed for predicting the

stability FOS of the rock slope. The use of statistical

analyses alone, however, may lead to misjudgment of

the audience. Therefore, it is necessary to use the

statistical analyses and the ratio of the predicted values

to the measured values synchronous (Haykin 1999).

Theoretically, the ratio of the predicted stability

factor to the measured values (depending on the

method used to predict) changes from 0 to an uncertain

value, with the optimal value being 1. In a precise and

accurate modeling, the mean of this ratio is 1 and the

standard deviation is 0.

The more the average and standard deviation of this

ratio are closer to 1 and 0, respectively, the more

accurate the model is. A mean value greater than 1

represents overprediction and underprediction

otherwise.

Another criterion that can be used to measure the

performance of different prediction methods is the

relative error between the predetermined value and the

actual value. In this study, the minimum and maxi-

mum relative errors, mean relative error, the standard

deviation of relative errors, the ratio of a predicted

FOS FS;P

� �
; to the existing value FS;m

� �
;, and the

mean square error (MSE) were used as the perfor-

mance criteria (Table 5).

According to Table 5, both methods show a good

performance in predicting the FOS, except that in the

ANN model the independent variables such as slope

angle (a) and GSI are directly imported to the

equations. However, in the chart stability, there may

be a need for interpolation.

The correlation coefficient (R) was used as another

criterion for comparing different methods. In Figs. 9

and 10, the R values are measured and predicted by

both the stability charts and the ANNs. The results

show that in both methods, there is a high correlation

between the measured and predicted stability factors.

It will be desirable to have certain other statistical

measures to test the effectiveness of the developed

models in terms of their predictability criteria.

Abu-Farsakh (2004) suggested the use of cumula-

tive probability as an additional criterion for evaluat-

ing different prediction methods. For different

methods, the ratio of a predicted FOS to the obtained

FOS is arranged as per their values and the cumulative

probability is calculated from the following:

p ¼ i

n þ 1
ð9Þ

Fig. 8 The NID showing axons representing connection

weights and effects of inputs on safety factor

Table 4 Connection weights and biases of neural network model

Neuron Weights (wik) Biases

Input 1 (a) Input 2 (Ns) Input 3 (GSI) Input 3 (CSL) Output bhk b0

Neuron 1 (k = 1) 0.4229 - 2.6090 - 0.1107 - 5.8447 - 0.8220 8.5236 - 0.8573

Neuron 2 (k = 2) 0.3940 - 0.4733 - 0.5282 - 0.3056 - 0.1648 0.2723

Neuron 3 (k = 3) 0.2655 - 0.8017 0.2447 - 3.6306 - 3.0658 4.4438

Neuron 4 (k = 4) - 0.0285 4.5018 2.6749 0.5770 0.0294 - 1.9287

Neuron 5 (k = 5) 0.2684 - 0.8448 0.3661 - 3.8033 3.9359 4.8848
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where i is the order number given to the FS;P=FS;m ratio

and n is the number of data points.

If the computed value of 50% cumulative proba-

bility (P50) is less than 1, underprediction is implied

while values greater than 1 means overprediction. The

‘best’ model is corresponding to the P50 value close to

1. The 90% cumulative probability (P90) reflects the

variation in the ratio of FS;P=FS;m for the total

Fig. 9 Correlation

coefficient of measured and

predicted stability factors

through stability charts

Fig. 10 Correlation coefficient of measured and predicted stability factors through neural network model

Table 5 Comparison of different methods of predicting the safety factor of rock slope

Method Relative error FS;P=FS;m RMSE

Max Min l r l r

Neural network 15.4 0.00 6.10 0.060 1.01 0.086 0.296

Stability chart 46.1 0.00 11.5 0.102 1.01 0.154 0.532
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observations. The model with FS;P=FS;m close to 1.0 is

the better one.

Figure 11 shows the variation of FS;P=FS;m with

cumulative probability (%) for the ANN model and

stability charts methods. As can be seen, model based

on neural network have the more proper distribution.

11 Sensitivity Analysis

Sensitivity analysis is the study of how the variation in

the output of a mathematical model can be attributed

to variations of its input factors. Different approaches

have been proposed for determining the important

input variables and ranking the input variables in terms

of the impact on the network output. Goh (1994) and

Shahin et al. (2002) used the Garson’s algorithm

(1991) to choose important input variables. In this

method, the input-hidden and hidden-output weights

of the trained ANN model are partitioned and the

absolute values of the weights are taken to select the

important input variables.

Garrison’s algorithm process can be described as

follows:

1. For each neuron j of the hidden layer, the absolute

of the ith input weight multiplies the absolute

value of the output weights of the neuron and the

product of their multiplication is combined. This

will get the Sij.

2. For each input variable i, Pi is calculated from the

sum of Sij obtained from the previous step

ðPi ¼
P

SijÞ.
3. The relative importance of each variable i from the

input layer is obtained by dividing Pi by the sum of

Pi ðranki ¼ PiP
i
Pi

Þ

Olden et al. (2004) presented a method of connec-

tion weights in which the actual values of weight

coefficients are considered. This method calculates the

product of the raw input-hidden and hidden-output

connection weights between each input neuron and

output neuron and sums the products across all hidden

neurons.

Connection weights process can be described as

follows (Olden et al. 2004):

1. For each neuron j of the hidden layer, the ith input

weight multiplies the value of the output weights

of the neuron and the product of their multiplica-

tion is combined. This will get the Sij.

2. For each input variable i, Pi is calculated from the

sum of Sij obtained from the previous step

ðPi ¼
P

SijÞ.
3. The relative importance of each input variable i is

proportional to the absolute value of Pi.

The sensitivity analysis for the model as per

Garson’s method and Olden et al. connection weight

approach to find out important input parameters is

presented in Table 6.

Fig. 11 Predicted over

measured safety factor ratio

against cumulative porosity

for ANN and safety

chart models
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According to Garson’s method, the coefficient of

surcharge load effect (CSL) has the highest effect and

the slope angle has the least effect on the FOS. The

noteworthy point in the Garson algorithm is that due to

the use of absolute weight coefficients, this method

does not show that the desired variable is direct with

network output or indirect ratio.

Based on the method of communication weights,

the dimensionless parameter (GSI) has the highest

effect and the slope angle has the least effect on the

slope stability factor. Also, GSI, coefficient of sur-

charge load effect (CSL) and the dimensionless

parameter (Ns) have a positive contribution to the

FOS and slope angle að Þ has negative effects on the

FOS it should be noted that the mentioned methods for

sensitivity analysis show the relative importance of the

input variables of the ANN model, since the variables

of surcharge load intensity (p), the unconfined com-

pressive strength of rock rcið Þ, and height of slope

(H) in the dimensionless parameter (Ns) are incorpo-

rated. Therefore, these methods do not independently

examine the effect of each of these parameters on the

network output. Two other methods were used to

determine the sensitivity of slope stability to all

parameters.

One of these methods is the Pearson correlation

coefficient, which is used to rank the appropriate

inputs for the network. According to this method, the

correlation coefficient between the actual output and

each input variable indicates the relative importance of

each variable. Table 7 presents the correlation coef-

ficient between the input variables and the output

value.

Based on Pearson’s correlation coefficient method,

the GSI is the most important input parameter and the

height of slope is less important than other input

parameters. Also, the negative values of correlation

coefficient indicate the inverse effect of the input

parameter on the FOS. Therefore, by increasing the

slope angle, the intensity of the surcharge load and

height of slope of the FOS decreases.

A parametric study was carried out through a basic

approach to sensitivity analysis by fixing all but one

input variable to their mean values and varying the

remaining one within the range of its maximum and

minimum values. The sensitivity analysis was

repeated for every contributing parameter with the

aim of providing a better understanding of the

contribution of individual parameters to predictions

of the proposed ANN. Figures 12, 13, 14, 15 and 16

represent the results of the sensitivity analysis for the

slope angle, the height of the slope, the intensity of the

surcharge load, the unconfined compressive strength

of rock, and GSI, respectively.

Figure 12 represents the sensitivity analysis of the

FOS with the slope angle variations. It is observed that

the change of FOS is linear and have an inverse

relationship with the slope angle. On average, when

the angle of slope is increased by 10%, the FOS

decreases by 8.85%.

Figure 13 shows the sensitivity analysis of the FOS

with respect to the height of slope variations. It is

observed that the changes of FOS are nonlinear

(quadratic function) and have an inverse relationship

with the height of the angle. On average, when the

Table 6 Relative importance of different inputs as per Garson’s algorithm and connection weight approach

Input Garson’s algorithm (%) Connection weight approach

Relative

importance (%)

Ranking of inputs as

per relative importance

Sj values as per

connection (%)

Ranking of inputs as

per relative importance

a 5.21 4 - 5.18 4

GSI 18.56 2 45.12 1

Ns 5.58 3 28.72 3

CSL 70.65% 1 31.33 2

Table 7 The correlation coefficient between the input vari-

ables and the actual output variables

a H Ns r GSI P

FOS - 0.22 - 0.12 0.58 0.26 0.6 - 0.42
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Fig. 12 Sensitivity analysis

of the neural network model

(effect of angle of slope)

Fig. 13 Sensitivity analysis

of the neural network model

(effect of height of slope)

Fig. 14 Sensitivity analysis

of the neural network model

(effect of surcharge load

intensity)
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height of the slope is increased by 10%, FOS decreases

by 0.5%

Figure 14 presents the sensitivity analysis of the

FOS against the surcharge load intensity variations. It

is observed that the changes of FOS are nonlinear and

have an inverse relationship with surcharge intensity.

In the lower values of the surcharge load intensity, the

FOS is very sensitive to surcharge load intensity

variations, but at high values that is almost constant.

On average, when the surcharge load intensity is

increased by 10%, FOS decreases by 2.4%

Figure 15 shows the sensitivity analysis of the FOS

versus the unconfined compressive strength of rock

variations. It is observed that the changes of FOS are

almost linear and have a direct relationship with the

unconfined compressive strength of the rock. On

average, when the unconfined compressive strength of

rock is increased by 10%, FOS increases by 6.01%

Figure 16 illustrates the sensitivity analysis of the

FOS with GSI variations. It is observed that the

changes of FOS are nonlinear and have a direct

relationship with the GSI. On average, when the GSI

by 10%, the FOS increased by 14.17%.

12 Slope Cases Application

The following six examples with a wide range of rock

properties and slope geometry were used to compare

efficiency of the rock slope stability charts proposed in

this paper and rock slope stability charts proposed by

Fig. 15 Sensitivity analysis

of the neural network model

(effect of unconfined

compressive strength of

rock)

Fig. 16 Sensitivity analysis

of the neural network model

(effect of ground strength

index)
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Li et al. (2008), Shen et al. (2013), Sun et al. (2016),

and ANN. The results are shown in Table 8.

The ratio of the predicted FOS to the measured FOS

is shown in Table 9. As can be seen, the stability charts

provided by Li et al., on average, predict a stability

factor of 9.1 times greater than the real value. It seems

the ratio of the predicted stability factor (FS,P) to the

measured value (FS,M) by stability charts provided by

Li et al. (2008) is reduced by increasing the dimen-

sionless parameter (Ns) or decreasing the GSI.

For a state that the unconfined compres-

sive strength is very low, the rock slope stability

charts proposed in predict FOS much less and more

than the real value, respectively. It is also observed

that ANNs yield more reliable FOS than the stability

chart curves.

13 Summary and Conclusions

In this study, the effect of various physical and

geometric factors on the stability of rock slope

stability is investigated using the finite element

method (FEM) and the shear strength reduction

(SSR) method. Independent variables in this research

included geometric variables (e.g., height and slope

angle), geomechanical parameters of rock (e.g., GSI

and the unconfined compressive strength of the rock

rcið Þ, and surcharge load intensity. A stability

Table 8 Six slope examples analyzed using the proposed stability charts and neural networks

Input parameter Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

rci MPað Þ 5 0.75 35 18 30 80

GSI 15 50 50 30 60 40

mi 10 10 10 10 10 10

ckN=m3Þ 27 25 27 25 28 21

H mð Þ 5 27 35 40 40 200

b degð Þ 30 45 63 37 55 60

P kPað Þ 250 0 800 1000 750 2500

Factor safety

Proposed charts in this paper 0.85 0.71 2.77 1.17 2.44 2.06

Neural networks model 1.2 0.9 2.16 1.37 2.93 1.43

Proposed charts by Li et al. (2008) 15.76 2.22 13.1 39.12 22.18 7.65

Proposed charts by Shen et al. (2013) 1.23 1.33 2.09 2.39 3.06 1.45

Proposed charts by Sun et al.(2016) 2.41 10 2.41 2.47 3.35 1.64

PHASE2 1.32 1.05 2.26 1.72 3.09 1.6

Table 9 Ratio of the predicted stability factor to the measured value

Method Example number Average Standard deviation

1 2 3 4 5 6

Ratio of the predicted stability factor (FS,P) to the measured value (FS,M)

Proposed charts in this paper 0.64 0.68 1.23 0.68 0.79 1.29 0.88 0.29

Neural networks model 0.91 0.86 0.96 0.80 0.95 0.89 0.90 0.06

Proposed charts by Li et al. (2008) 11.94 2.11 5.80 22.74 7.18 4.78 9.09 7.43

Proposed charts by Shen et al. (2013) 0.93 1.27 0.92 1.39 0.99 0.91 1.07 0.21

Proposed charts by Sun et al.(2016) 1.83 9.52 1.07 1.44 1.08 1.03 2.66 3.38
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chart was developed for each slope using nonlinear

regression and FEM analysis results. In order to reduce

the independent variables, a dimensionless parameter

is defined as: Ns ¼ CSLð Þ rc

c HþP. A mathematical

model based on ANNs was developed using FEM

analysis results and the following conclusions can be

drawn:

1. The results showed that in all stability charts, the

best relation for fitting the FOS and the dimen-

sionless parameter (Ns) is a power relation as

FS ¼ A: Nsð Þn
, where A and n are dimensionless

parameters, which are functions of GSI.

2. Effect of surcharge using a decreasing coefficient

CSL ¼ 1 � P
rc

� �0:3
� �

was considered. As the

surcharge increased, it reduced the dimensionless

parameter (Ns) and, consequently, reduced the

factor of safety.

3. Using the back propagation (BP) neural network

algorithm, a mathematical model was developed

to predict the FOS of rock slopes and an equation

was presented based on the trained weights of the

ANN.

4. The performance of stability charts and ANN was

compared and observed that both methods have a

good agreement in predicting the FOS. However,

in the ANN model, unlike the stability charts,

independent variables of the angle of slope and

GSI are directly introduced in the model equations

and need not be interpolated.

5. Analysis of statistical mean and standard devia-

tion, along with cumulative probability function,

were also utilized to investigate the quality of

predictions made by the proposed models. The

results showed that ANN model have the better

proper distribution.

6. The sensitivity analysis was carried out based on

different approaches. In general, the GSI, effect of

surcharge (CSL) and then the dimensionless

parameter (Ns) have the highest effect on the

stability factor of slopes. The slope angle, slope

height, and intensity of the surcharge load have an

inverse relation and other parameters have a direct

relation with the FOS of rock slope stability.

Among all independent variables, surcharge load

intensity has the smallest effect on slope stability

7. It is observed that ANN yields more reliable

stability factor than stability charts curves.
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