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Abstract Friction capacity (fs) of driven pile in clay

is key parameter for designing pile foundation. This

study employs Gaussian Process Regression (GPR),

and Minimax Probability Machine Regression

(MPMR) for determination of fs of driven piles in

clay. GPR is a Bayesian nonparametric regression

model. MPMR is a probabilistic model. Pile length

(L), pile diameter (D), effective vertical stress (r’v),

undrained shear strength (Su) have been used as input

variables of GPR and MPMR. The output of the

models is fs. The developed GPR, MPMR models have

been compared with the Artificial Neural Network

(ANN). GPR also gives the variance of predicted fs.

The results prove that the developed GPR and MPMR

are efficient models for prediction of fs of driven piles

in clay.
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1 Introduction

The determination of friction capacity (fs) of driven

pile in clay is a challenging task for geotechnical

engineers. The different methods are available for

determination of fs of driven pile in clay (Chandler

1968; Tomlinson 1971; McClelland 1972; Burland

1973; Meyerhof 1976; Parry and Swain 1977a, b). The

available methods are not reliable (Randolph et al.

1979). Randolph et al. (1979) has nicely explained the

mechanism of driven pile in clay. Goh (1995)

successfully adopted Artificial Neural Network

(ANN) for determination of fs of driven pile in clay.

However, ANN has some limitations such as black

box approach, arriving at local minima, low general-

ization capability, absence of probabilistic output, etc.

(Park and Rilett 1999; Kecman 2001).

The article uses Gaussian Process Regression

(GPR) and Minimac Probability Machine Regression

(MPMR) for determination of fs of driven pile in clay.

GPR is a probabilistic non-parametric modeling

approach. It estimates distributions over functions

from training data. Researchers have successfully used

GPR for solving different problems in engineering

(Pal and Deswal 2010; Xia and Tang 2011; Ni et al.

2012). MPMR is developed based on Minimax

Probability Machine Classification (MPMC) by con-

structing a dichotomy classifier (Strohmann and

Grudic 2002). MPMR has been successfully used in

the various filed of engineering (Yang et al. 2010;

Zhou and Xia 2011; Zhou et al. 2013). This study uses
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the database collected by Goh (1995) (see Table 1).

The dataset contains information about pile length (L),

pile diameter (D), effective vertical stress (s’v),

undrained shear strength (Su) and fs. The developed

GPR and MPMR have been compared with the ANN

(Goh 1995). This article is organized as follows. The

details of GPR for prediction of fs of driven piles in

clay are described in Sect. 2. Section 3 describes

MPMR model. The results and discussion are pro-

vided in Sect. 4. In Sect. 5, the major conclusions are

drawn.

2 Details of GPR

In GPR, the problem is to determine a function y ¼
f xð Þ from the following dataset

D ¼ xi; yif gNi¼1x 2 Rd; y 2 R ð1Þ

where x is input, y is output, Rd is d-dimensional

vector space and R is one dimensional vector space. In

this study, L, D, r’v, and Su are used as input variable.

fs is output of the GPR. So, x ¼ L;D; r0v; Su
� �

and

y ¼ fs½ �.
The joint distribution of y is given by

p yð Þ ¼ N 0;K x; xð Þ þ r2I
� �

ð2Þ

where K xi; xð Þ is kernel function and I is identity

matrix.

For a new input xN?1, the distribution of yN?1 is

Gaussian with mean and variance:

l ¼ K xNþ1; xð Þ K x; xð Þ þ r2I
� ��1

y ð3Þ

r ¼ k xNþ1; xð Þ � r2I

� K xNþ1; xð Þ K x; xð Þ þ r2I
� ��1

K x; xNþ1ð Þ ð4Þ

The optimum value of hyperparameters of the GPR

for a particular data set can be derived by maximizing

the log marginal likelihood using common optimiza-

tion procedures.

In carrying out the formulation, the data has been

divided into two sub-sets; such as:

(a) A training dataset: This is required to construct

the model. In this study, 45 out of the 65 cases of

pile load test are considered for training dataset.

Table 1 Dataset used in this study

L (m) D (cm) r0v (kPa) Su (kPa) Fs (kPa)

14.1 15 96 26 27

13 15 102 15 26

11.7 20 54 23 14

17.5 14.3 87 23 26

15.9 15 49 17 12

8.1 13.5 37 13 11

7.7 16.5 32 15 9

10 13.5 33 10 12

12 15.5 39 12 10

10.2 22 19 15 8

24.2 15 146 19 29

17.1 15 109 57 24

12.7 23.2 38 19 17

10 17 82 36 28

14.3 26 89 22 22

22.5 47 60 45 23

5.5 30.5 44 30 38

19.2 61 142 31 30.7

15.2 35.6 448 104 109.2

12.2 35.6 718 162 162

43.9 30.5 162 38 30

96 61 354 80 44

73.8 61 273 67 47.6

22.6 76.7 651 170 192.1

30.5 32.5 153 45 29.3

45.7 32.5 148 52 21.8

13.7 32.5 112 45 42.3

5.5 16.9 51.6 129.5 76.7

29 33 105 39 39.8

12.2 16.8 33 16 9.9

14 35.1 59 30 23.4

39.6 27.4 297 165 80.9

30.5 61 91 52 30.7

25.9 32.5 99 61 34.2

13.1 27.4 80 110 53.9

20.1 61 105 208 91.5

9.1 45 54 144 73.4

16.8 61 87 100 55

13.7 32.5 112 137 64.4

18.3 76.2 115 335 154.1

4.6 16.9 43 1205 84.6

33.6 32.5 121.4 35.4 30.4

33.6 32.5 108 48.8 27.1

20.3 32.5 158.2 112.8 53

30.5 51 102.8 24.4 23.5
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(b) A testing dataset: This is required to estimate the

model performance. In this study, the remaining

20 data is considered as testing dataset.

The data is normalized between 0 and 1. The

normalization has been done by using the following

equation.

dnormalized ¼
d � dminð Þ

dmax � dminð Þ ð5Þ

where d = any data (input or output), dmin = minimum

value of the entire dataset, dmax = maximum value of

the entire dataset, and dnormalized = normalized value

of the data.

Radial basis function (K xi;xð Þ¼exp � xi�xð Þ xi�xð ÞT
2s2

n o
,

s is width of radial basis function) has been used as a

kernel function. The program of GPR has been

developed by using MATLAB.

3 Details of MPMR

This section will describe briefly MPMR for predic-

tion of fs of driven piles in clay. MPMR has the

following form.

y ¼
XN

i¼1

biK xi; xð Þ þ b ð6Þ

where K(xi,x) is kernel function, x is input, y is output,

N is number of data, bi and b are output of the MPMR

algorithm.

In this study, x ¼ L;D; r0v; Su
� �

and y ¼ fs½ �.
One dataset is obtained by shifting all of the

regression data ? e along the output variable axis. The

other dataset is obtained by shifting all of the

regression data - e along the output variable axis. A

regression surface is the classification boundary

between these two classes. More details about MPMR

are given by Strohmann and Grudic (2002). MPMR

uses the same training dataset, testing dataset, and

normalization technique as used by GPR. Radial basis

function has been used as kernel function. MATLAB

has been used to develop the MPMR

4 Results and Discussion

The performance of GPR model depends on the value

of Gaussian Noise (e) and s. The design values of e and

s have been determined by trial and error approach.

The developed GPR gives best performance at

e = 0.01 and s = 0.3. Figures 1 and 2 shows the

performance of training and testing dataset

Table 1 continued

L (m) D (cm) r0v (kPa) Su (kPa) Fs (kPa)

8 13.5 27 9 9

9.4 29.3 52 29 18

14.6 16 67 29 16

11.6 17.5 57 27 18

9.6 19.2 42 15 13

21.6 45.7 147 31 28.8

36.9 30.6 149 28.2 30.5

66.4 32.5 223 60 31.2

11.6 11.4 44 21 13.4

22.9 32.5 91 52 27

13.8 19 27 21 13

25.3 27.4 244 185 88.8

14.9 52.8 66 53 27.6

18.3 32.5 51 33 32

48.2 61 152 64 37.8

32 27.4 141 115 59.8

13.4 27 81 22 20

24.2 15 147 19 30

15.5 17.5 80 72 35

12.8 32.5 110 96 54.7
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Fig. 1 Performance of training dataset
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respectively. The performance of GPR has been

assessed in terms of Coefficient of Correlation

(R) and variance account for (VAF). The value of R

is calculated from the following equation.

R ¼
Pn

i¼1 fsai � f sa
� �

fspi � f sp
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 fsai � f sa

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 fspi � f sp

� �q ð7Þ

where fsai and fspi are the actual and predicted fs values,

respectively, f sa and f sp are mean of actual and

predicted fs values corresponding to n patterns. For a

good model, the value of R should be close to one.

The following equation has been used to determine

VAF

VAF ¼ 1 �
var fsa � fsp

� �

varðfsaÞ

� �
� 100 ð8Þ

For a good model, the value of VAF should be close

to 100 (Erzin and Cetin 2013). It is observed from

Figs. 1 and 2 that the value of R and VAF is close to 1

and 100 respectively. So, the developed GPR predicts

fs reasonable well. The variance is also obtained from

the developed GPR. Figures 3 and 4 illustrates the

variance of training and testing dataset respectively.

These figures can be used to determine uncertainty. It

can be also used to determine probability of failure.

The design values of r and e have been determined

by trial and error approach for developing the MPMR

model. The developed MPMR gives best performance

at s = 0.8 and e = 0.007. Figures 1 and 2 shows the

performance of training and testing dataset respec-

tively. The value of R and VAF is close to one and 100

respectively for training as well as testing datasets.

Therefore, the developed MPMR proves his capability

for prediction of fc of driven piles in clay. The

developed GPR and MPMR have been compared with

the ANN model developed by Goh (1995). The

comparison has been carried out in terms of Root

Mean Square Error (RMSE) and Mean Absolute Error

(MAE). The values of RMSE and MAE have been

determined by using the following relation.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 fsai � fspi
� �2

n

s

ð9Þ

MAE ¼
Pn

i¼1 fsai � fspi
		 		

n
ð10Þ

where fsa and fsp are actual and predicted fs values

respectively and n is the number of data. Figure 5

shows the bar chart of RMSE and MAE values of the

ANN, GPR and MPMR models. It is observed from

Fig. 5 that the developed GPR and MPMR outperform

the ANN model. The performance of GPR and MPMR
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is almost same. The developed GPR produces variance

of the predicted fs. However, the ANN and MPMR

models do not give variance of the predicted fs. GPR

assumes data distribution for developing the model.

However, ANN and MPMR do not assume any data

distribution.

5 Conclusion

This article describes GPR and MPMR for prediction

of fs of driven piles in clay. 65 datasets have used to

develop the GPR and MPMR models. The data

division and normalization technique have been

described in the manuscript. The developed GPR

and MPMR give reasonable performance. The pre-

dicted variance is useful for determination risk. The

performance of GPR and MPMR is better than the

ANN model. This study gives excellent tools based on

the developed GPR and MPMR for prediction of fs of

driven piles in clay.
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