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Abstract Large cracks are important seepage chan-

nels inside fractured-vuggy reservoirs. Therefore, in

this thesis, the calculation method of fully coupled

modeling of the fractured saturated porous medium

based on the extended finite element method (XFEM)

is established to study the expanding regularity of

cracks in fractured-vuggy reservoirs. Fully coupled

governing equations are developed for hydro-mechan-

ical analysis of deforming porous medium with

fractures based on the stress balance equation, the

seepage continuity equation and the effective stress

principle. The final nonlinear fully coupled equations

reflect not only the coupling effect of the physical

quantity within the porous medium but also the

coupling between the medium and the fracture. During

the spatial dispersion of coupled equations based on

XFEM, two kinds of additional displacement func-

tions are introduced in the displacement model of the

fracture area to reflect the strong discontinuity of the

fracture surface. The pore pressure enhancement

function is also applied to represent the weak

discontinuous features of the normal pore pressure.

The validity and efficiency of this model and calcu-

lation are verified through three calculating examples.

The following crack propagation laws are obtained:

(1) The larger the water flow rate is, the longer the

crack propagation length is, and the larger the

propagation width is (2) The greater the crack angle

and the crack length, the easier it is to expand the

crack. Besides, compared with dip angle, the crack

length has a more sensitive influence to the crack

propagation. (3) When multiple cracks exist, the larger

the fracture spacing is, the easier the crack will

expand.

Keywords Fractured-vuggy reservoir � Seepage
field � Stress field � Coupled effect � Extended finite

element method � Crack propagation

1 Introduction

The porous medium and the fissure medium is the

main storing positions of oil in fractured-vuggy

reservoirs. As the main oil storage space, the porous

medium and the fissure medium can make a difference

to the oil production if their mechanical properties

change (Kang 2008; Huang et al. 2013; Li et al. 2014;

Zhao et al. 2012). The porous medium usually

composes of two parts. The one is the solid skeleton
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which plays a part as the acceptor of force. The other is

the porous medium which plays a part as the flow

channel for the fluid. The mechanical properties of the

solid skeleton shall be influenced by the fluid flow. At

the same time, the fluid flowing shall be influenced by

the deformation of the solid skeleton. And that’s just

how the coupled mechanical behaviors emerge in the

porous medium. However, for the porous medium

with large cracks, they usually maintain more complex

mechanical properties (See Fig. 1). The whole seep-

age field and the stress field will be influenced as the

fluid exchanges between the fractures and the pores,

which will then lead to the closure and propagation of

the cracks. As the crack closure and propagation can

influence the mechanical properties of the porous

medium, vice versa. Therefore, the mechanical prop-

erty study of porous medium with cracks is a more

complex one and agrees with actual situations better.

Terzaghi (1943) was the first one doing research on

the porous medium, and he put forward the consoli-

dation theory of one-dimensional fluid saturated

viscoelastic porous medium and the famous effective

stress equation. And up till now, this equation is still

the basic formula to study the interactions between the

rock mass and the fluid. Biot (1941) and Boit and

Willis (1957) then promoted Terzaghi’s theory to the

linear elastic porous medium three-dimensional con-

solidation theory. Later some scholars (Morland 1972;

Wu and Forsyth 2001; Stelzer and Hofstetter 2005;

Abdul et al. 2011; Bitao et al. 2012; Alexandre 2013)

continuously developed the Blot’s three-dimensional

consolidation theory into the theoretical model of

coupled effect involving the multiple-phase saturated

flow and the porous medium.

Large cracks in fractured-vuggy reservoirs are not

only reservoir spaces but also seepage channels. As the

existence of cracks has a great difference in the rock

permeability, it is necessary to consider the influence

on the seepage field and stress field brought by the

fluid exchange between pores and cracks as well as on

the crack propagation and closure. In petroleum

domain, the former research mainly focuses on

hydraulic fracturing. Benoit and Sylvie (2012) used

cohesive zone model to simulate the propagation of

hydraulic fracturing in the porous medium. Magnus

(2012) adopted the finite element method (FEM) to

establish the modeling approach for the anisotropic

rock hydraulic fracturing in a macro-scale. Chen

(2012) developed the pore pressure cohesive finite

elements to simulate the hydraulic fracturing propa-

gation in the porous medium. Cuo et al. (2015) used

the FEM to study the mutual influence regularities

between the hydraulic fractures and the natural

fractures. Olaga et al. (2013) and Wen (2015) devel-

oped the UFM to simulate the propagation of pre-

existing cracks in the complicated geological mass.

Wang et al. (2014) studied the influence to the

hydraulic fracturing propagation by the injection

parameter. Farzin and Ali (2014) developed the

numerical simulation method of the three-dimensional

hydraulic fracturing propagation. Wang et al. (2013)

studied the influence to the crack propagation in the

anisotropic rock mass by the pore pressure based on

the FEM.

The finite element method has been successfully

applied to various engineering simulations and has a

great advantage in dealing with continuous problems

(Sarris and Papanastasious 2012; Birk and Behnke

2012; Erasmo et al. 2013; Zhang et al. 2017a, b).

However, when it involves the discontinuous prob-

lems of cracked rock masses, FEM betrays huge

limitation and deficiency. During the simulation of the
Fig. 1 Flow characteristics in a fractured deforming porous

medium and boundary conditions
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crack propagation, the mesh must be re-divided. This

increases computational cost and makes the whole

simulation process a more complex one. To solve this

problemmany numerical methods are developed at the

right moment. The extended finite element method

(XFEM) is one of them. It is a new, improved

numerical solution method on the base of FEM.

Compared to FEM, XFEM contains an advantage in

effectively solving the discontinuous problems and it

can exist separately from grid. Therefore, the redivid-

ing process can be avoided. Mousavi and Sukumar

(2010) put forward a new Gauss integration

scheme under the extended finite element framework,

which improved the computation efficiency. Mota-

medi and Mohammadi (2010) studied the dynamic

crack propagation regularities in the transversely

anisotropic rock mass with the XFEM. (Gupta and

Duarte 2014) did research on the three-dimensional

crack extension process. Giner et al. (2008) and Shi

et al. (2010) realized the secondary development for

XFEM function on the ABAQUS platform. Elizaveta

and Anthony (2013) adopted the level set to simulate

the hydraulic fracture propagation.With the assistance

of the cohesive extended finite element method,

Mohammadnejad and Khoei (2013a, b) carried out

studies on simple cracks with known propagation

directions.

In this thesis, the coupled stress and fluid flow

control equations of the porous medium and the fissure

medium are established. And the weak form of the

equations are also obtained with the help of divergence

theorem. Based on this, the spatial dispersion of the

control equation is carried out through the XFEM; and

the time discretization throughNewton’smethod.With

the assistance of the above spatial dispersion as well as

time discretization, the numerical solution of the porous

media-crack model is finally obtained. After this, the

secondary development of the finite element analysis

software-ABAQUS is carried out, which implements

the full coupling of the hydraulic fractures’ propagation

in the porous medium. Besides, the crack propagation

regularities under the condition of fluid–solid coupling

are analyzed through calculating examples.

2 Governing Equation

Just as shown in Fig. 1, inside the porous medium are

the solid skeleton and the pore medium. It is a mutual

coupling process of the solid skeleton and the porous

medium while the former one shows a force–defor-

mation and the latter shows a deformation caused by

fluid flow. So in this section, the equation of the solid–

liquid coupling is established in the porous medium.

And the fluid flow satisfy the two-dimensional Darcy’s

law in the porous medium. Besides, there is still a fluid

exchange process between the fractured fluid and the

porous medium fluid. Thus, in this thesis, the fractured

fluid and the surrounding leakage flux of the porous

medium are regarded as the mass delivery channel for

the coupled porous medium as well as the fissured

medium. Through the above procedure, the solid–

liquid coupling model of the crack fluid and the solid

porous medium can be established.

2.1 Governing Equation of the Porous Medium

1. Stress field equation

The effective stress principle was put forward by

Terzaghi in 1923 when he studied the mutual effect on

the water-filled saturated soils. And this principle has

been further developed as a significant one of the

poroelastic theory. Many other theories studying the

percolating-mechanic interactions like the one-dimen-

sional consolidation theory of Terzaghi, the consoli-

dation theory of Biot and so on was all based on this

effective stress principle. However, with the deepen-

ing of the research, this equation is found to be

insufficient in describing some deformation charac-

teristics in terms of certain porous mediums such as

the concrete and the rock mass. Therefore, a universal

effective stress principle is developed and expressed

as follows:

r0 ¼ r� amp ð1Þ

where r0 is the effective stress; r is the total stress; p is

the pore pressure; a is the Biot coefficient; m refers to

the constant vector whose evaluation is 1 1 0½ �T
under the condition of two-dimension.

The solid skeleton displacement is regulated as

ui x; tð Þ and the relative displacement of the crack fluid

to the solid skeleton is regulated as vi x; tð Þ. As for the
static problems, the acceleration velocity shall be

negligible. Therefore, the momentum balance equa-

tion of the solid–liquid mixture can be written as:

r � rþ qb ¼ 0 ð2Þ
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where b is the body force vector; q is the average

density of the porous medium, which is defined as

q ¼ nqw þ 1� nð Þqs, where n is the porosity, qw is the
density of fluid phase and qs is the density of solid

grains.

The constitutive equation of the solid skeleton can

be written as

dr0 ¼ Dde ð3Þ

In which e represents the strain tensor of the

skeleton, which is obtained through its geometric

equation.

e ¼ 1

2
ruþ ruð ÞT
� �

ð4Þ

In Eq. (3) D represents the fourth-order tangential

stiffness matrix, and for the isotropic elastic plane

strain problem, D can be written as follows:

D ¼ E

1þ mð Þ 1� 2mð Þ

1� m m 0

m 1� m 0

0 0
1� 2m

2

2
64

3
75 ð5Þ

where E is the elastic modulus, v is the Poisson’s ratio.

Therefore, Eqs. (1) to Eq. (5) constitute the stress field

equation of the porous medium.

2. Seepage field equation

According to the momentum conservation of the

fluid in the porous medium, the generalized Darcy’s

law is given by

�rp� Rþ qfb ¼ 0 ð6Þ

where qf is the fluid density; R is the fluid viscous

resistance, which can be written according to Darcy’s

law as

R ¼
_V

kf
ð7Þ

where _V is the crack fluid velocity; kf is the

permeability coefficient matrix. Combining Eqs. (6)

and (7), the expression of the crack fluid velocity can

be written as

_V ¼ kf �rpþ qfb
� �

ð8Þ

In the saturated porous medium, the continuity

equation of the seepage can be expressed as:

r � _Vþ ar � _uþ K _p ¼ 0 ð9Þ

where K is the compression coefficient, which can be

expressed as

K ¼ a� n

Ks

þ n

Kf

ð10Þ

where Ks denotes the solid bulk modulus; Kf denotes

the fluid modulus; n is the porosity, a is the Biot

coefficient. The continuity seepage equation of the

saturated porous medium can be written by combining

Eqs. (8) and (9) as:

r � kf �r _pþ qfb
� �� �

þ ar � _uþ K _p ¼ 0 ð11Þ

Stress field Eqs. (1)–(5) and Seepage field Eq. (11)

are the fluid–solid coupled governing equations in a

porous medium.

3. Boundary conditions

As shown in Fig. 1, the boundary conditions of the

displacement field include stress boundary condition

and displacement boundary condition. The stress

boundary condition is t ¼ r � nCt
¼ �t. On Ct. Where

nCt
is the unit outward normal vector to the external

boundary C. �t denoting the known surface force on the
boundary Ct. The displacement boundary condition

can be interpreted as follows: it must meet the

condition that u ¼ �u on the boundary Cu. �u is the

known displacement on this boundary. C is the whole

external boundary. Besides, it must meet the equation

C ¼ Ct [ Cu.

The boundary conditions of the seepage field

include constant hydraulic pressure boundary condi-

tion and constant flow boundary condition. The

constant hydraulic pressure boundary condition can

be expressed as: it must meet the condition that p ¼ �p
on boundary Cp, in which �p is the known pore-fluid

pressure on this boundary. The constant flow boundary

condition can be explained as v � n _Cw
¼ �q on the

boundary Cw and the �q is the fluid outflow rate exerted

on it. Besides, it must meet the equation,

C ¼ Cp [ Cw.

Because of the existence of the large cracks as well

as the quality exchanges between the cracks and the

porous medium, the boundary conditions on the cracks

meet the following equations: r � nCd
¼ �pnCd

;

_v½ �½ � � nCd
¼ �qd. In which, Cd denoting the crack

boundary, �qd is the leakage flux of the crack fluid
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and the surrounding porous and it is also the mass

transfer channel of the coupled porous medium as well

as the fissured medium.

4. The weak form of the governing equation

The derivation of the weak form of the governing

equation in this section is mainly to meet the

calculated requirements in simulating the strong

discontinuity based on XFEM so that the testing

function can be applied to the weak form of the

governing equation and the discrete system can also be

obtained. In order to get the weak form of the balanced

equation in the porous medium, u(x, t) and p(x, t) are

defined as testing functions satisfying all boundary

conditions. Using the divergence theorem for Eqs. (2)

and (11) leads to the following weak form of

governing equations as:

Z

X

rdu � rdXþ
Z

Cd

du½ �½ �r � nCd
dC�

Z

X

rdu � qbdX

�
Z

Ct

du � �t dC

¼ 0

ð12Þ

Z

X

rdpkfrpdXþ
Z

Cd

dp _v½ �½ � � nCd
dC

�
Z

X

dpar � _udX�
Z

X

dpK _pdX

�
Z

X

rdpkf � qfbdXþ
Z

Cw

dp _v � nCð ÞdC ¼ 0

ð13Þ

2.2 Governing Equation of the Fluid Flow

in Cracks

In order to derive the motion equation of the fluid flow

in cracks, an analytical model as shown in Fig. 1 and a

local Cartesian coordinate system are established.

1. Strong form equation

In order to simulate the flow of fluid in the fracture,

the continuity equation of the fluid flow in the fracture

can be written as

r � _vþ ar � _uþ 1

Kf

_p ¼ 0 ð14Þ

where Kf is the bulk modulus of the solid particles in

the porous medium, _v is the relative velocity vector of

the crack fluid with respect to the porous medium and

is defined as

_v ¼ kfd �rpþ qfb
� �

ð15Þ

where kfd is the permeability coefficient of the cracks

which can be written based on the classical cubic law

as:

kfd ¼
1

j
w2

12uf
ð16Þ

where w refers to the width of the cracks. j is the

influencing variable of the angle deviation between

cracks and the level surface. uf is the fluid viscosity in

cracks.

2. Weak form equations

The fluid inside the cracks is usually regarded as

non-compressible. Therefore the continuity equation

weak form of the crack fluid can be obtained through

the following procedures. Firstly, let Eq. (14) multiply

the testing equation dp x; tð Þ. Secondly, in the fissure

fluid region X0 using the divergence theorem. Lastly,

plug Eq. (15) into the above calculations. Then the

continuity equation weak form of the crack fluid can

be written as

Z

X0

dp r � kfd �rpþ qf b
� �� �

þ ar � _uþ 1

Kf

_p

� 	
dX

ð17Þ

Applying the divergence theorem to Eq. (17) and

the continuity equation weak form can be written as:

Z

X0

rdpkfdrpdXþ
Z

Cd

dp _v½ �½ � � nCd
dC

�
Z

X0

dpar � _udX�
Z

X0

dp
1

Kf

_pdX

ð18Þ

In order to compute the coupling term of the mass

transmission, the cracked shall be calculated under the

topical Cartesian coordinates system x0; y0ð Þ. The

directions of x0 and y0 are in line with the directions
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of crack unit tangential vector tCd
and unit normal

vector nCd
. Because the length of the cracks is much

larger than width, the fluid pressure are distributed

evenly over the cracks’ transverse section. Therefore,

the weak equation form of the coupling mass in cracks

can be written based on Eq. (18) as:

Z

Cd

dp _v½ �½ � � nCd
dC¼ �

Z

Cd

kfdqf 2hð Þ odp
ox0

op

ox0
dC

þ
Z

Cd

dpaqf 2hð Þ o _ux0

x0


 �
dC

þ
Z

Cd

dpa _uy0
� �� �

dC

þ
Z

Cd

kfdqf 2hð Þ odp
ox0

bx0dC

ð19Þ

3 Discretization of Governing Based on XFEM

3.1 Spatial Discretization

In this section, the spatial discretization of the weak

forms of the porous media balance equation, as well as

the fluid continuity equation, are carried out through

XFEM. In order to describe the discontinuous crack

displacement field, the jump function Heaviside and

the crack-tip progressive function is introduced in.

Their expressions can be given by

H u xð Þð Þ ¼ þ1u xð Þ� 0

�1u xð Þ\0

�
ð20Þ

b c;hð Þ¼ ffiffiffi
c

p
sin

h
2
;
ffiffiffi
c

p
cos

h
2
;
ffiffiffi
c

p
sin

h
2
sinh;cos

h
2
sinh

� �

ð21Þ

The displacement field u x; tð Þ can be written based

on the XFEM as:

u x; tð Þ ¼
X
I2N

NuI xð Þ�uI tð Þ þ
X
J2N dis

NuJ xð ÞH u xð Þð Þ�aJ tð Þ

þ
X

K2N tip

NuK xð Þb c; hð Þ�bK tð Þ

ð22Þ

The pressure field is a discontinuous one because of

the existence of the cracks. And in order to describe

this kind of discontinuity the level set function is

introduced, which is written as:

w xð Þ ¼
X
I2N dis

NpJ xð Þ uIj j �
X
I2N dis

NpJ xð ÞuI

������

������
ð23Þ

Therefore the expression of the pressure field p x; tð Þ
can be written based on the XFEM as:

p x; tð Þ ¼
X
I2N

NpI xð Þ�pI tð Þ þ
X
J2N dis

NpJ xð Þw xð Þ�cJ tð Þ

ð24Þ

where N denotes the collection of nodes; the N dis

denotes the collection of nodes in crack-penetrating;

N tip
denotes the collection of crack-tip nodes. The

specific unit node information is shown in Fig. 2.

The final XFEM equation of displacement and

pressure field can be written as:

uh x; tð Þ ¼ Nstd
u xð Þ�u tð Þ þ NHev

u xð Þ�aðtÞ þ Ntip
u xð Þ�b tð Þ

ph x; tð Þ ¼ Nstd
p xð Þ�p tð Þ þ Nabs

p xð Þ�cðtÞ
ð25Þ

where Nstd
u xð Þ is the displacement shape function

matrix of standard notes.NHev
u xð Þ is the shape function

matrix of the enriched penetrating nodes Ntip
u xð Þ is the

Fig. 2 Element and node representation in XFEM
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shape function matrix of the crack-tip penetrating

nodes. Nstd
p xð Þ is the shape function matrix of the

pressure.Nabs
p xð Þ refers to the shape function matrix of

the enriched nodes. �u tð Þ, �aðtÞ, �b tð Þ, �p tð Þ and �cðtÞ
respectively refer to the vector of degrees of freedom

(DOF) of their correspondent node.

Discretizing the Eqs. (12) and (13) by using the

Bubnov–Galerkin method, we can obtain the XFEM

discretization equations as:

Kuu

Kau

Kbu

Kua

Kaa

Kba

Kub

Kab

Kbb

0
B@

1
CA

�u

�a

�b

8><
>:

9>=
>;

�
Qup

Qap

Qbp

Quc

Qac

Qbc

0
B@

1
CA �p

�c

� �

þ
f intu

f inta

f intb

8><
>:

9>=
>;

�
f extu

f exta

f extb

8><
>:

9>=
>;

¼ 0

ð26Þ

QT
up

QT
uc

QT
ap

QT
ac

QT
bp

QT
bc

 ! _�u

_�a
_�b

8><
>:

9>=
>;

þ
Hpp

Hcp

Hpc

Hcc

� 	
�p

�c

� �

þ
Spp

Scp

Spc

Scc

� 	
_�p

_�c

� �
�

qintp

qintc

( )
�

qextp

qextc

� �
¼ 0

ð27Þ

In which K is the stiffness matrix. Q is the coupled

element matrix. H is the penetration coefficient

matrix. S is the compression coefficient matrix. f exta

and qextd are external forces vector quantities. f inta is the

interfacial forces vector quantities produced by the

fluid pressure on the crack face. qintd is the flow vector

quantities produced by the fluid exchange between the

porous medium and the crack face. They are defined as

Kab ¼
Z

X

Ba
u

� �T
DBb

udX

Qac ¼
Z

X

Ba
u

� �T
amNc

qdX

Hdc ¼
Z

X

rNd
p

� �T
kf rNc

p

� �
dX

Sdc ¼
Z

X

Nd
p

� �T 1
Q
Nc

qdX

ð28Þ

fexta ¼
Z

X

Na
u

� �T
qbdXþ

Z

Ct

Na
u

� �T�tdC

qextd ¼
Z

X

rNd
p

� �T
kf � qfbdX�

Z

C-

Nd
p

� �T
�qdC

f exta ¼
Z

Cd

Na
u

� �� �T
r � nCd

dC ¼ �
Z

Cd

Na
u

� �� �T
p � nCd

dC

qintd ¼
Z

Cd

Nd
p

� �T
_v½ �½ �nCd

dC ¼
Z

Cd

Nd
p

� �T
�qddC

where B is the strain matrix and the XFEM discretiza-

tion equation can be written as

K �U�Q �Pþ f intU � fextU ¼ 0

QT _�UþH �Pþ S _�P� qintP � qextP ¼ 0
ð29Þ

In whichU ¼ �u; �a; �b;
� �

andP ¼ �p; �ch i respectively
refer to the standard freedom and enriched freedom of

the displacement as well as the pressure field.

3.2 Time Domain Discretization

In order to get the numerical solution, the temporal

discretization is carried out based on the method of

backward-difference in this section, just as follows

ou

ot
¼ Du

Dt
¼ un � un�1

Dt
op

ot
¼ Dp

Dt
¼ pn � pn�1

Dt

ð30Þ

where Dt refers to the time step; the superscript n

refers to the nth time step. So the equation set can be

obtained by substituting Eqs. (30) into (29) as

WUnþ1
¼ þK �Unþ1 �Q �Pnþ1 þ f intUnþ1

� fextUnþ1

WPnþ1
¼ 1

Dt
QT �Unþ1 þH �Pnþ1 þ

1

Dt
S �Pnþ1

� qintPnþ1
� qPnþ1

¼ 0

ð31Þ

In terms of this kind of non-linear equation set,

Newton’s method is a good way to get the numerical

solution. And with the assistance of the one-order

truncation Taylor’s formula to expand the Eq. (31),

the linear equation set can be written as
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Wiþ1
Unþ1

Wiþ1
Pnþ1

( )
¼

Wi
Unþ1

Wi
Pnþ1

( )
þJin

d �U
i

nþ1

d �P
i

nþ1

( )
¼ 0 ð32Þ

where J denotes the Jacobian matrix. It shall be

analyzed under each iteration with a time step of Dt so
that whether the linear equation set reaches conver-

gence or not can be figured out. And then the next time

step shall be calculated. Given that it is a non-

symmetric matrix and to simplify the calculation, it is

necessary to carry out the corresponding simplification

process. The symmetric Jacobian matrix after the

simplification can be written as

3.3 Crack Propagation Criterion

The rock fracturing mechanics mainly include three

criteria: the maximum tensile circumferential stress

theory, the maximum energy release rate theory and

the minimum strain–energy–density theory. Among

all these three theories, the maximum tensile circum-

ferential stress theory is the universal one. According

to this theory, when the circle tensile stress of the crack

tip reaches the critical value, cracks will emerge from

the tip and then propagate along the direction of the

maximum circle tensile stress.

The maximum tensile circumferential stress theory

contains two basic assumptions: (1) Cracks propagate

along the direction of the maximum circle tensile

stress. (2) When the maximum tensile circumferential

stress reaches the critical value, crack propagation

starts to appear.

According to the first basic assumption of the

maximum tensile circumferential stress theory, the

crack initiation angle can be obtained. According to

the second assumption, the critical stress conditions

can be determined.

In terms of the cracks of type I–II, the stress

components of the crack-tip polar coordinates can be

written by superimposing their tip stress components

as:

rq¼
1

2
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2pq

p KI 3�cos
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þKII 3cosh�1ð Þsinh

2

� �
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The incipient crack angle h0 is obtained by taking

the extreme value of the axial stress rh:
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orh
oh

¼ 0 ð35Þ

Then solve the equation and acquire the crack

growth angle h0

h0 ¼ 2arctan
KI

4KII

� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI

KII

� 	2

þ8

s0
@

1
A ð36Þ

By substituting Eqs. (36) into (34) the maximum

circumferential stress can be acquired and written as

rhmax ¼
1

2
ffiffiffiffiffiffiffiffiffiffi
2pq0

p cos
h0
2

KI 1þ cosh0ð Þ � 3KIIsinh0½ �

ð37Þ

According to the second basic assumption of the

maximum tensile circumferential stress theory, the

equation of the crack propagation criterion can be

written as:

rhmax ¼ rhc ¼
KICffiffiffiffiffiffiffiffi
2pq

p ð38Þ

where rhc is to the critical stress value; KIC is the

fracture toughness which can be written by substitut-

ing Eqs. (37) into (38) as

KIC ¼ 1

2
cos

h0
2

KIcos
2 h
2
� 3

2
KIIsinh

� �
ð39Þ

4 Numerical Calculation

In this thesis, by inserting XFEM into the traditional

finite element software ABAQUS, the development of

the crack propagation analysis program is realized

under the condition of fluid–solid coupled interaction

in the porous medium. Several modules including

model creation, crack initialization, level-set renova-

tion, crack propagation parameters calculation in

fluid–solid coupling and so on are successfully

developed, which makes a dynamic display of the

crack propagation process come true. Figure 3 is the

flow chart of numerical simulation.

Using the calculation method established in this

thesis and through three calculating examples in this

section, the propagation rules of the fractured-vuggy

reservoir are analyzed to verify the effectiveness and

validity of the crack propagation analysis program.

Fig. 3 Flow chart of numerical simulation

Fig. 4 Calculation model of porous medium with an inclined

crack
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4.1 Effects on Crack Propagation by the Water

Flow Action

Figure 4 is the Calculation model of porous medium

with an inclined crack. The model is 10 m in length

and 5 m in width. The displacement constraint is

added along directions of x and y on the bottom

surface. The normal liquid added on the top surface is

defined as q. The bottom surface is the free draining

profile of which the pore pressure is 0. The left and

right surfaces are impervious surfaces. Cracks are in

the central part of the model with a length of 0.5 m and

an angle of 45�. Calculating parameters are shown in

Table 1. In this calculating example, the crack prop-

agation rules are analyzed under different top flow q.

So that effects on crack propagation by the water flow

action can be studied.

Calculating the model based on the parameters in

Table 1. The Displacement nephogram, the stress

nephogram and the pore pressure diagram under the

condition of different flow q are shown in Fig. 5.

As shown in Fig. 5, the pore pressure inside the

porous medium and the cracks increases because of

the water injection pressure, which leads to the crack

Table 1 Parameters of the model with an inclined crack

k (m2) n qs (kg/m
3) Ks (GPa) Kf (GPa) uf (Pas) E (GPa) v

1e-12 0.2 2000 18 3 1e-3 25.6 0.33

Fig. 5 The displacement nephogram, the stress nephogram and the pore pressure diagram under the condition of different fluid flux q
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propagation and the structure deformation correspond-

ingly. The crack propagation shows a good symmetric

form. Its width reaches the maximum at the crack

mouth and gradually decreases inside Finally, crack

propagation shows wedge fracture morphology. It can

be known by comparing the displacement nephogram

and the stress nephogram under different fluid flux that

the crack propagation changes obviously with differ-

ent water pressures. When q = 1e-4 m/s, the crack

has a larger propagation length and the surrounding

displacement value is bigger. Besides, the stress

concentration at the crack-tip is more obvious under

the water pressure.

The crack propagation angle also varies greatly

under different fluid flux. When the fluid flux are

small, the crack propagation angle is small, too. As the

fluid flux increases, the crack propagation angle is

becoming larger and eventually it turns to the same

direction as the water injection. There are apparent

differences found in the pore pressure diagram as the

fluid flux changes. This is mainly because there is

water exchange between the crack and the porous

medium. As the crack propagates, the exchange

process keeps going on. However, the water flows

much slower in the porous medium than in the fissured

medium. When the crack increases the water shall be

discharged more from it. That means the water will

make a greater difference to the crack propagation.

Therefore, the more the fluid flux are, the bigger the

crack opening is; the greater the effects to the seepage

field will be.

Figure 6a is the variation curves of crack propaga-

tion length with different fluid flux. It can be obviously

seen that with the increasing fluid flux, the propagation

length also increases continuously.When the fluid flux

increases from 4e-5 to 2.6e-4 m/s the crack propaga-

tion length increases from 0.4 to 1.6 m in accordance,

300 percent more than before. Figure 6b is variation

curve of crack width with different fluid flux. It can be

obviously seen that with the increasing fluid flux, the

propagation width also increases continuously. When

the fluid flux increases from 4e-5 to 2.6e-4 m/s the

crack propagation width increases from 0.123 to

0.202 m in accordance, 64% more than before.

It follows that the variation of the fluid flux will

influence the length and width of the crack propaga-

tion. Compared with the length changes, the crack

propagation width changes less obviously under

different fluid flux.

Fig. 6 Crack propagation rules under different fluid flux

Fig. 7 Calculation model of porous medium with a crack in

different lengths and different inclinations
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4.2 Influence of Crack Angle and Crack Length

on Crack Propagation

Figure 7 is the calculation model of porous medium

with a crack in different lengths and different incli-

nations. The length and width of the model is both

20 m. Applying a displacement constraint in the x and

y directions at the bottom. Applying the x-direction

displacement constraint on the left and right sides. The

top surface have a free drain surface with a pore

pressure of 0. The hydrostatic pressure of left and right

surfaces is cwh, where cw is liquid bulk density, h is

model depth. The concentrated load added to the top

surface is 10 Mpa, cracks are in the central part of the

model with a length of b and an angle of a. By

analyzing the different crack propagation situations

under consolidation, the author studies the effects of

the crack propagation caused by the dip angle as well

as the crack length.

Figures 8 and 9 show the stress nephogram and the

displacement nephogram with different dip angles and

crack lengths. Compare Fig. 8a with Fig. 8b, it can be

seen that under the condition of the same crack length,

the crack propagation length becomes larger as the dip

angle rises. Besides, the deflection angle of the crack

propagation also becomes larger. Compare Fig. 8c

with Fig. 8d, it can be seen that under the condition of

(a) α=30,β=4 (b) α=60,β=4

(c) α=45,β=8 (d) α=45,β=2

Fig. 8 Stress nephogram of crack propagation with different length and different dip angle
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the same crack dip angle, the longer the crack length

are, the longer the crack propagation length will be.

Figure 9 shows that there are obvious differences

between the displacement nephogram after crack

propagation with different lengths and angles. On

one hand, the displacement nephogram continuity

decreases after the crack propagation if the crack is a

longer one. Besides, there is an obvious discontinuity

of the displacement nephogram with the increase of

the crack length. On the other hand, as the crack length

increases, the displacement value is becoming larger

and larger. That is mainly because a longer crack can

carry out a more influential effect of rock mass

stiffness so that the rock failure and deformation

became more severer.

Figures 10 and 11 are the curves of fracture

propagation length and vertex displacement versus

time under different fracture length and dip angle. The

results show: (1) With the increase of time, the crack

length and the vertex displacement is increasing

constantly. The crack length and the vertex displace-

ment is changed rapidly, and then gradually converge

to a steady state value, and finally, reach equilibrium.

(2) The larger the dip angle is, the longer the crack

propagation will be, which indicates that the crack

propagation happens much more easily if the crack dip

angle is a larger one. The longer the original crack is,

Fig. 9 Displacement nephogram of crack propagation with different length and different dip angle
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the larger the crack propagation length will be, which

indicates that the crack propagation happen much

more easily if the original crack is a longer one. (3)

The larger the dip angle as well as the crack length are,

the larger the top displacement value will be. It

indicates that the whole stability will be influenced

more severely if the crack length and the dip angle are

both very large. (4) The dip angle increased from 15�
to 60�. During this process, the crack propagation

length increased from 2.3 to 3.41 m correspondingly,

48% more than before; the top displacement value

increased from 0.035 to 0.055 m, 57% more than

before. The crack length increased from 2 to 8 m

during this process, the crack propagation length

increased from 1.69 to 3.81 m correspondingly, 125%

more than before; the top displacement value

increased from 0.035 to 0.06 m, 80% more than

before. Thus, it can be inferred that compared with dip

angle, the crack length have a more sensitive influence

to the crack propagation.

4.3 Propagation Rules of Multiple Cracks

Figure 12 shows the porous medium and the uniform

pressure are distributed both on the top surface, as well

as the side faces, a normal flow defined as q is applied

to the top surface; the bottom surface is defined as free;

both left and right sides are impervious boundaries; the

normal displacement of the bottom surface is 0. The

length and width of the model is both 2 m. Two cracks

are in the central part of the model with a length of

0.6 m and an angle of 45�. The vertical distance

between two cracks are defined as S1 while the

horizontal distance is S2. The calculation parameters

are shown in Table 2 and the time step is 1 s, and a

total of 100 s is calculated.

It can be seen from Fig. 13 that both cracks have

appeared in varying degrees of expansion, the expan-

sion angle is roughly the same, but the degree of crack

expansion is different. The crack propagation at the

Fig. 10 Curves of fracture length versus time

Fig. 11 The change curve of vertex displacement with time

Fig. 12 Double cracks calculation model
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bottom surface are less than that of the top surface.

That is because when the fluid passes through the

crack it does not directly flow out of the medium.

Instead, there is a process of temporary storage.

Therefore, there exists a delayed phenomenon during

the crack propagation. The crack propagation influ-

ence on seepage field and stress field under the

condition of different crack distributions can be

analyzed through the ratio of the outflow volume qout
to the inflow volume q.

Figure 14a shows the change law of qout/q with

time under different S1. The result shows that the

smaller S1 is, the less obvious the delay phenomenon

will be during the crack propagation. When S1 is 0,

which indicates that there is only one crack, the delay

phenomenon is the least obvious at this moment. So it

can be known that the larger the vertical distance are,

the more huge the crack propagation influence to the

seepage field will be. This also explains why the larger

Table 2 Parameters of the model with a crack in different lengths and different inclinations

k (m2) n qs (kg/m
3) Ks (GPa) Kf (GPa) uf (Pas) E (GPa) v

6e-13 0.26 2000 32 5 1e-3 25.6 0.33

Fig. 13 Displacement nephogram and stress nephogram of two

cracks

Fig. 14 Propagation rules of cracks with different intervals
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the vertical distance are, the longer crack propagation

length will be.

Figure 14b shows the change law of qout/q with

time under different S2. The result shows that the

bigger S2 is, the more obvious the delay phenomenon

will be during the crack propagation. That indicates

the larger the horizontal distance are, the more huge

the crack propagation the influence to the seepage field

will be. As the crack propagation is accomplished

under the coupling of seepage field and stress field, it

causes the instability to the whole fluid field as well as

stress field. Therefore, the larger the horizontal

distance are, the easier the fracture is to expand.

5 Conclusion

1. Fully coupled governing equations are developed

for hydro-mechanical analysis of deforming

porous medium with fractures based on the stress

balance equation, the seepage continuity equation

and the effective stress principle. The final non-

linear fully coupled equations reflect not only the

coupling effect of the physical quantity within the

porous medium but also the coupling between the

medium and the fracture.

2. In this thesis, a numerical calculation system is

established. During the spatial discretization of

coupled equations, two kinds of additional dis-

placement functions are introduced in the dis-

placement model of the fracture area based on

XFEM to reflect the strong discontinuity and the

crack tip stress singularity of the fracture surface.

The pore pressure enhancement function is also

applied to represent the weak discontinuous

features of the normal pore pressure. During the

time domain discretization, the XFEM calculation

format of the fully coupled governing equations

for deforming porous medium with fractures is

derived in detail based on the method of backward

difference.

3. The validity and efficiency of this model and

calculation are verified through three calculating

examples: (1) The larger the water flow rate is, the

longer the crack propagation length is, and the

larger the propagation width is. (2) The larger the

dip angle as well as the crack length are, the much

more easily crack propagation will happen.

Besides, compared with dip angle, the crack

length have a more sensitive influence to the

crack propagation. (3)When multiple cracks exist,

the larger the fracture spacing is, the easier the

crack will expand. The crack propagation rules

acquired in this thesis can well guide the fractured-

vuggy reservoir exploitation.
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