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Abstract In this article, an analytical solution is

presented for an elastic shallow buried lined tunnel,

which consider a certain surrounding rock deforma-

tion at the inner boundary. Concrete lining and the

surrounding rock was assumed as linearly elastic

materials. The solution uses Muskhelishvili complex

potential functions combined with conformal mapping

method to determine stress components within con-

crete lining and the surrounding rock mass. The

coefficient of Laurent series expansion of the stress

functions is determined by a combination of analytical

and numerical computations. As an example, the case

of a uniform radial displacement of surrounding rock

inner edge is considered in some detail. The solution

was verified by FEM through an example, very good

agreement was demonstrated between analytical solu-

tion and numerical solution. Through numerical

examples, the effect of elasticity modular and the

ratio of the diameter to buried depth on the stresses

component were assessed.

Keywords Stress analytical � Shallow buried lined

circular tunnel � Conformal mapping � Complex

variables

1 Introduction

With the development of the urban underground traffic

system and utilization of underground space, shallow

tunnels are favored in engineering projects in order to

low operational costs, and they inevitably lie near the

ground surface. The excavation of the shallow tunnels

not only causes settlement of ground surface but also

leads to displacement and stress concentration at

around rock hole. It is essential for engineers to control

settlement at ground surface by calculating the stress

of surrounding rock, and given the strength required

for lining (Bobet 2003; Huang and Zhang 2016).

For elastic plane problems of multiplying con-

nected region, it is difficult to get the analytical

solution by general methods. One of the useful

approaches implemented in two dimensional elastic

theories is Muskhelishvili’s (1966) (Sokolnikoff and

Specht 1956) complex variable method. The method

investigated based on complex potential functions and

conformal mapping method, and stress components

and deformations can be determined within the

C. Xiaolin (&) � G. Weiming � D. Guoliang

School of Civil Engineering, Southeast University,

Nanjing 211189, China

e-mail: xiaolin.cao@seu.edu.cn

C. Xiaolin � G. Weiming � D. Guoliang

Key of Laboratory for Concrete and Restressed Concrete

Structures of Ministry of Education, Southeast University,

Nanjing 211189, China

Z. Fengxi

School of Civil Engineering, Lanzhou University of

Technology, Lanzhou 730050, Gansu, China

123

Geotech Geol Eng (2019) 37:3771–3780

https://doi.org/10.1007/s10706-019-00867-4(0123456789().,-volV)( 0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10706-019-00867-4&amp;domain=pdf
https://doi.org/10.1007/s10706-019-00867-4


materials. Based on this method, Exadaktylos and

Stavropoulou (2002) presented a closed-form solution

to stress and displacement of semicircular tunnels. Fu

et al. (2015) used complex variables method presented

the solutions for a buoyant tunnel in an elastic half-

plane, which considered the resultant buoyancy forces

acting on the tunnel by assuming two additional

logarithmic terms with the potentials. Based on

previous studies, Verruijt (1997, 1998) (Verruijt and

Booker 1998; Verruijt and Strack 2008; Kargar et al.

2015) has achieved a lot of research results, and

proposed a similar method for stress and displacement

around a circular tunnel in an elastic half-plane. The

deformations of shallow tunnels have been investi-

gated under different boundary conditions. Recently,

some works on the analytical solution of tunnel via

complex variable method have been reported (Zhou

and Cao 2017; Wang et al. 2018). Include the problem

of a half plane with a circular cavity loaded by a

uniform radial stress, and the problem in which a

uniform radial displacement is imposed on the cavity

boundary. Verruijt (2015) investigated on a complex

variable solution for a deforming circular tunnel in an

elastic half plane. Lu at al. (2016) given the Solution of

a circular cavity in an elastic half plane under gravity

and arbitrary lateral stress. However, the complex

variable solution for shallow buried lined circular

tunnel under the deformation of surrounding rock

inner edge has been rarely considered in the above-

mentioned literature.

The aim at this paper is to give a plane-strain elastic

solution to shallow buried lined circular tunnel, under

the deformation of surrounding rock inner edge. The

solution employs complex potential functions and

conformal mapping method, and is verified by a series

of numerical simulations. Through numerical exam-

ples, the solution is adopted to study the elasticity

modular influences on the stress distribution around a

shallow.

2 General Consideration

2.1 Description of the Problem

The problem deals with an elastic shallow buried lined

circular tunnel in an elastic homogeneous material.

The upper boundary of the half plane and lining inner

boundary are considered to be free of stress, and the

boundaries of the surrounding rock inner edge are

assigned the displacement. The tunnel radius of lining

and Surrounding rock is denoted by R and r, respec-

tively. The tunnel axis is at a depth h from ground

surface, and surrounding rock inner edge is at a depth

d from ground surface (Fig. 1). Lining and Surround-

ing rock is assumed as isotropic and homogenous

materials. It is supposed that liner is installed without

any delay after tunnel excavation,and due to excava-

tion produced deformation of the inner boundary is

W. The infinite plate on complex plane is divided into

two isotropic homogenous regions of S1 and S2
bounded by contours L1 and L2. The regions S1 and

S2 referred to rock mass and concrete lining with

Young modulus E1, E2 and Poisson ratio v1, v2,

respectively. Assuming that the tunnel is infinitely

long, the plane strain problem was analyzed. The

shallow lining tunnel model established is shown in

Fig. 1.

2.2 Conformal Mapping

Through two mapping functions, the region in the

z-plane can be mapped conformally onto two circular

rings (region c1 and c2) in the f-plane. Let w1(f) be a

conformal mapping function which maps boundaries

L1 and the upper boundary of the half plane for two

concentric circles (Fig. 2), bounded by the circles

|f| = 1 and |f| = a. The conformal transformation is

z ¼ w1 fð Þ ¼ �ia
1 þ f
1 � f

ð1Þ

where

L1

L2

xy

s1

s2

r
R β

d

h

Fig. 1 The model of Lined tunnel at shallow depth
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a ¼ h
1 � a2

1 þ a2
; a ¼ 1

r
h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 � r2
p� �

ð2Þ

Let w2(g) be a conformal mapping function which

maps boundaries L1 and L2 into two concentric circles

(Fig. 3), bounded by the circles |g| = 1 and |g| = R0, R0

= R/r. The conformal transformation is

z ¼ w2 gð Þ ¼ rg ð3Þ

2.3 Basic Equation

Two potential functions corresponding to the sur-

rounding rock domain can be expressed by Laurent

series (Sokolnikoff and Specht 1956)

u1 fð Þ ¼
X

1

k¼0

akf
k þ

X

1

k¼1

bkf
�k

w1 fð Þ ¼
X

1

k¼0

ckf
k þ

X

1

k¼1

dkf
�k

ð4Þ

In the same way, two analytic functions corre-

sponding to the lining can be expressed by Laurent

series (Sokolnikoff and Specht 1956)

u2 gð Þ ¼
X

1

k¼0

ekg
k þ

X

1

k¼1

fkg
�k

w2 fð Þ ¼
X

1

k¼0

gkg
k þ

X

1

k¼1

hkg
�k

ð5Þ

Stress components are determined based on these

complex potential functions as follows:

rqj þ rhj ¼ 2
u0
j tð Þ

x0
j tð Þ

þ
u0
j tð Þ

x0
j tð Þ

" #

rhj � rqj þ 2isqhj

¼ 2e2ih

x0
j tð Þ

xj tð Þ
u00
j tð Þx0

j tð Þ � u0
j tð Þx00

j tð Þ

x0
j tð Þ

h i2
þ w0

j tð Þ

2

6

4

3

7

5

; j ¼ 1; 2. . .

ð6Þ

where rqj, rhj and sqhj are radial, circumferential and

tangential stress components, respectively. when

( )ζω=z

( )ζωζ 1-=
ζ

η

α

1

σ

1η

1ξ

2ξ

L1

xy

s1

H

r

Fig. 2 The mapping functions of surrounding rock

( )ζω=z

( )ζωζ 1-= η

1

σ

1η

2η
s2

r
1L

1ξ

2L
R0

x

y

R

zFig. 3 The mapping

functions of lining
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j = 1, t ¼ f; j = 2,t ¼ g, represent surrounding rock

and lining, respectively.

2.4 Boundary Condition

Stress functions u1, w1 and u2, w2 should satisfy

boundary conditions. Under the mapping functions of

surrounding rock, the upper boundary of the half plane

are considered to be free of stress, and the deformation

of the inner boundary is W1 fð Þ, yields

u1 fð Þ þ x1 fð Þ
x0

1 fð Þ
u0

1 fð Þ þ w1 fð Þ ¼ 0 ð7Þ

K1u1 fð Þ � x1 fð Þ
x0

1 fð Þ
u0

1 fð Þ � w1 fð Þ ¼ 2G1 ux þ iuy
� �

¼ W1 fð Þ
ð8Þ

where ux and uy are x and y direction displacement

components. Gi ¼ Ei

2 1þmið Þ, due to the analysis is a plane

strain problem, so Ki ¼ 3 � 4mi. Under the mapping

functions of lining, the inner boundary of the half

plane is considered to be free of stress, and the

deformation of the outer boundary is W2 gð Þ, yields

K2u2 gð Þ � x2 gð Þ
x0

2 gð Þ
u0

2 gð Þ � w2 gð Þ ¼ 2G2 ux þ iuy
� �

¼ W2 gð Þ
ð9Þ

u2 gð Þ þ x2 gð Þ
x0

2 gð Þ
u0

2 gð Þ þ w2 gð Þ ¼ 0 ð10Þ

3 Solution

3.1 The Solution for Surrounding Rock

Form (1), the following expressions can be obtained

x fð Þ
x0 fð Þ

¼ �
1 þ fð Þ 1 � �f

� �2

2 1 � fð Þ ð11Þ

Along the outer boundary |f| = 1, the radiusq = 1,

so that f ¼ qr ¼ r ¼ expðihÞ, �f ¼ r�1. Then Substi-

tuting (11) into (7), yields

u1 rð Þ þ 1

2
1 � r�2
� �

u0
1 rð Þ þ w1 rð Þ ¼ 0 ð12Þ

Substituting (4) into (12), by setting the coefficients

of all powers of r equal to zero. The following

expressions can be obtained

c0 ¼ ��a0 �
1

2
a1 �

1

2
b1 ð13aÞ

ck ¼ ��bk þ
1

2
k � 1ð Þak�1 �

1

2
k þ 1ð Þakþ1

k ¼ 1; 2; 3; . . .
ð13bÞ

dk ¼ ��ak þ
1

2
k � 1ð Þbk�1 �

1

2
k þ 1ð Þbkþ1

k ¼ 1; 2; 3; . . .
ð13cÞ

Along the inner boundary of surrounding rock

|f| = a, the radius q = a, so that

f ¼ qr ¼ ar ¼ a expðihÞ, �f ¼ ar�1. Then Substitut-

ing (11) into (8), yields

K1u1 arð Þ

��ar� 1� 2a2ð ÞþR0 2� a2ð Þr�1 � a2r�2

2 1� arð Þ u0
1 arð Þ

�w1 arð Þ
¼W1 fð Þ

ð14Þ

In order to the convenience of computation, for (14)

multiplied by 1 � arð Þ on both sides, yields

1 � arð Þ K1u1 arð Þ � �ar� 1 � 2a2ð Þ þ R0 2 � a2ð Þr�1 � a2r�2

2 1 � arð Þ u0
1 arð Þ � w1 arð Þ

� �

¼ W 0
1 fð Þ

ð15Þ

where

W0
k fð Þ ¼ W0

1 arð Þ ¼ 1 � arð ÞW1 arð Þ ¼
X

k¼1

k¼�1
Akr

k

ð16Þ

Substitution of (4), (14) and (16) into (15) gives, In

the same way, by setting the coefficients of all powers

of r equal to zero. The following expressions can be

obtained

1 � a2
� �

k þ 1ð Þ�akþ1 � a2 þ K1a
�2k

� �

bkþ1

¼ 1 � a2
� �

K1�ak � 1 þ K1a
�2k

� �

bk þ A�ka
�k

k ¼ 1; 2; 3. . .

ð17Þ
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1 þ K1a
2kþ2

� �

�akþ1 � 1 � a2
� �

k þ 1ð Þbkþ1

¼ a2 1 þ K1a
2k

� �

�ak þ 1 � a2
� �

kbk þ �Akþ1a
kþ1

k ¼ 1; 2; 3. . .

ð18Þ

From these two Eqs. (20) and (21), the coefficients

can be determined recursively. Thus, all the coeffi-

cients of the Laurent series for surrounding rock have

been determined, except for a0. As the system of

equations is linear, the correct value of a0 can be

determined by first assuming a0 = 0, then calculating

the limiting value of ak for k ? ?, repeating this

calculation for an initial value a0 = 1, and then

determining the correct value of a0 by linear interpo-

lation such that ak ? 0 for k ? ?. It seems that this

coefficient remains undetermined by the boundary

conditions specified above. This part can refer to a

complex variable solution for a deforming circular

tunnel in an elastic half-plane by Verruijt (1997) If the

boundary conditions are known, through (6) can give

the stress component of surrounding rock.

3.2 The Solution for Lining

Along the outer boundary of lining |g| = 1, the radius

q = 1, so that f ¼ qr ¼ r ¼ expðihÞ, �f ¼ r�1,

according to (3) can gives

w2 rð Þ ¼ rr; w0
2 rð Þ ¼ r; w0

2 rð Þ ¼ r;
w2 rð Þ
w0

2 rð Þ
¼ r

ð19Þ

Through the mapping function z = w2(g), the outer

boundary displacement condition of the lining is

W2 gð Þ ¼ W2 rð Þ ¼
X

k¼1

k¼�1
Bkr

k ð20Þ

Substitution of (19) and (20) into (9) gives

K2e0 þ K2e1rþ K2e2r
2 þ

X

1

k¼3

K2ekr
k þ

X

1

k¼1

K2fkr
�k

� �e1r� 2�e2 �
X

1

k¼1

k þ 2ð Þ�ekþ2r
�k

þ
X

1

k¼3

k � 2ð Þ�fk�2r
k � �g0 �

X

1

k¼1

�gkr
�k

� �h1r� �h2r
2 �

X

1

k¼1

�hkr
k ¼ W2 rð Þ ð21Þ

According to (21), by setting the coefficients of all

powers of r equal to zero. The following expressions

can be obtained

g0 ¼ K2�e0 � 2e2 � �B0 ð22aÞ

h1 ¼ K2�e1 � e1 � �B1 ð22bÞ

h2 ¼ K2�e2 � �B2 ð22cÞ

hk ¼ K2�ek þ k � 2ð Þfk�2 � �Bk k ¼ 3; 4; 5; . . .

ð22dÞ

gk ¼ K2
�fk � k þ 2ð Þekþ2 � �B�k k ¼ 1; 2; 3; . . .

ð22eÞ

Along the inner boundary of lining rock |g| = R0,

the radiusq = R0, so that f ¼ qr ¼ R0r ¼ R0 expðihÞ,
�f ¼ R0r�1. According to (3) can gives

w2 R0rð Þ ¼ Rr; w0
2 R0rð Þ ¼ R; w0

2 R0rð Þ ¼ R;
w2 rð Þ
w0

2 rð Þ
¼ r

ð23Þ

Substituting (22) and (23) into (10), yields

K2 þ 1ð Þ�e0 þ 2e2 R2
0 � 1

� �

¼ �B0 ð24aÞ

K2 þ R2
0

� �

�e1 þ R2
0 � 1

� �

e1 ¼ �B1 ð24bÞ

K2 þ R4
0

� �

�e2 ¼ �B2 ð24cÞ

k 1 � R2
0

� �

�fk þ K2 þ R2kþ4
0

� �

ekþ2 ¼ Bkþ2

k ¼ 3; 4; 5; . . .
ð24dÞ

K2 þ R�2k
0

� �

�fk þ k þ 2ð Þ R2
0 � 1

� �

ekþ2 ¼ �B�k

k ¼ 1; 2; 3; . . .
ð24eÞ

According to (24) can give all the coefficients of

the Laurent series for u2, Substituting (24) into (22)

can give all the coefficients of the Laurent series for

w2. It seems that this coefficient remains undetermined

by the boundary conditions specified above. If u2 and

w2 are known, by (6) gives the stress component of

lining.
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4 Solution of Uniform Radial Displacement

4.1 The Solution of Uniform Radial Displacement

for Surrounding Rock

Considering a uniform radial deformation of magni-

tude u0 at the inner boundary of surrounding rock. If

the direction of displacement u0 is considered in

inward the displacement components at the inner

boundary of surrounding rock face are

ux1 ¼ �u0

x

r
; uy1 ¼ �u0

yþ h

r
ð25Þ

where ux1 and uy1 are the x and y displacements of

surrounding rock face. According to (25), yields

2G1 ux1 þ iuy1

� �

¼ �2G1u0

zþ ih

r
ð26Þ

Through the mapping function z = w1(f), along the

inner boundary of surrounding rock f = ar, we can be

obtained.

2G1 ux1 þ iuy1

� �

¼ �2iG1u0

a� r
1 � ar

ð27Þ

Substituting (27) into (17), yields

W0
1 fð Þ ¼ �2iG1u0 a� rð Þ ð28Þ

Form (28), the boundary function only contains two

terms of order r0 and r1. The only two non-zero

coefficients in the Fourier expansion (16) are

A0 ¼ �2iG1u0a; A1 ¼ 2iG1u0 ð29Þ

The coefficients ak and bk can be determined from

Eqs. (17) and (18). With (29) this gives

a1 ¼ 2iG1u0a
1 þ K0 � 1ð Þa2 þ a4

þ a0 ð30Þ

b1 ¼ 2iG1u0a3

1 þ K0 � 1ð Þa2 þ a4
þ a0 ð31Þ

For Stress functions u1 and w1, where it has been

assumed, on the basis of a consideration of symmetry,

that all the coefficients are purely imaginary. Now that

the coefficients a1 and b1 have been determined, the

other coefficients can be determined successively,

using Eqs. (17) and (18). The value of the very Þrst

constant a0 can be determined from the condition that

the coefficients tend towards zero if k ? ?.

4.2 The Solution of Uniform Radial Displacement

for Lining

On the boundary between the surrounding rock and the

lining, ux1 þ iuy1 ¼ ux2 þ iuy2. Through the mapping

function z = w2(f), along the outer boundary of ling

f = r,we can be obtained.

2G2 ux2 þ iuy2

� �

¼ �2G2u0 rþ i
h

r

	 


ð32Þ

According to (32), yields

W2 rð Þ ¼ �2G2u0 rþ i
h

r

	 


ð33Þ

Form (33), the boundary function only contains two

terms of order r0 and r1. The only two non-zero

coefficients in the Fourier expansion (16) are

B0 ¼ �2iG2u0

h

r
; B1 ¼ �2G2u0 ð34Þ

The coefficients ek and fk can be determined from

Eq. (24) gives

e0 ¼ � 2iG1u0h

r K2 þ 1ð Þ ; e1 ¼ � 2G1u0

K2 þ 2R2
0 � 1

;

e2 ¼ � � � ¼ ek ¼ 0

ð35aÞ

f1 ¼ f2 ¼ � � � ¼ fk ¼ 0 ð35bÞ

Substituting (35) into (24), yields

g0 ¼ � 2iG2u0h

r K2 þ 1ð Þ ; g1 ¼ � � � ¼ gk ¼ 0 ð36aÞ

h1 ¼ 4G2u0R
2
0

K2 þ 2R2
0 � 1

; h2 ¼ � � � ¼ hk ¼ 0 ð36bÞ

Substituting (36) into (5), yields

u2 gð Þ ¼ � 2iG2u0h

r K2 þ 1ð Þ �
2G2u0

K2 þ 2R2
0 � 1

g

w2 gð Þ ¼ � 2il2u0h

r K2 þ 1ð Þ þ
4l2u0R

2
0

K2 þ 2R2
0 � 1

1

g

ð37Þ

Substituting (37) into (6), yields

rq2 ¼ 1

rq2

4G2u0R
2
0

K2 þ 2R2
0 � 1

� 1

r

4G2u0

K2 þ 2R2
0 � 1

ð38aÞ
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rh2 ¼ � 1

rq2

4G2u0R
2
0

K2 þ 2R2
0 � 1

� 1

r

4G2u0

K2 þ 2R2
0 � 1

ð38bÞ

sqh2 ¼ 0 ð38cÞ

5 Discussion

5.1 Comparison of the Analytical Solution

and ABAQUS Finite Element Code

In order to make a comparison, surrounding rock inner

edge is at a depth d = 2.5 m from ground surface, the

tunnel axis is at a depth h = 5 m depth from ground

surface, the tunnel radius of lining and Surrounding

rock are denoted by R = D/2 = 2.5 m and r = 2.8 m,

respectively. The radial deformation u0 = 0.05 m,

input data are represented in Table 1. From equations

(14), (20) and (21), all the coefficients of the Laurent

series for surrounding rock have been determined. The

coefficients of the Laurent series are presented in

Table 2.

In this section, compressive stress is assumed a

positive quantity for convenience. Figure 4 shows

ABAQUS grid for tunnel cross-section. The magni-

tude of radial stress around tunnel is presented in

Fig. 5. Figure 6 shows magnitude of circumferential

stress along internal lining inner predicted by the

analytical solution and ABAQUS finite element

software. There’s a difference between the analytical

solution and the ABAQUS solution, but the difference

is very small, and it’s negligible.

5.2 Parameter Analysis

In order to study the effect of elastic modulus E1 and

the ratio of the diameter to buried depth on the stress

Table 1 Input date Rock type Elastic properties of rock Elastic properties of concrete

E1 (Gpa) K1 m1 E2 (Gpa) K2 m2

Limestone 30 0.333 0.25 45 0.5 0.428

Table 2 Coefficients of Laurent series

k ¼ 0 k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5 k ¼ 6 k[ 6

ak - 0.00015i 0.001365i 0.000144i 1.17E-05i 8.58E-06i 6E-08i 6E-09i 0

bk 0 - 3.9E-05i - 6.8E-07i - 6E-09i 0 0 0 0

ck - 0.00081i - 0.00018i 0.000664i 0.000143i 1.74E-05i 3.77E-05i 1.56E-07i 0

dk 0 0.001366i 0.000125i 1.1E-05i 8.46E-07i 6E-08i 6E-09i 0

Fig. 4 Finite element grid

mesh
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component, the stress around the tunnel is analyzed in

this paper. Under different values of elastic modulus

E1, the radical stress component and the tangential

stresses component of rock with E2 = 45GPa is given

in Figs. 7 and 8. With the increase of E1, the radial

stresses and tangential stress decrease from the edge of

the tunnel to the ground surface. This is due to the

stress concentration mainly occurs near the hole, and

the less obvious the stress concentration with the

increase of distance from the edge of the tunnel. In

addition, with the increase of E1, the radial stress and

Fig. 5 The circumferential stress around tunnel in cylindrical

coordinate system
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Fig. 6 Circumferential stress along internal lining inner

predicted by the analytical solution and ABAQUS
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h = 90�
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tangential stress is negative and the magnitude

increase at the ground surface near.

Under different values of elastic modulus E1, the

circumferential stress component of rock with

E2 = 45GPa is given in Fig. 9. We can find that the

circumferential stress component of rock is negative,

and the magnitude decrease from the edge of the

tunnel to the ground surface. This is due to the ring is

compressed under radial deformation, and the stress

concentration gradually dissipates.

Under different values of the ratio of the diameter to

buried depth D/h, the radical stress component and the

tangential stresses component of rock with D = 2.5 m

is given in Figs. 10 and 11. With the increase of D/h,

the radial stresses and tangential stress decrease from

the edge of the tunnel to the ground surface.

Under different values of the ratio of the diameter to

buried depth D/h, the circumferential stress compo-

nent of rock with D = 2.5 m is given in Fig. 12. We

can find the magnitude of the circumferential stress

component of rock decrease with D/h decrease.

According to the strength theory, the failure is most

likely to occur on the inner boundary of rock where the

stress component is relatively large. Stress concentra-

tion mainly occurs near the hole, and with the increase

of E1, the phenomenon of stress concentration is more

obvious. From Figs. 7, 8, 11 and 12, we also found the

radical stress component and the tangential stresses

component of rock are zero position around 0.8 m and

0.5 m from the ground surface, and it does not change

with the elastic modulus of surrounding rock and the

buried depth of tunnel.

6 Conclusions

The Stress analytical solution was presented for

shallow buried lined circular tunnel under the defor-

mation of surrounding rock inner edge. It was assumed

that rock and concrete behaved as isotropic linear

elastic materials, and surrounding rock and lining is

contact completely. The stress components were

predicted by employing complex potential functions

and combined with conformal mapping method.

(1) The numerical example result shows that by

increasing elastic modulus of surrounding rock,

the magnitude of stresses component decreases.
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Fig. 10 Radial stress with different values D/h at h = 90�
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With the increase of tunnel buried depth, the

magnitude of stresses component decreases.

(2) Stress concentration mainly occurs near the

hole, and with the increase of E1, the phe-

nomenon of stress concentration is more

obvious.

(3) It was found that the stress concentration is

gradually dissipating with the distance from the

inner of tunnel, and with the increase of E1, the

stress concentration is more obvious.

(4) We also found the radical stress component and

the tangential stresses component of rock is zero

position around 0.8 m and 0.5 m from the

ground surface, and it does not change with

the elastic modulus of surrounding rock and the

buried depth of tunnel.
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