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Abstract In the United Arab Emirates, Continuous
Flight Auger piles are the most widely used type of deep
foundation. To test the pile behavior, the static load test is
routinely conducted in the field by increasing the dead
load while monitoring the displacement. Although the
test is reliable, it is expensive to conduct. This test is
usually conducted in the UAE to verify the pile capacity
and displacement as the load increase and decreases in
two cycles. The artificial neural network approach was
used to build a model that can predict a complete static
load pile test. In this paper, it was shown that by
incorporating the pile configuration, soil properties, and
groundwater table in one artificial neural network model,
the static load test can be predicted with confidence. Six
thousand field data points were used to train and validate
the model. Three complete independent field tests (not
included in the training stage) were used to test the model
ability to predict the behavior of the pile during loading
and unloading cycles. The results show excellent agree-
ment between the actual and predicted curves in two
loading—unloading cycles. The authors believe that based
on this approach and the presented results of this research,
the model is able to predict the entire pile load test results
from start to end. The suggested approach is an excellent
tool to reduce the cost associated with such expensive
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tests or to predict pile’s performance ahead of the actual
test.

Keywords Static load test - Continuous Flight
Auger - Artificial neural network

1 Introduction

Deep foundations, such as Continuous Flight Auger
(CFA) piles, are usually used to carry and transfer
loads of a superstructure to the bearing ground located
at some depth below ground surface. Pile’s perfor-
mance is one of the most problematic areas in Civil
Engineering due to the variability in geomaterial
properties and a large number of parameters control-
ling pile’s design. In practice, three methods of design
are used: full-scale static load test, analytic methods,
and dynamic methods (Coduto 2001). This paper,
however, is concerned with the static load test which is
performed by loading or unloading the pile while
monitoring the displacement of the pile. The test load
is usually applied incrementally up to 1.5 times the
design load for working piles load, or more in rare
cases, as required by the structural designer or the
geotechnical engineer.

As a result of the economic boom that has been
happening in the United Arab Emirates (UAE), the
construction industry flourished and a huge number of
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new projects has to be built as fast and as safe as
possible. With this in mind, CFA piles, shown in
Fig. 1, were heavily relied upon by engineers. The
CFA piles are easy and fast to construct in soft ground
such as Silty Sand soils which dominate the upper soil
layers in the major cities in the UAE. Performing the
static load tests is an essential part of checking CFA
piles performance which is required by the building
code (The Code Handbook 2013). The parameters
affecting this performance are the subsurface condi-
tions, such as the soil strength, and the pile configu-
ration, such as the pile length (Crowther 1988; Das
2016).

In this paper, a model that can predict the complete
Static Load test was developed using the Aurtificial
Neural Network approach. Training data were col-
lected from three major cities (Abu Dhabi, Dubai, and
Al Ain) which are located in UAE. The geology of the
chosen cities is consistent which reduced the varia-
tions in the geomaterial parameters. Moreover, in this
research, a pile diameter of 500 mm was chosen since
80% of about 100 projects explored have a diameter of
500 mm and lengths between 6 and 15 m. It is to note
that out of the 100 pile tests explored only one pile has
failed to meet the code. This pile exceeds the limit of
the acceptable downward displacement of 1% (of its
diameter) by moving 1.1% at three times (not 1.5
times) the design load. As a result, only piles within
acceptable limits were selected in this research.

This approach would complement the field test,
allow judging new proposed pile design ahead of time
and cut the cost of conducting multiple static load test
for the same project. In fact, Coduto (2001) pointed

Fig. 1 Piles underneath the future Etisalat center in Abu Dhabi
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out that static load tests are much more expensive than
analytic methods, and thus the latter is very attractive.
However, the calculated load capacities from the
analytical method are not as precise as the field test,
therefore, designs based solely on analytic methods
must be more conservative and the final pile design is
more expensive.

This paper shows that predicting the entire static load
test by means of artificial neural networks can be
achieved by training the model on the available data.
This hypothesis was tested using three independent full
static load tests that were not part of the training data.
The results showed excellent agreement through differ-
ent means of statistical analysis. The model prediction
accuracy and precision can be further improved through
continuous training using future data.

2 Artificial Neural Networks

A neural network is a machine learning model that is
trained by processing a set of data records consisting
of input parameters with the known output. A
backpropagation multi-layer feed forward neural net-
work (BPN) essentially consists of: an input layer,
hidden layers, and an output layer. Each layer, in turn,
uses a set of connected input/output units with weights
associated with each connection. The model learns a
set of weights and bias values so as to be able to predict
the correct output of the input records. In this model,
input attributes are fed simultaneously to form the
input layer. The weighted input is propagated forward
and passed to the second layer which is the hidden
layer; one or more hidden layers may be defined. The
number of hidden layers is purely empirical and
depends on the experiment result. The net input I; of a
unit in the hidden layer or the output layer is calculated
using the following formula:

;=2 wy0i+0

where w;; is the weight of the connection between unit
i in the previous layer and the current unit j; O; is the
output of unit i in the previous layer; and 0; is the bias
at unit j. The bias acts as an adjustment that changes
the activity of the unit which is initially assumed. Each
time a unit, in the hidden and output layers, takes its
input it applies a function to calculate the output O; at
unit j. The function indicates the activation at that unit
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and the sigmoid function may be used. The output O;
at unit j is, therefore, calculated using the following
formula:

1
O =it

The output is calculated for each hidden layer until
it reaches the output layer, and in this case, it is the
model prediction value. This value is compared to the
known output value and the error produced is prop-
agated backward by adjusting the weights and biases
at each unit to reflect the error in the network
prediction. The model will iterate forward and back-
ward on the values assigned to the weights and biases
until it reaches an acceptable predicted output value
that is within an acceptable error tolerance. Once the
model is trained, it can be used to process new input
records whose output is unknown. The neural network
uses the trained values of the weights and biases to
predict the unknown output (Han and Kamber 2012).

3 Related Works

The use of artificial neural networks in predicting the
pile capacity started in the 1990’s when Goh (1995)
used a form of a model to predict an estimate of the
friction capacity of driven piles in clay soils. The
results were promising when compared to the actual
data and some empirical methods. Lee and Lee (1996)
tried to predict the driven pile capacity by using an
artificial neural network model. The error between the
predicted and the actual pile test was around 20%.
However, they did not attempt to predict the entire
static load test. Abu Kiefa (1998) developed three
artificial neural network models to forecast driven
piles capacity. He compared the results with four
empirical formulas and found that the model that was
devoted to forecasting the total pile capacity was more
accurate than others with 0.95 coefficients of deter-
mination. Furthermore, Goh (1996) presented a new
neural network model to predict pile capacity in sandy
soils. The output of the model was satisfactory when
compared to other empirical formulas.

Shahin et al. (2001) discussed different applications
of the artificial neural network in Geotechnical
Engineering and mentioned different applications
including predicting the pile capacity. Benali and
Nechnech (2011) also used artificial neural network to

determine the pile capacity; they used a database of 80
cases collected from the literature that expanded
different sites distributed all over the world. They
reported that the model is feasible for these kinds of
problems but they did not attempt to predict the entire
static load test. More recently, Maizir and Kassim
(2013) used artificial neural networks for predicting
the axial capacity of a driven pile; the data collected
for this study consisted of 300 cases from several
projects in Indonesia and Malaysia. They found that a
good prediction was achieved if “both stress wave
data and properties of both driven pile and driving
system are considered in the input data”.

In another experiment (Tarawneh 2013), the pile
setup was predicted using an artificial neural network
model. The predicted values were compared with
those produced by some empirical formulas. It showed
that the model produced satisfactory results. A recent
paper (Alzo’ubi et al. 2015) proposed a framework for
a system model that combines the neural network
technique to predict the pile capacity with the
containing the pile load tests.

As seen in the above-mentioned studies, no serious
attempt was made to predict the entire static load test.
In this paper, it will be demonstrated that the static
load test can be reasonably predicted by an artificial
neural network with enough training data.

4 Subsurface Conditions and Collection of Data

As indicated earlier, the subsurface conditions at
which the pile is located plays an important role in
controlling its behavior. The subsurface conditions are
highly affected by the geological formation of UAE
which is situated on the floor of the Arabian Gulf and is
mainly composed of extensive carbonate sediments
subjected to weathering. Fookes and Knill (1969)
divided the mountain and piedmont plain of the
Arabian Gulf into four sediment depositions. The
coastline of UAE, where this study is performed, is
located in zone number four or the base plain. The
upper layer deposits of this zone consist of sand dunes,
loess, and evaporate together with marine sand and
silts. Wind and evaporation, due to the high temper-
ature, are the principal transporting agents in this
region.

Although wind-blown material tends to predomi-
nate, as great quantities of silt and sand are moved
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during periods of high wind, water also plays an
important role in this movement and later deposition
of high quantities of Silty Sand material. The depth of
the Silty Sand layer ranges from 3 to 10 m and it has a
major role in establishing the pile capacity due to
friction. Flash floods, the last one was witnessed in
2015, are relatively rare, and any water stream actually
reaching zone four is usually short-lived after the
rainstorm. However, the groundwater table is very
high and it can be as close as 0.5 m from the ground
surface. This groundwater table can dominate the
desert processes by limiting the wind erosion to soils
above it; wind erosion more or less stops when sand
and silts are damp. Moreover, as the groundwater
table is high and evaporation occurs at high rates,
capillary pressure also forces water movement from
the groundwater table to surface.

In these conditions, a thick salt crust can build and it
might also affect the pile’s performance. These
deposits are common in the urban areas of UAE
desert coastal regions and particularly extensive
around this coastline. Beneath the first layers of sand
and silt, other soil and rock materials exist. The Sand
and Silt deposits cover interbedded sandstones, con-
glomerates, calcisiltite, limestone, and siltstones; clay
deposits may also be encountered.

Data from five hundred and sixty one boreholes;
collected from different projects in Abu Dhabi, Al
Ain, and Dubai, were used in this research. Static pile
load tests were then associated with the closest
borehole in the same site. Undisturbed and disturbed
split spoon samples were obtained from the boreholes.
Sieve analysis and the Atterberg Limits test were
performed to classify the soil according to the Unified
Soil Classification System and later considered as a
parameter in the Neural Network input data. In this
research, the soil layers were categorized into seven-
teen different layers and then coded as shown in
Table 1.

Friction between the geomaterial and the pile
circumference area is an important factor that controls
the pile performance. Consequently, the friction angle
(") of the soil needs to be determined or estimated in
order to be incorporated in the neural network. This
value was obtained from laboratory test or calculated
using the Standard Penetration Test (SPT) that was
performed at every one meter of depth in accordance
with the ASTM D 1586 (ASTM 2011). The SPT is
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considered reliable when performed in a granular
material such as those encountered in all of the
projects in this research.

The SPT (N) values were used to calculate the
friction angle (if not measured) such that, the raw N
values were first corrected to 60% energy (N60) to
compensate for variation in the test procedures
according to (Skempton 1986):

 E,CpC,CxN
o 0.6

where E,, is the hammer efficiency, Cp is the diameter
of the borehole, C; is the sampler correction, Cg is a
correction for the rod length.

Liao and Whitman (1985) suggested that for
granular material, the Ngy need to be further adjusted
to take into consideration the effect of the overburden
pressure. So the (N1)gg calculated from the previous
step was modified by using:

100kPa
(N1)go=Nooy | ——

where ag is the effective vertical stress at the SPT test
location. The effective vertical stress was calculated
based on the unit weight of the material at the
corresponding depth.

To calculate the effective friction angle of soil, for
soils that were not tested in the lab, the following
formula that was suggested by Hatanaka and Uchida
(1996) was used:

Ngo

0" = \/20(Ny)go + 20

Another important parameter that controls the
pile’s performance is its end bearing. All the piles in
this research have reached the rock formation. Con-
sequently, the Unconfined Compressing Strength
(UCS) was used as a parameter in the neural network.
Samples of the rock layers were obtained using a
double tube core barrel of 76 mm inside diameter and
tested under uniaxial loading to determine the UCS
value.

5 Static Load Test

The pile load tests are considered the most satisfactory
method to assess the pile performance. During the
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Table 1 Soil description and the soil profile codes used in the neural network model

Soil description

Soil profile Code

Silty SAND (SM): Dry to moist, light brown, fine non-plastic, trace fine gravel

Poorly graded SAND with silt (SP-SM): Wet, light brown, fine, and non-plastic
MUDSTONE: Very weak to weak, moderately to highly fractured, moderately weathered
MUDSTONE: Weak moderately fractured, moderately weathered

Crystalline Gypsum: Moderately weak moderately fractured, moderately weathered

Loose to medium dense SAND with trace silt
Very loose light brown clayey fine SAND
Dense, light brown fine silty SAND

Weak, slightly conglomeratic CALCISILTITE, distinctly weathered (C), fracture close spaced

weak brown Sandstone mixed with Gypsum

Medium dense to dense becoming very dense, gravely SAND
Very dense, gray, very silty, fine to medium grained SAND
fine-grained, carbonate SAND with some amount of gravels
Weak, slightly-moderately weathered, CALCARNITE

Very weak, light brown, poorly to well cemented calcareous SANDSTONE 15
Medium dense, dry to moist, non-plastic, poorly graded SAND (SP)
Very stiff, light grey, wet, non-plastic, sandy SILT (ML) with a trace of shells 17

1 10000000000000000
2 01000000000000000
3 00100000000000000
4 00010000000000000
5 00001000000000000
6 00000100000000000
7 00000010000000000
8 00000001000000000
9 00000000100000000
10 00000000010000000
11 00000000001000000
12 00000000000100000
13 00000000000010000
14 00000000000001000
00000000000000100
16 00000000000000010
00000000000000001

foundation construction period, it is recommended
that such tests be performed according to British
Standard Code of Practice 8004 on specially con-
structed piles that are installed before the start of the
general construction works. Figure 2, shows the static
load test performed in the future Etisalat center (see
Fig. 1). In the static pile load tests, the load—displace-
ment curves were obtained through two cycles of
loading—unloading.

Fig. 2 Static load test in the future Etisalat center

The common practice in the UAE (The Code
Handbook 2013) is to test the piles after construction
for quality assurance and not for design; i.e. to check
performance. As a result of this practice CFA piles, in
most cases, are over-designed to avoid failure in the
testing process. However, if testing is carried out for
design purposes, significant savings may result from a
more economical pile design based upon the specific
test data. The proposed method in this research would
enable designers to avoid over designing the piles
through studying the predicted static load test curves
produced by the neural network prior to conducting
the field test and revise their design. Note that the
theoretical design methods provide only an approxi-
mate working load, while the static load test should
demonstrate the pile’s performance and its load
settlement characteristics.

In order to have a satisfactory design, Tomlinson
and Woodward (2014) established that for full skin
friction mobilization, the pile needs to settle at least
1% of its diameter. While to mobilize the full end-
bearing capacity, settlement of about 10% of its
diameter is needed. Terzaghi (1943) and Meyerhof
(1965) specified that the maximum vertical movement
of a pile should not exceed 25 mm, no pile in this
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Fig. 3 Training cycle in the
artificial neural network
used in this research

Pile
Configuration

paper got even close to this value (the maximum
measured total settlement was 4.0 mm). Also accord-
ing to the above discussion, a very small portion of the
end-bearing resistance was mobilized if any. In
addition, the maximum allowed residual settlement
is 6 mm, this is to avoid pile failure for piles under
600 mm in diameter (Das 2016), no pile in this
research has experienced this amount of residual
settlement.

In this research, the load was applied in increments
up to 1.5 times the design load for working piles load.
The load was applied by means of a hydraulic jack as
shown in Fig. 2, four reaction piles were used to
provide support for the loading frame. In addition, four
settlement gauges were used to monitor the displace-
ment. The maintained load method was used in all of
the projects; the load was increased in stages and
maintained for at least 20 min or until the rate of
settlement decreased to less than 0.10 mm/hr, which-
ever is greater. As a matter of fact, in all of the projects,
the load was maintained until the settlement has seized.
In the first loading cycle, increments of 25% of the
design load; up to the working load, are imposed on the
tested pile and maintained until settlement seized.
Settlement readings were taken, for each load incre-
ment, every 5 min until the settlement stopped.

In the first unloading cycle, the load was reduced in
the inducement of 25% until the zero load stage is
reached while monitoring the displacement. The pile
is then reloaded to the test pile from zero to 150% of
the design load such that the 100% of the design load is
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Soil properties

Static Load test
LOAD,
DEFORMATION

Ground water

Processing

Trained Model

applied and kept for six hours. The load was then
increased in 25% (of the design load) increments until
the test load was reached. At last cycle, the pile is
unloaded in the inducement of 25% until zero loads
while monitoring the displacement at each load. The
loading/unloading values and their corresponding
displacement were input to the neural network in the
same sequence as described above.

6 Network Topology and Setting

This research is aiming to build a model in which it is
possible to predict the displacement value using an
artificial neural network that is trained over data
consisting of a combination of the soil profile and the
pile configuration, as shown in Fig. 3. Hence, if S; is
assumed to be the set of soil profile values at site i and
whose elements consist of values in the set {vi,
Va,...,vj} and P; be the set of pile configuration at site i,
and whose parameters consists of {p;, p-}, then for an
applied load L; and a groundwater table G;j it is
possible to predict the displacement D; such that F(S;,
P;, Li, Gj) = D;, where F is a mapping function for all
values of j in the pile test. This mapping function will
be built using a trained artificial neural network.

A specialized software (Neural Planner Software
2016) was used to construct the artificial neural
network. The model, shown in Fig. 4, consists of 28
input units; each corresponds to an attribute. These
attributes are shown in Table 2 along with their range
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Fig. 4 The artificial neural network configuration used in this paper, two hidden layers are shown

of data. The 28 input units are such that: 17 for the soil
profile, 4 for the loading status, 2 for the pile
configuration, 1 for the groundwater table, 1 for the
load, 1 for the depth, and 2 for the soil properties.
Moreover, Tables 1 and 3 show the soil profile and the
status attribute values and their codes, respectively.
The setting of the hidden layers was empirical where
two hidden layers were chosen. There were 29 units in
the first hidden layer and 15 units in the second. The
initial weight setting was the default value of 0.6, the
target training error was set to be 0.01 for all training
records. 6437 Pile data points were collected from the
field, as described in Sec. 4, such that 5537 points were
used for training and 900 random points were selected
for validation.

Although the neural network software has different
criteria to stop the training, shown in Fig. 5, two of
which were used: all training errors are below the
target error, or when the validation error starts to
increase whichever comes first. The latter is called
early stopping (Liu et al. 2008; Prechelt 2012) which is

necessary to avoid overtraining and consequently
overfitting (Haykin 1999; Liu et al. 2008). The
produced model should generalize the mapping
between input and output and should be capable of
predicting the output for cases not included in the
training set (Geman et al. 1992).

With this setting, the training stopped at the epoch of
5701 when the validation error was reported to be
increasing. In this software, the average validation
error value is considered as increasing when it is found
increasing in six successive cycles. The values that
were scored before training terminated, were as
follows: 0.00088148, 0.00088566, 0.00089362,
0.00089493, 0.00090312, and 0.00090459. The aver-
age training error was 0.00053867, while the maxi-
mum training error was 0.03651359 as shown in Fig. 6.
Moreover, Fig. 7 shows how the predicted output
points, scaled between 0 and 1, are distributed near the
regression line for both the training and validation
examples. The biases and weights that were produced
in the model are shown in Tables 4, 5, 6 and 7.
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Table 2 Input attributes in Attribute name Data type Data name  Values
the artificial neural network
and their data types Pile length (m) Real number PileL 6-15m
Pile diameter (mm) Real number PileD 500 mm
Load (ton) Real number Load 0-165
Average displacement (mm) Real number AverageD 0-3.433
Status (loading—unloading) Integer value Status 2 cycles of each (see Table 3)
GWD (m) Real number GWD 1.1-59 m
Depth (m) Real number Depth 0-17 m
PHI (°) Real number PHI 27-43
UCS (kg/em?) Real number ~ UCT 0-52.8
Soil profile (see Table 1) Integer value SoilPf 1-17
Table 3 Codes for the loading—unloading cycles used in the 7 Sensitivity Analysis and Input Importance

training and testing cycles

As indicated earlier, the displacement of the pile is

Status Code value

controlled by the assumed parameters: pile configura-
First loading 1000 tion, soil, groundwater table and load. To test the
First unloading 0100 relevance of these parameters to the resulted output a
Second loading 0010 sensitivity analysis has been conducted to show how
Second unloading 0001 much an output changes when the inputs are changed

during the experiment. After setting the inputs to the
median values, the change in the output was measured

Fig. 5 The artificial neural
network setting using the
implemented software:
EasyNN

~ Leaming —Stops
Learing rate IU-S [~ Adapt | Decay ™ Optimize " When the average training error is below  Target

Momentum  [0.8 I~ Adapt | Decay I Optimize (& When all the training errors are below  |0.01
Accelerator Ig [~ Decay [~ Optimize " When any training error is below
Threading |1 1 to 8 leaming threads

" When all predictions are in target range of the outputs
™ When the average validating error is below
[ Network recorfiguration [V If the average validating error is increasing
[~ Allow manual Network reconfiguration
1\ Giow hidden lager 1 I Stop when I % of the validating examples

™ Grow hidden layer 2 are © Within | % of desired outputs
I™" Grow hidden layer 3 of €% Corect after rounding

Validating ™ Stopif the % of validating examples decreases
Cycles before first validating cycle [— [~ Stopif the validating score is equal or above I_
Cycles per validating cycle [_ ™ Stop if the validating score decreases
Select W examples at random from the I™ Stop after l— seconds
Training examples = 6437 I” Stopon I— cycles

[~ Slow leaming - Presentation

‘ [~ Delay leamning cycles by |0 millisecs I Balanced I Random I Grouped

0K I Cancel
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Fig. 6 Training error 1.0 3 o i
g ; ax. error:
var.latl.on as observed in the 0.9 Validating Error Training Error 003651359 g
artificial neural network 08 ! ’
model : “ Ave. Training error:
_ %7 0.00053867
o 0.6 - “
E 0.5 . Min. Training error:
s \ 0.00000000
04 “ Target error:
0.3 \ 0.01000000
0.2 - J
01 4~ . Training Example errors:
’ v — S e |  24abovethe target
T 7 1T 11 L L L L L L L
0 144 322 705 1960 5701 Ave. Validatingerror:
5 0.00090459
Learning Cycles
Training examples: 5537
Layer: Input  Hiddent Hidden2 Output Validating examples: 900
Nodes: 28 29 15 1
Fig. 7 The prediction 5701 cycles. Target error 0.0100
process for the training and Average training error 0.000539
validation examples
produced by the artificial Output column (min to max values) (0.0000 to 3.4330)
neural network 5537 training examples 900 validating examples
1 1
i bl .
W S
A ’
s ‘#: -
et
S
0 1 0 1

as each input was increased from the lowest to the
highest values to establish the sensitivity of the output
to that change. Figure 8 shows the summary of the
sensitivity of the input parameters in descending order.

This figure shows that the displacement is sensitive
to the variation of all of these input parameters in
different degrees. However, the pile diameter is the
least significant since the trained data was limited to
only one diameter value. The diameter was removed
from the input to examine if the model performance
improved, however no positive impact was observed.
So, the diameter was kept for future extension of the
model by adding more pile’s diameters to the training

data. Moreover, the summary of the importance of the
input parameters was also shown in Fig. 9. In this
experiment, the importance of each parameter is
calculated as the sum of the absolute weights from
its input node to all of the nodes in the first hidden
layer. The input importance indicates that all the
inputs were active and important until the training was
terminated except the pile diameter which was limited
to one value. In this analysis, the soil profile as well as
the loading status was plotted in Fig. 8§ as a one
parameter to show the sensitivity of the model to the
soil type or the loading status as well their importance.
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Table 4 The Bias values at each node
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37

36

35

34

33

31

28 29

0-27

Node

— 0707321  — 5920155 — 2306580 — 0.118795 — 2.031410 — 5.085564 — 3.163887  A.197607
41 4 43 44 45 46 47 48

1.452067

40

1.468495
39

0.0
38

Bias

Node
Bias

— 1733526 — 2.498516 41.508031 — 5551098 — 13.026989  — 0.229659
55 56 57 58 59 60

0.972878
54

— 5.113705 — 1.018970 — 2.526465 — 1495257
50 51 53

49

Node
Bias

— 3.623429  — 8.548299  2.241019 — 4924333  — 2303421 — 2277171 — 7.310964
65 66 67 68 69 70 71

0.049576
64

2.021920

63

2.021920

62

2.190136

61

Node
Bias

— 4.008005 — 7.801761 —2.093086 — 0.197827 — 1.394436 0.214764 — 0.375857 — 1.630187 — 7.911063 — 5.145810

— 9.473724

72

Node
Bias

0.539494

8 The Test Plan

The test plan was carried out by using three indepen-
dent field tests from different sites to examine the
model accuracy. All of the three piles have 500 mm in
diameter, while the length of piles 1, 2, and 3 were
6 m, 7 m, and 8.5 m, respectively. Not only the pile
length varies, but the soil profile, friction angle,
unconfined compressive strength, and groundwater
level were also varying from test to test as shown in
Table 8.

A query file is created for each pile test and was
individually processed by the artificial neural network.
Each row in the file was regarded as an input that was
processed to predict the displacement at each load.
The load was increased in each successive row in the
same sequence as conducted in the field test. In the
following discussion the predicted displacement value
is termed as “predicted”, and the actual displacement
value as “actual”. Two types of graphs were plotted
and discussed for each run:

e Load versus displacement graphs to show the
actual and predicted values in the same conven-
tional method used in foundation engineering.

e Predicted versus actual displacement linear regres-
sion graphs.

9 Discussion

The test on all piles, in this paper, was executed
successfully in terms of compression, stiffness capac-
ity and has resulted in acceptable load-settlement
performance. Each pile has been able to sustain a load
of 1.5 times the safe working load with a total
settlement of less than 1% of pile diameter, as shown
in the following discussion.

9.1 Load Versus Displacement

Figures 10, 11 and 12 show the load—displacement
curves for query files 1, 2, and 3, respectively. The
actual field data were also plotted on the same graph
for comparison purposes. As shown in the figures,
excellent agreement between the field and the model
prediction was achieved.

In Fig. 10, the model predicted a maximum
displacement of 2.55 mm which is approximately
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Table 7 The weight values for connections between the second hidden layer and the output node

From node 57 58 59 60 61 62 63 64
To node 72 — 0.846016 — 0.984912 — 1.469878 4.183980 — 1.768924 — 2.352588 — 6.605018 — 1.199227
From node 65 66 67 68 69 70 71
Tonode 72— 1.513517 — 0.867614 — 2843237 — 2055631 1230391  — 1.061599 — 1.769187
Fig. 8 Sensitivity analysis Parameter From To Sensitivity ~ Relative Sensitivity
of the input parameters Load 0 165 0.3861

Soil P 0 1 0.2779

Status 0 1 0.2249

Depth 0 17 0.186

Phi 27.3451 43 0.077

PileL 6 15 0.0719

GWD 11 5.9 0.071

ucs 0 52.8 0.0486

PlleD 500 500.0001 0.00154

Parameter Importance  Relative Importance
GWD 429.2413
PileL 254.0768
Depth 165.9473
Phi 159.4461
Load 147.6675
ucs 96.2255
Status 88.9369
Soil Pf 70.3977
PileD 1.4087

Fig. 9 The input importance and relative importance

the same as that measured in the field. In both
situations, the pile did not experience the 1% ratio of
downward movement to fully mobilize the friction
resistance, the pile, in fact, moved only 0.51% of its
diameter. Figure 11 shows the displacement predicted
by the model along with the displacement from the
field at each load. It is obvious that the predicted
displacement values at each load almost coincide with
the actual displacement.

In Fig. 11, the model predicted a maximum
displacement of 2.58 mm while the actual displace-
ment was 2.77 mm, note that the difference between
the two is less than 0.19. In both situations, the pile

@ Springer

moved about 0.55% of its diameter. Although the
model slightly underestimates the displacement, the
difference is not significant from a practical point of
view. Figure 10 shows the displacement predicted by
the model along with the displacement from the field
at each load. It is obvious that the predicted displace-
ment values at some loads were overestimated or
underestimated. In either case, the difference was
almost negligible.

In Fig. 12, the model predicted a maximum
displacement of 1.34 mm while the actual displace-
ment was 1.22 mm. Again, the difference between the
two is less than 0.12 mm and the pile in the model
moved about 0.27% of its diameter. Figure 12, also,
shows the displacement predicted by the model along
with the displacement from the field at each load. The
predicted displacement values were slightly underes-
timated in the first two cycles and slightly overesti-
mated in the last two cycles. In either case, the
difference was not substantial but can be overcome
when the sample data is increased to cover more cases.

9.2 Displacement Regression Graphs
The predicted and actual displacement values were

plotted against each other to illustrate the relationship
between them as shown in Figs. 13, 14 and 15. To
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Table 8 Soil profiles for the three pile tests used in the query

files to verify the ANN approach

Test # BH and its properties
Test 1 D(e;t)h 20 K;’,‘é;z
00 314 2" 0
— |5
0 g —
1.0 - )
15 34.1 G&’T 0
20 29.9 : 0
25 T209 0
30 35 =T 135
a5 a5 [ E 135
40 37 | {% = 172
45 37 = 172
50 38 19.1
38 | Lg—,_ 19.1
55 "2 E= 431
S -
6.0 =
Test 2 Depth @ () ucT
™) Kg/cm
00 321 0
05 X 0
10 33 2 0
15 R o7 0
20 33 ‘5, 0
25 31 @i 0
30 3 % ; 0
35 31 0
40 34 [ 12.1
45 34 = 12.1
50 36 % 15.3
3% [ 9 15.3
6.0 3B o 19.3
7.0
Test 3 Df;‘)h 20 Kg/(;;z
0.0 34.1 0
10 34.1 0
15 273 0
20 27.3 0
20 273 0
25 29.9 0
30 299 0
35 384 0
4.0 384 0
45 339 0
55 36.1 0
36.1 0
7.0 38.4 0
85 384 0

Load (ton)
0 20 40 60 80 100 120 140 160

- - - Actual

—aA— Predicted

Displacement (mm)
iR
(9]

2 [

st

Fig. 10 Conventional load—displacement curve, showing both
the predicted and the actual results for query file 1

Load (ton)
100 150 200

- - - Actual

—#A— Predicted

Displacement (mm)

Fig. 11 Conventional load—displacement curve, showing both
the predicted and the actual results for query file 2

demonstrate how close, the values to the diagonal line,
the best-fit line along with its equation and R? are also
shown in the same figures. Table 9 shows the equation
of the lines as well as the line R* values. As shown in
the figures and the table, and considering the entire
range of data, the accuracy of the model is above 90%.
Moreover, all R? values of the tests were high which
indicate that all points are close to the diagonal line.
The accuracy of the three runs is measured by
calculating the average error between the actual and

@ Springer
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Load (ton)
50 100 150 200

- -@ - Actual

—&— Predicted

Displacement (mm)
S
(o]

-1.6

Fig. 12 Conventional load—displacement curve, showing both
the predicted and the actual values for query file 3

3
2.5 &
] o
g 2 1 y =1.0107x 0"’
2 _
: R%=0.9949 e
a &
- 151 ¢
2
ks .
2oyl o®
a 4 ..".'
.
0.5 | e
] o <
3
0 S
0 0.5 1 15 2 25 3

Actual Dis. (mm)

Fig. 13 Predicted versus actual displacement into one—one
graph for query file 1

the predicted displacement values. Figure 16 shows
the average percentage error at each loading point
starting from O to 150 tons. In the graph, the positive
error shows overestimation while the negative one
shows underestimation. As shown in the figure, the
maximum average error was — 20% which occurred
at only one point at the beginning of the loading curve.
At higher loads, the average error decreased to nearly
1%. In summary, the average error of all the data
points was approximately — 1%.

@ Springer
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Fig. 14 Predicted versus actual displacement into one—one
graph for query file 2
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Fig. 15 Predicted versus actual displacement into one—one
graph for query file 3

The proposed model shows that the load—displace-
ment curves of a static pile load test, in the area of
interest and a pile diameter of 500 mm, can be
predicted with a minimum accuracy of 80%.

10 Conclusion

This paper introduced a new approach to predict the
entire static load tests curves using a backpropagation
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Table 9 Summary of the tests results, equations of the lines
and R*

Test Number Equation R?
y =1.0107x 0.9949
y =0.9518x 0.9788
3 y=1.0261x 0.9597
25
—— % Error
15
5 ° F/\ f‘/c\/nﬂl P
fro] T e T T
R 50\ 25 50 /75 100 B (50 2§ © 100125150125 10 75 50 25¥|
Load (ton)
-15
-25

Fig. 16 The model percentage errors

neural network model. The model was trained using
data collected from three cities located in the UAE.
The model was fed with the geotechnical data such as
friction angle, unconfined compressive strength and
soil type with depth, the groundwater table elevation, a
fixed pile’s diameter of 500 mm, pile’s length, and
load—displacement curves to train the model. How-
ever, with this approach, more data having variant
geological formations and additional pile configura-
tions should be incorporated in the training to gener-
alize the model.

Three independent pile tests were used to test the
model. Two loading and two unloading curves were
successfully obtained by the proposed model. The
actual data were compared with the predicted data and
regression analysis showed that the model predicted
the displacement with R? average of 0.9778. By
including all the necessary data that affect the CFA
pile’s behavior, it was possible to simulate the entire
Static Load Test with an average error of about 1%.
The sensitivity analysis showed that all the chosen
parameters were relevant and played an important role
in the model performance.

This approach with this amount of data from UAE
showed great potential in cutting the costs associated
with multiple static load tests. Moreover, this
approach provides an excellent tool in the hands of

designers ahead of any site work. It increases their
ability to predict the pile performance and modify
their design ahead of conducting the actual field test.
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