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Abstract This paper estimates the correlation

between the physical and mechanical characteristics

of dolomitic limestone. Forty samples were measured

and the results were used to derive the empirical

equations for the relations between the uniaxial

compressive strength (UCS), elastic modulus (E),

P-wave velocity (vp), Poisson’s ratio (l), point load

strength, and density (q). The correlation results for

the intact dolomitic limestone samples showed high

correlation between UCS and the other parameters,

and between vp and the other parameters. Determina-

tion of physical and mechanical characteristics in situ

or in the laboratory is always a costly process. In this

paper, correlation relationships were proposed using

vp and UCS to evaluate the other parameters where the

results were in good agreement. To validate the

empirical equations, a Student’s t test was conducted

on the test data; the calculated t-test values were much

higher than the tabulated values, indicating a generally

good, linear relationship among the physical and

mechanical properties of the intact dolomitic lime-

stone. The results suggest that the vp and UCS values

of dolomitic limestone samples can be used to estimate

the q, l, and E of the intact rock.

Keywords Regression analyses � Geo-mechanics

properties � Correlation relationship � Student’s t test

1 Introduction

The geo-mechanical properties of a rock mass are

fundamental in mining and civil construction design.

However, the natural discontinuities and inhomogene-

ity of any given rock mass can create internal and

external uncertainties when measuring such properties

(Ozcelik et al. 2012; Mikaeil et al. 2013; Azadan and

Ahangari 2014). Moreover, determining the physical

and mechanical properties of rocks from deep mines or

from highly fractured rocks in a laboratory or in the

field can be expensive and time-consuming. These

difficulties may be overcome if reliable empirical

relationships could be determined among at least the

most critical properties needed in the design process.

Statistical analysis and regression analysis were used
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in previous studies to derive the empirical correlation

among various geo-mechanical properties of rocks.

Sharma et al. (2011) examined the relationships

between the Schmidt hammer rebound numbers and

the impact strength index, slake durability index, and

P-wave velocity using empirical equations. Diamantis

et al. (2011) investigated the relationships between the

P-wave velocity and the physical and mechanical

properties and petrographic characteristics of peri-

dotites from central Greece using simple regression

analyses and confidence intervals. These empirical

relationships were used to estimate the geo-mechanics

properties of a rock mass.

Sonic and ultrasonic measurements are also useful

tools for assessing rock properties and have been used

in previous studies. Ultrasonic methods are nonde-

structive and relatively easy to use, both in the field

and in the laboratory. Ultrasonic methods are being

increasingly employed in mining, geological, and

underground engineering to determine the dynamic

properties of rocks for use in in situ and laboratory

experiments. The P-wave velocity of a rock is closely

related to the intact rock structure and mineral

compositions. Zhou et al. (2014) examined a slope

damaged by excavation at a hydropower station site

using acoustic testing technology. Many investigators

demonstrated that a rock’s P-wave velocity is strongly

correlated with its geo-mechanical properties. Some of

these empirical relationships are listed in Table 1. In

this study we investigate the correlation between the

physical and mechanical properties of dolomitic

limestone samples using P-wave velocities and uni-

axial compressive strength tests.

2 Study Area and Samples

2.1 Study Area

The study site was the Huize lead and zinc mine,

located between the Yunnan and Guizhou provinces in

southwest China (Fig. 1). The landform in the study

area is complex and includes alpine morphologies,

gorges, and riverine landscapes. The Niu-Lan river

flows through the mining area at an elevation of

1561 m. The peak elevation is 2668.9 m and the

elevation of the mine entrance is 2538 m, a relative

elevation difference of close to 1000 meters. Multiple

faults run through the mining area, leading to the

formation of cracks in the rock mass. In addition to the

faults, the high stress in the deep parts (1500 m) of the

rock mass (42.34–45.95 MPa, based on three tests)

causes fragmentation of the rock mass. Therefore, it is

very difficult to obtain intact cores from depths over

2000 m. Due to high in situ stress of the study site the

drilled cores were fragmented and discs were cut from

the cores (Fig. 2). The main aim of this study is to

predict the physical and mechanical parameters of the

rock in a deep mine using empirical relationships

based on selected derived parameters. This can reduce

test costs and save time when only a small number of

samples can be obtained.

The geological structure of the study area (Fig. 3)

includes the north-east to south-west fold and fault,

forming an anticline. The Kuang-shan Chang fault, the

Qi-lin Chang fault and the Yin-chang Po fault form

three overlapping tile structures. The north–south

Dong Tou fault also affects the study area. The

sampling was carried out between the Qi-lin Chang

fault and the Yin-chang Po fault, closer to the Qi-lin

Chang fault. In this area, the upper strata of the

Devonian system, the upper Paleozoic Carboniferous

system, and the Permian strata are widely distributed.

Mount E-mei basalt along the Qi-lin Chang reverse

fault is exposed in the southern and western areas of

the mining area, and there are a few weathering

residues in the middl of the area.

2.2 Rock Samples

Forty samples were obtained from the mine at a depth

of 1500 m below ground level. The rock samples were

mainly dolomitic limestone and were fresh to slightly

weathered. To preserve the in situ conditions, the rock

specimens were saturated prior to measuring the rock

properties. The specimens were classified as fine to

medium dolomitic limestone of the carboniferous

system in the Permian strata. An image of the

dolomitic limestone taken in situ is shown in Fig. 4.

Several macroscopic structures and visible features

were observed in the rock mass. Signs of medium-

grade dynamic metamorphism associated with tec-

tonic and ore-forming fluid activities were found in the

rock mass; this included evidence of pyritization

(oxidized into limonite), development of silicide,

chloritization, epidotization, and calcite and

hydrothermal alteration. The most obvious indication

of such metamorphism were calcite veins observed on
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the fresh surface of the rock mass, as seen in Fig. 4.

The rock samples are light in color, composed mainly

of gray and light gray, medium to thick lamellar to

cryptic limestone, and Tiger porphyritic dolomitic

limestone with thick layered dolomite. The samples

are mainly limestone, with Tiger porphyry intercalated

with dolomitic limestone. The rock contains large

amounts of calcite and siliceous nodules or lenses, and

a small amount of shale and breccia limestone.

Dolomite veins, calcite and pyrite can be observed

clearly in the joint planes of the rock mass, as shown in

Fig. 4.

The rock testing was performed on cylindrical drill

core samples of dimensions (length 9 diameter)

100 9 50 mm or 130 9 63 mm, as seen in Fig. 5.

To reduce the influence of the sample size on the

strength testing process, the diameters of the cylindri-

cal rock specimens were prepared with a length-to-

diameter ratio of 2.0–2.1. The two ends of each

specimen were ground and lapped parallel, to an

Table 1 Empirical relation

reported between rock

mechanical parameters and

P-wave velocity

UCS—uniaxial compressive

strength, vp—P-wave

velocity, E—elastic

modulus, q—density,

l—Poisson’s ratio

Researches Empirical relation R2

Tugrul and Zarif (1999) UCS ¼ 35:54vp � 55 0.64

Kahraman (2001) UCS ¼ 9:95v1::21
p

0.69

Yasar and Erdogan (2004) UCS ¼ 31:5vp � 63:7 0.80

Sousa et al. (2005) UCS ¼ 22:032v1:247
p

0.72

Sharma and Singh (2008) UCS ¼ 64:2vp � 117:99 0.90

Cobanoglu and Celik (2008) UCS ¼ 56:71vp � 192:93 0.67

Diamantis et al. (2009) UCS ¼ 110vp � 515:56 0.81

Khandelwal and Singh 2009 UCS ¼ 133:3vp � 227:17 0.96

Sharma and Singh (2008) UCS ¼ 36vp � 45:37 0.93

Diamantis et al. (2011) UCS ¼ 0:14vp � 889:33 0.83

Kurtulus et al. (2012) UCS ¼ 0:0675vp � 245:13 0.92

Sarkar et al. (2012) UCS ¼ 0:038vp � 50 0.93

Altindag (2012) UCS ¼ 0:258v1:194
p

0.79

Khandelwal (2013) UCS ¼ 0:033vp � 34:83 0.87

Abdolazim and Rassoul (2015) UCS ¼ 0:026vp � 20:47 0.91

Current study UCS ¼ 0:034vp � 86:36 0.80

Khandelwal and Singh (2009) E ¼ 4:9718vp � 7151 0.97

Kurtulus et al. (2012) E ¼ 0:0015vp � 2:516 0.74

Diamantis et al. (2011) E ¼ 0:041vp � 264:15 0.81

Altindag (2012) E ¼ 0:919v1:9122
p

0.79

Abdolazim and Rassoul (2015) E ¼ 0:008vp � 5:619 0.89

Current study E ¼ 0:013vp � 30:71 0.83

Kahraman and Yeken (2008) q ¼ 0:213vp � 1:256 0.82

Khandelwal and Singh (2009) q ¼ 0:0011vp � 0:0847 0.97

Diamantis, et al. (2011) q ¼ 0:0027vp � 12:02 0.83

Kurtulus et al. (2012) q ¼ 0:0002vp þ 1:7752 0.87

Sarkar et al. (2012) q ¼ 0:00028vp þ 1:59 0.93

Khandelwal (2013) q ¼ 0:202vp þ 1:79 0.86

Abdolazim and Rassoul (2015) q ¼ 0:0002vp þ 1:94 0.89

Current study q ¼ 4:545 � 10�5vp þ 2:54 0.67

Khandelwal (2013) l ¼ 8 � 10�9 vp
� �2�2 � 10�5vp þ 0:222 0.849

Current study l ¼ 0:52 � 91

30:33þ vpð Þ0:69 0.97
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accuracy of ± 0.3 mm. The core surfaces must be

parallel to prevent surface irregularities; the surface

roughness of the two ends of the specimen deviated by

only ± 0.05 mm.

3 Determining the Physical and Mechanical

Parameters

Of the physical and mechanical parameters of a rock,

the uniaxial compressive strength (UCS) and P-wave

velocity (vp) are the two most representative param-

eters. To understand the characteristics of the rock and

its behavior under various engineering conditions, a

mechanical strength test of the rock must be performed

first. The most important strength test is the uniaxial

compressive strength test. The UCS of a rock is an

important indicator of the rock’s bearing capacity. The

elastic modulus (E) and Poisson’s ratio (l) of a rock

sample can be derived from the results of the uniaxial

compressive strength test (Eqs. 1 and 2). The P-wave

velocity of an intact rock block mainly depends on E,

l, and the density (q), as shown in Eq. (3). In addition,

the microstructure and water inside the rock can also

greatly influence the UCS and vp. Thus, it is necessary

to study the empirical relationship between vp and

UCS and other parameters. Using reliable empirical

relationships to evaluate the physical and mechanical

parameters of rock samples can effectively reduce

experimental costs and time. Thus, this study can have

broad engineering applications.

E is the elastic modulus, eradial is the radial strain,

eaxial is the ax

E ¼ UCS

eaxial
ð1Þ

l ¼ � eradial
eaxial

����

���� ð2Þ

vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 1 � lð Þ

q 1 þ lð Þð1 � 2l

s

ð3Þ

where E is elastic modulus, eradial is radial strain, eaxial
is axial strain, l is Poisson’s ratio and q is density.
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Fig. 1 Maps showing the study area

Fig. 2 Discs from drilled cores obtained from 1500 m depth
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3.1 Testing Instruments and Procedures

Various standard tests were performed on the prepared

samples to determine the properties of the rocks from

the study area. The density and porosity were

measured according to the International Society for

Rock Mechanics (ISRM) standards (1981). The den-

sity of the dolomitic limestone was calculated as the

ratio of the specimen mass divided by its volume. The

vp value was determined using an acoustic emission

testing system (ADLINK, USA) according to ISRM

suggested testing methods (2007). The deformation

was recorded by strain gauges attached to the prepared

core samples. The elastic modulus was obtained from

the gradient of the stress–strain curves using the

tangent method. To eliminate the friction effect at the

top and bottom ends of the sample, the top and bottom

surfaces of the core specimens were ground and

covered with petroleum jelly. The vp value was

obtained as shown in Fig. 6a. To ensure the accuracy

of the test results, three tests were carried out on each

sample and the mean value of the three measurements

was obtained. The uniaxial compressive strength was

determined using a hydraulic servo mechanical testing

machine (INSTRON-1346, INSTRON, Melbourne,

Australia) following ASTM (1986) standards, as

shown in Fig. 6.
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3.2 Physical and Mechanical Parameters

The physical and mechanical parameters of the

sedimentary rock samples determined by the labora-

tory tests are shown in Table 2. The values of q and l
were found to be within a relatively limited range for

the saturated samples, but the values of E, vp, UCS and

the point load index (Is) extended over a broader

range. q was within 2.683–2.841 g/cm3, with a mean

value of 2.740 g/cm3.

The Is values, measured on irregular blocks using a

digital point load test system based on ISRM guide-

lines (1985), were within 0.84–6.09 MPa, with a mean

value of 3.10 MPa. The vp values were measured

according to the American Standard Testing Method

(ASTM) standards (1983) for measuring the travel

time of ultrasound pulses in a rock specimen. The vp
values fluctuated between 3161 and 6148 m/s, with a

mean value of 4293 m/s. The E values varied consid-

erably, from 6.405 to 47.936 GPa, with a mean value

of 25.789 GPa. The UCS were within a very broad

range (15.765–124.74 MPa), with a mean value of

60.07 MPa. The significant fluctuations of UCS, vp,

and E can be attributed to the degree of weathering of

the samples, their moisture content, and their inherent

mineral compositions.

4 Regression Analyses

The physical and mechanical parameters of rocks are

strongly related to UCS and vp. Many researchers have

also described the empirical relationship among them.

However, the physical and mechanical properties of

rocks are influenced by many factors such as the rock

type, composition, porosity, joints, and water content.

In this study, linear and nonlinear regression analyses

were used to quantify the relationships among the

Fig. 5 Rock Samples taken from 1000 m depth; original samples (left) and prepared samples (right)

Fig. 6 Testing setup; a the ADLINK acoustic emission testing

system; b, c the hydraulic servo mechanical testing machine

(INSTRON-1346))
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Table 2 Geotechnical properties of studied samples

No. Elastic modulus E (GPa) P-wave velocity vp (m/s) UCS (MPa) Density q (g/cm3) Poisson’s ratio l Is (MPa)

1 19.75 4259 41.99 2.738 0.25 2.67

2 42.875 5295 106.29 2.798 0.28 5.68

3 43.275 5312 110.13 2.828 0.28 5.72

4 33.025 5566 83.11 2.789 0.30 4.49

5 30.25 4644 74.75 2.789 0.27 4.43

6 37.575 4889 75.85 2.741 0.27 4.11

7 24.05 4181 45.64 2.72 0.25 2.83

8 26.7 4951 71.74 2.75 0.28 3.61

9 12.175 4097 44.86 2.71 0.25 2.28

10 27.64 4176 43.9 2.722 0.25 2.19

11 47.936 6016 113.2 2.789 0.30 5.74

12 7.588 3321 32.13 2.709 0.21 2.18

13 45.136 6148 124.74 2.841 0.32 6.09

14 26.584 4015 65.76 2.748 0.24 3.39

15 22.9 4049 35.38 2.717 0.24 1.83

16 22.375 3777 73.06 2.7654 0.23 3.71

17 13.5 3405 50.87 2.718 0.22 2.29

18 14.44 3759 36.29 2.699 0.23 2.13

19 6.6 3227 13.97 2.674 0.20 0.97

20 22.84 4186 71.81 2.799 0.25 3.58

21 35.074 5040 84.95 2.756 0.28 3.93

22 27.525 4327 41.686 2.7 0.26 2.18

23 27.508 4591 55.142 2.715 0.27 2.89

24 24.449 4375 63.465 2.736 0.26 3.12

25 44.063 5572 115.765 2.823 0.30 5.18

26 34.786 4417 77.695 2.778 0.26 3.56

27 43.865 5461 106.012 2.775 0.30 4.96

28 19.546 3389 38.069 2.726 0.21 1.89

29 25.647 3867 49.859 2.727 0.24 2.52

30 14.184 3521 40.337 2.7 0.22 2.36

31 16.822 3560 36.321 2.716 0.23 1.86

32 38.239 4529 69.152 2.756 0.26 3.21

33 21.391 4052 29.765 2.689 0.25 1.61

34 25.414 4076 71.751 2.742 0.25 3.58

35 36.434 4460 87.77 2.766 0.26 4.27

36 6.405 3214 15.765 2.674 0.20 0.84

37 15.797 3161 18.356 2.685 0.19 1.26

38 14.23 3565 17.26 2.692 0.23 1.47

39 12.361 3475 28.998 2.699 0.23 1.51

40 20.588 3819 39.294 2.683 0.24 1.94

Where, UCS represents the uniaxial compressive strength and Is is the point load strength
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various physical and mechanical properties (vp, Is,

UCS, q, E, and l) of the sedimentary rock samples.

For convenience and practical testing considerations

the empirical relations between vp and the physical

and mechanical parameters UCS, q, E, and l were

derived, then the empirical relations between UCS and

the physical and mechanical parameters Is, q, E, and l
were determined. The confidence intervals were set at

95%, and the correlation coefficient R2 for each
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regression was calculated when determining the

equation of the line of best fit for each regression.

4.1 Relationships Between vp and the Other Rock

Parameters

It is generally accepted that the mechanical properties

of a rock sample increase linearly with increasing vp
values. Our tests were designed to find the correlation

between vp and q, E, l, and UCS. All the parameters

showed a reasonable linear relationship with a high R2

value, except for l, where a high coefficient of

determination was obtained for the logistic function.

The best-fit relationships are shown in Figs. 7, 8, 9 and

10 and are quantified in Eqs. (4)–(7).

q ¼ 4:545 � 10�5vp þ 2:54 R2 ¼ 0:67 ð4Þ

E ¼ 0:013vp � 30:71 R2 ¼ 0:83 ð5Þ

UCS ¼ 0:034vp � 86:36 R2 ¼ 0:80 ð6Þ

l ¼ 0:52 � 91

30:33 þ vp
� �0:69

R2 ¼ 0:97 ð7Þ

where UCS is the uniaxial compressive strength, in

MPa, determined from the unconfined compression

test; E is in GPa; vp is in m/s; q is in g/cm3; and l is

dimensionless. R2 is the correlation ratio for the linear/

nonlinear regression analysis results.

The relations between vp and E, UCS, and l are best

expressed by Eqs. (5), (6), and (7) (R2 = 0.83,

R2 ¼ 0:8, and R2 ¼ 0:97, respectively), compared

with Eq. (4) (R2 ¼ 0:67) which expresses the best fit

between vp and q. Many researchers found a close

correlation between vp and the geo-mechanical prop-

erties; however, these empirical equations are related

to specific rocks of certain origins and may not apply

to other rock types.

As shown above, Eqs. (1)–(3) indicate that q, E and

UCS have a good positive linear relation with vp,

although the R2 value in Eq. (1) is relatively low.

Equation (4) shows that l has a good positive

nonlinear relation with vp. These results indicate that

q, E, l and UCS increase with increasing vp. However,

these empirical relations need to be validated by the

Student’s t test (see Sect. 5).

4.2 Relationships Between the UCS Value

and the Other Rock Parameters

Previous research (Gunsallus and Kulhawy 1984;

Panek and Fannon 1992; Singh and Singh 1993;

Kahraman 2001) provided empirical relations between

UCS and Is. Similar to Sect. 4.1, we determined the
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relationships between UCS, the most fundamental

rock strength parameter, and the rock’s other physical

and mechanical properties (Figs. 11, 12, 13 and 14).

The regression lines for E, q, and l estimated from the

UCS value using the empirical equations derived in

this research can be expressed as

q ¼ 0:0013 � UCS þ 2:657 R2 ¼ 0:871 ð8Þ

E ¼ 0:347 � UCS þ 4:95 R2 ¼ 0:825 ð9Þ

3000 3500 4000 4500 5000 5500 6000
0.18

0.20

0.22

0.24

0.26

0.28

0.30

P
oi

ss
on

's
 ra

tio

Ultrasonic velocity(m/s)

 Dataset
 Logistic line(This study)

R2=0.969

Fig. 10 Variation of l with

increasing vp

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

 Dataset
 Linear(This study)
 95% Confindence Intervals

U
ni

ax
ia

l c
om

pr
es

si
ve

 s
tre

ng
th

(M
P

a)

Point load index(MPa)

Equation y = a + b*x
Weight No Weighti
Residual Sum 
of Squares

1196.40821

Pearson's r 0.98286
Adj. R-Square 0.96512

Value Standard Err
B Intercept -4.7876 2.16367
B Slope 20.9123 0.63628

Fig. 11 Variation of UCS

with increasing Is

123

1088 Geotech Geol Eng (2019) 37:1079–1094



l ¼ 8:767 � 10�4 � UCS þ 0:199 R2 ¼ 0:743 ð10Þ

UCS ¼ 20:91 � Is � 4:79 R2 ¼ 0:956 ð11Þ

where Is represents the point load index, in MPa.

Figures 11, 12, 13 and 14 show the best results of

the linear regression analyses, where all the raw data

are within the confidence intervals. The physical and

mechanical parameters (E, q, Is and l) increase

linearly with increasing UCS. In these estimates, the

determination coefficients (R2) of all the formulas

(Eqs. 8–11) are very good. The highest determination

coefficient was found for Eq. (11), suggesting that
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UCS can be predicted accurately using Is and Eq. (11).

The coefficients q, E, and l from Eqs. (8), (9), and

(10), respectively, were also determined with reason-

able accuracy, suggesting that properties such as q, E,

and l are closely related to the UCS value. Before

applying these empirical relationships, their validity

must be checked by the Student’s t test, as presented in

Sect. 5.

The 1:1 slope line is used to evaluate the fit between

the measured value and predicted value. The fitting

line and 1:1 slope line are shown in Figs. 15 and 16

where the dataset located on the 1:1 slope line

indicates an exact correlation. The larger the deviation

from the slope line, the lower the accuracy. The R2

values in Figs. 15 and 16 provide a good index for

validating the reliability of the empirical relationship,

indicating that vp and UCS can be used reliably to

predict the other parameters.

5 Student’s t Test

The high correlation between the rock mechanical

parameters can be verified by the Student’s t test,

assuming that the observations are chosen randomly

and are normally distributed. Our test results were

compared with the computed t value and the tabulated

t value using the null hypothesis. The t-test compares

the difference between two averages for the variation

in the data. In Eq. (12), the numerator represents the

absolute value of the difference between the two

averages, and the denominator represents data disper-

sion. The expression for the t-test is given by:

t ¼ x1 � x2j j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
þ s2

2

n2

q ð12Þ

where x1 represents the tabulated mean, x2 represents

the computed mean, s2
1 represents the tabulated

variance, s2
2 represents the computed variance, and

n represents the number of samples.

Once the t value is calculated, it is compared with

the tabulated value. If the calculated value is higher

than the tabulated one, this indicates good correlation.

In Sect. 4, the confidence interval was set at 95% and

the significance level was 0.05, obtaining a critical t

value of 1.684. The tabulated and calculated values are

listed in Table 3. The calculated values of the t-test

outperform the tabulated values, indicating that all the

parameters have strong correlation among themselves.
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Thus, our results can be used to predict these

parameters using the UCS value and the vp value.

6 Conclusions

In this paper, the physical and mechanical properties

(E, UCS, vp, l, and q) of dolomitic limestone were

tested on 40 specimens. The results indicate significant

correlations between the parameters E, l, and q and

the parameters vp and UCS. These empirical relations

were expressed as equations which can be used to

obtain important index properties of the dolomitic

limestone and are accurate for general applications.

The Student’s t test results showed higher values than

the tabulated values, confirming that the physical and

mechanical properties (q, l, and E) of dolomitic

limestone in the Huize lead and zinc mine can be

predicted using the proposed correlation equations.

These equations may also apply to dolomitic lime-

stone in other locations. Thus, the results of evaluating

the physical and mechanical parameters of rocks

presented in this paper may have broad applications in

underground geotechnical engineering. Hence, in

future research this method should be further inves-

tigated and applied to different rock types.
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Table 3 Tabulated and

calculated t values of the

Student’s t test

Rock tests Student’s t test

Calculated value Tabulated value

Uniaxial compressive strength and P-wave velocity 28.38 1.684

Density and P-wave velocity 28.78 1.684

Poisson’s ratio and P-wave velocity 28.79 1.684

Elasticity modulus and P-wave velocity 28.62 1.684

Point load index and uniaxial compressive strength 12.12 1.684

Density and uniaxial compressive strength 12.20 1.684

Poisson’s ratio and uniaxial compressive strength 12.73 1.684

Elasticity modulus and uniaxial compressive strength 6.86 1.684

Poisson’s ratio and elasticity modulus 14.19 1.684

Poisson’s ratio and density 37.16 1.684

Elasticity modulus and density 12.81 1.684
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