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Abstract The traditional method to estimate rock

compressive strength (RCS) in field operation is

dependent on hammering rocks and artificial identifi-

cation. It is too subjective to get high estimation

accuracy. For this reason, the new and non-destructive

method uses machine learning algorithms to analyze

acoustic characteristics of geological hammer to

predict RCS accurately. The hammering sound sam-

ples were successively preprocessed by signal

enhancement algorithm and double-threshold method

to reduce noise and acquire valuable intervals of all.

We have also performed the time-frequency domain

conversion on sound signal through FFT, which

obtained two brand new indexes, amplitude attenua-

tion coefficient and high and low frequency ratio, as

the input parameters of models. By contrasting the

performance of various models based on k-nearest

neighbors, naive Bayes, random forest, artificial

neural networks (ANN), and support vector machines

(SVM), we uncovered that the prediction accuracy of

both SVM and ANN was over 95%, superior to others.

Thus, SVM and ANN were better for widespread

application in geological surveys and construction

acceptance to predict RCS accurately. In addition,

characteristic mechanism of acoustic spectrum was

explained from microstructure, energy dissipation and

filter effect, which indicated why there existed strong

correlation between acoustic characteristics and RCS.

The current rock mass classification standard was

supplemented with the above two characteristic

indexes for better identification.

Keywords Rock compressive strength � Geological
hammer � Spectrum analysis � Machine learning

algorithms � Rock mass classification

1 Introduction

Rock compressive strength (RCS) is one of the most

important and basic mechanical properties in rock

mechanics and is also the main index that reflects a

rock’s failure to withstand external forces. Using the

RCS value, the physical and mechanical properties of

rocks can be measured, rock failure criteria can be

established, and other rock mechanical parameters can

be estimated. Thus, it has become important to

develop a simple method that reliably measures RCS

for use in construction, geology, water conservation,

etc. Various methods of measuring RCS have been

explored, including the empirical discriminant
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method, rock statics determination method, indirect

testing method and machine learning algorithms

(MLAs) modeling prediction method.

The empirical discriminant method is a rule of

thumb of RCS based on the strike note produced by

hammering rocks and is dependent on the experience

of the geologist and the specific conditions of the site.

It is a commonly used method in domestic and

international geological surveys and construction

acceptance (BS5930 1981; Marinos and Hoek 2001;

Hack and Huisman 2002). However, the method is

subjective and influenced by many factors such as lack

of experience and negligence, which reduce the

accuracy of the estimated RCS value.

In the rock statics determination method, indoor

and outdoor mechanical rock test (Hencher and

Richards 2015) in accordance with testing methods

provided by the International Society for Rock

Mechanics and Rock Engineering (ISRM) (Ulusay

2014) are used to directly determine the external load

of core specimen failure, which is used to mathemat-

ically determine strength value. Experimental test

values are closer to the true value than the empirical

discriminant method, but it is arduous and time-

consuming due to the need of high-quality core

specimens. Moreover, it is not practical for research

projects because the instrument used for testing is not

portable and the operation steps are tedious.

Indirect testing method establishes the relationship

between rock mechanics and indirect parameters

(Karakus and Tutmez 2006; Karaman and Kesimal

2015) such as Schmidt rebound value and ultrasonic

velocity, which are affected by porosity and aniso-

tropy, and can be used to calculate the RCS value of a

rock. The method is effective for most qualities of rock

specimens and the instruments used for testing are

simple to operate, thus it is a convenient way to

measure RCS value and suitable for testing in the field.

However, taking the rebound test as an example, there

are also some limitations of the approach, i.e., it is not

suitable for rocks with poor surface properties.

With the rapid development of computer technique

and artificial intelligence, artificial neural networks

(ANN), support vector machines (SVM), and other

algorithms have become more popular. In MLAs

modeling prediction, these algorithms are applied to

obtain valuable information from trial data. Once a

universal statistical regression prediction model has

been established, it can be used to predict the RCS

values of most rocks (Momeni et al. 2015; Mohamad

et al. 2015). The advantages of this method include its

strong adaptability, high accuracy, and the ability to

construct a model once and refer to it multiple times.

MLAs are often combined with other test methods to

make up for its inability to account for the wide variety

of rocks and huge differences of occurrence

conditions.

In recent years, many achievements have been

made by MLAs in pattern recognition, function

approximation, and modeling simulation (Jordan and

Mitchell 2015; Fattahi and Karimpouli 2016). MLAs

have also been widely used in rock mechanics and

engineering (Li et al. 2014; Fattahi 2017; Valera et al.

2018). Based on this, we proposed a new and non-

destructive method combined by MLAs and indirect

test to determine RCS according to the hammering

sound. Our work used MLAs to study the correlation

of acoustic characteristics of geological hammer and

RCS value based on different circumstances regarding

the sample. Time and frequency domain analysis were

combined to analyze the hammering sound from the

rock, and the correlation between acoustic character-

istics and RCS was used to differentiate mechanical

properties of different rocks. The RCS prediction

models were established based on k-nearest neighbors

(KNN), Naive Bayes (NB), random forest (RF), ANN,

and SVM, which were then compared and evaluated

for accuracy and performance. Finally, the model with

the best performance was determined to be a reliable

tool for RCS prediction. The novel research method

combined with data science, acoustics, and rock

mechanics eliminates experiential error caused by

subjective factors and is simple to operate, thus

enlarging the category of acoustic survey in engineer-

ing practice.

2 Signal Acquisition and Processing

The Newsmy V03 voice recorder was selected as the

recording device, which featured dual-channel sam-

pling at a frequency of 24 kHz. Themeasuring point of

each rock was hit by a geological hammer at least 150

times in a row during a 3-min duration, ensuring that

the interval between two hits was long enough to allow

the sound of the first hit to decay to ambient noise. In

order to account for the influence of ambient noise

during field tests, ambient noise was recorded for
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3 min before hammering at each rock and was later

used for noise reduction. Additionally, all hammering

tests were performed by a fixed person to minimize

user error and the effect of the difference on the quality

of the acoustic signal was eliminated so that the

acoustic waveform did not change significantly with

hitting force. Figure 1 demonstrated the procedure of

acoustic signal acquisition and preprocessing.

To control hitting 
frequency and hitting 

force

To record ambient noise 
and control sound 

duration

To combine multitaper 
estimation with spectral 

subtraction

Left and right channels
are similar.

To determine the 
interval length and time 

sequence

Time-domain 
characteristic and 

spectrum characteristic

Fig. 1 Implementation

procedure of signal

acquisition and

preprocessing
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2.1 Signal Preprocessing

2.1.1 Signal Enhancement

The rock hammering sound recorded in field operation

was non-stationary acoustic signal, containing a large

amount of invalid sound influenced by external airflow

and ambient noise, which cannot be directly used to

extract characteristic parameters. Signal enhancement

was adopted to restore real sound. There was a

significant overlap between ambient noise and ham-

mering sound. The traditional digital filters (IIR and

FIR) were difficult to denoise effectively because

hammering sound was short and powerful, while

ambient noise was additive and stable. An enhanced

signal enhancement algorithm based on short-term

spectral estimation was used to eliminate noise. We

combined multitaper estimation with spectral subtrac-

tion (Berouti et al. 1979; Thomson 1982) to apply to

large range of SNR. The compositing method also had

small computation amount and strong real-time per-

formance. The result of noise reduction was shown in

Fig. 2. The quality of signal was improved after signal

enhancement, with SNR increased by 2.68 dB. The

removal of ambient noise was obvious, and the signal

waveform did not have a significant distortion. At the

same time, the subjective audio-visual result also

indicated that there was no significant difference from

the original sound.

2.1.2 Voice Activity Detection

The audio data of geological hammer was split into the

left and right channel for subsequent processing. Since

the difference between the two-channel waveformwas

insignificant, the left channel waveform was chosen as

the representative signal for the hammering sample.

Voice activity detection (VAD) (Li et al. 2002) was a

key link in signal analysis and recognition, which can

find the starting point and endpoint from the audio file

containing multiple acoustic signals for storing the

effective signal. We chose double-threshold algorithm

(Lee et al. 2003) which coupled short-term average

energy (or energy for short) with zero-crossing rate

(ZCR) to detect the endpoint of the hammering sound

sample. The improved double-threshold algorithm

was implemented by second-order decision mecha-

nism. We set both the lower threshold T1 and the

higher threshold T2 as dynamic values because of the

ever-changing noise and the difference of hammering

force. The two thresholds were respectively selected

for preliminary judgment in terms of short-term

average energy envelope after signal framing. The

threshold T3 was selected on the basis of ZCR as a

further filter, which helped to extend the length of

hammering sound to ensure the integrity of spectrum

information of each effective signal. Thus, the

endpoint of each effective signal was determined by

comparing frame by frame. Figure 3 summarized the

result of endpoint detection of hammering sound

samples. It can be seen that double-threshold algo-

rithm can detect the effective signal interval accu-

rately. After endpoint detection, a total of 2014

independent and effective time-domain acoustic sig-

nal segments were acquired, as shown in Table 1.

Signal conversion was performed to extract acous-

tic characteristics of hammering sound. For more

accurate and insightful analysis of spectrum, the time-

domain signal was converted into the frequency-

domain signal through FFT (Kido 2015). Thus, the

complex signal was transformed into superimposed

sinusoidal signals to analyze the amplitude, energy,

and phase relationships of various frequency compo-

nents contained in the frequency-domain signal,

thereby analyzing spectrum characteristics of the

signal. The above two signal analysis methods were

complementary and integral. We combined both

approaches organically to thoroughly analyze the

(a)

(b)

Fig. 2 Signal waveforms a before noise reduction and b after

noise reduction
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acoustic signal of geological hammer from different

aspects (Boashash 2015).

2.2 Extraction of Acoustic Characteristics

The acoustic characteristics mainly refer to the time-

domain waveform, spectrum characteristics, and sta-

tistical characteristics of the acoustic signal. These

characteristics correspond to the characteristic analy-

sis graph of the acoustic signal, such as time-domain

graph, spectrum graph, etc. The time-domain graph

and the spectrum graph are two main visual graphs of

signal analysis, and the time-domain graph is always

used to express the signal visually, while the frequency

distribution of the signal on the node is usually

reflected in the spectrum graph. However, they both

have their own limitations. The frequency information

cannot be intuitively presented through the time-

domain graph, and spectrum characteristics do not

convey how the signal changes over time. For this

(a)

(b)

(c)

Fig. 3 Endpoint detection

a result of VAD, b short-

term average energy, and

c ZCR frame by frame

Table 1 Summary of signal acquisition, preprocessing and classification results

Rock specimen number RCS Number of effective signal intervals Number of training set Number of test set

1 71.20 223 179 44

2 64.20 164 131 33

3 73.00 232 186 46

4 48.33 246 197 49

5 38.47 239 192 47

6 61.87 230 184 46

7 54.00 204 164 40

8 67.33 231 185 46

9 58.33 245 196 49

Total 2014 1614 400
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reason, the above two methods were both used to

respectively analyze the kinematics information and

dynamic information of hammering sound, which

extracted two brand new indexes from above-men-

tioned two graphs, amplitude attenuation coefficient

(AAC) and high and low frequency ratio (HLFR), as

the input parameters of prediction models.

2.2.1 Time-Domain Characteristic

When a geological hammer is used to hit a rock, the

energy is released in the form of elastic waves. Thus,

the physical and mechanical properties of the rock can

be determined by studying the energy and size of the

acoustic wave transfer. The time-domain signal can be

obtained directly by Python toolbox. Figure 4a, c

show that the attenuation velocity of acoustic signals

of different rocks vary greatly with time, and the

duration of the maximum amplitude is different. The

main part of each acoustic signal interval is taken as

the research object to find out the law, and the whole

amplitude is transformed into positive value uni-

formly, thus the change process in the amplitude of the

acoustic wave over time is presented completely, as

shown in Fig. 4b, d. In order to reflect the attenuation

velocity of the acoustic signal well, 0–0.02 s was

defined as the large amplitude concentration segment

(s1), and 0–0.04 s was defined as the acoustic signal

attenuation research segment (s2). The area of the two-

segment curve and the transverse axis were respec-

tively calculated as S1 and S2. The ratio of S1 to S2 was

defined as the amplitude attenuation coefficient

(AAC). The larger the AAC value, the faster the

attenuation velocity of the acoustic signal was.

2.2.2 Spectrum Characterization

Through the analysis of the acoustic spectrum, it was

found that the energy was relatively concentrated in

the region around 4000 Hz and appeared as sharp

resonance peaks, as shown in Fig. 5. The resonance

peaks reflect the physical characteristics of the two
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Fig. 4 Time-domain graphs of a single strike on rocks a specimen number one and c specimen number two; Time-domain

transformation graphs of a single strike on rocks b specimen number one and d specimen number two
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channels (resonant cavity) produced by the sounds of

both the geological hammer and the rock when the two

made contact. This illustrates the natural frequency of

the geological hammer is about 4000 Hz. Since this

part of the acoustic spectrum contains more energy

and does not belong to the elastic wave emitted by the

rock itself, only the spectrum at the 500–3800 Hz

range can be used as the research area when analyzing

the spectrum. Moreover, different hammering sounds

were heard when hitting various rocks. Rocks with

high strength generally produced a crisp and sharp

sound, while rocks with poor properties produced a

muddled and dull sound. The spectrum of the single

region repetition test of the same rock was very

similar, and the spectrum of different rocks was very

wide. However, whether the spectrum of a rock with

high or low RCS, energy below 2000 Hz accounted

for the majority of the spectrum. For comparison,

500–2000 Hz was determined as a low-frequency

region (r1), and 2300–3800 Hz was determined as a

high-frequency region (r2). The area between the low-

frequency area (A1) and the high-frequency area (A2)

between the two-section curve and the horizontal axis

were obtained using the integral method, and the ratio

of A2 to A1 was defined as the high and low frequency

ratio (HLFR).

2.3 Signal Label: RCS Measurement by Schmidt

Hammer

The Schmidt hammer is widely used in the rebound

method, which is a non-destructive method for testing

the compressive strength of rock or concrete materials

(Brencich et al. 2013). Scholars at home and abroad

have studied the measurement of RCS with the

Schmidt hammer for more than 50 years (Yaşar and
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Fig. 5 Spectrum graphs of a single strike on rocks a specimen number one, b specimen number two, c specimen number five, and

d specimen number seven
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Erdoğan 2004), therefore the rebound method is well-

developed. Moreover, the regression model for elastic

modulus of the rock, which is the relationship between

the rebound value index and RCS, is well-established

(Wang et al. 2017). Thus, for simplifying operation

procedures, rapid testing, improving practicality, and

decreasing cost while satisfying the requirements of

field testing of geological engineering, the rebound

method has been adopted to measure RCS indirectly.

In the test, we selected nine surface-formed rock

specimens, which were carried out in strict accordance

with the ISRM suggested methods (Aydin 2008). The

final rebound value of each rock was used to mark the

corresponding rock hammering signal, as shown in

Table 1. Therefore, all the RCS values mentioned in

this paper were represented by the rebound value to

avoid the error of transformation.

3 Data Modeling and Analysis

The prediction model was established independently

based on MLAs to avoid artificial intervention and

make more objective predictive analytics (Alpaydin

2014). MLAs also have a comparative advantage in

solving complicated prediction problems (Mahdevari

et al. 2014; Rodriguez-Galiano et al. 2015; Salazar

et al. 2015). Since the acoustic spectrum contained a

lot of incomplete and noisy information, it was hard to

process it in conventional mathematical statistic

methods. Nevertheless, MLAs were able to extract

the hidden data pattern or knowledge law from the

acoustic spectrum to help to predict RCS accurately.

KNN, NB, RF, ANN, and SVM algorithms were

chosen to analyze acoustic characteristics and estab-

lish regression prediction models.

3.1 Introduction to Algorithms

3.1.1 K-Nearest Neighbors

KNN is a predictor of no training parameters and is

one of the simplest MLAs (Altman 1992). If any one of

the training samples represents a point in the n-

dimensional space, all training samples can be stored

in the n-dimensional space. When given an unknown

sample, KNN is used to search in the n-dimensional

space to find the k samples closest to the unknown

sample and to predict the value of unknown samples

based on the properties of the k nearest neighbor

samples. The proximity between two points X = (x1,

x2, …, xn) and Y = (y1, y2, …, yn) tends to be

expressed as Euclidean distance.

3.1.2 Naive Bayes

NB is a probabilistic and statistical method based on

the Bayes theorem (Farid et al. 2014). It is assumed

that the sample belongs to Ci, whose eigenvector is

X =(x1, x2, …, xn). When the unknown item X is

given, the probability of each value is solved using the

Bayes theorem, and the largest value of the corre-

sponding probability is considered an estimate of the

unknown item. The basic principle of NB can be

represented by Bayes formula.

3.1.3 Random Forest

RF is an integrated learning method composed of

many decision tree models {h(X, Lk), k = 1, 2, …}

(Ho 1998), and {Lk} is a random vector of indepen-

dent distribution and it is used to control the growth

of every tree. RF first uses bootstrap sampling to

extract k samples from the training set, then estab-

lishes a decision tree model for each sample respec-

tively, and finally obtains the sequence {h1(X, L1),

h2(X, L2), …, hk(X, Lk)}. Under the given indepen-

dent variable X, each decision tree predicts a value.

The final predictive value depends on a simple

majority vote for the result of each decision tree.

The equation can be expressed as:

HðxÞ ¼ argmax
Y

Xk

i¼1

I hiðx; LiÞ ¼ Cð Þ ð1Þ

whereH(x) is an RFmodel,C is the label, and I(x) is an

indicator function.

3.1.4 Artificial Neural Networks

ANN is a learning method of simulating the identifi-

cation pattern and logic object of the biological

nervous system (Rojas 2013). The adaptive method

driven by data makes a few assumptions about the

model beforehand, and the main influencing factors

include neuron mathematical model, neural network

connection, etc. A neural network consists of an input

layer, one or more hidden layers, and an output layer.
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The signal is first entered through the input layer, then

output after the hidden layer is computed. Next, the

result of the hidden layer is output by the output layer

under the excitation function, and finally the output

signal is compared with the desired output. If the error

is too large, the error signal is reversed from the output

layer to the hidden layer and then propagated to the

input layer. The cycle stops until the number of studies

is met, or the error can be accepted.

3.1.5 Support Vector Machines

SVM has been widely used to solve regression

analysis problems, which are based on the statistical

VC dimension theory and the principle of minimum

structural risk (Khandelwal and Monjezi 2013). The

basic idea of SVM is to find an optimal separation

hyperplane through training so that the two kinds of

samples can be separated correctly and the error

probability is minimized and the separation spacing is

maximized.

For the linear problem, the optimal classification

plane is transformed into the quadratic programming

problem, and the Lagrange multiplier method can be

used to solve the constraint optimization problem:

min f ðxÞ x 2 En

s:t:uiðxÞ� 0 x 2 f1; 2; . . .; mg

�
ð2Þ

For the non-linear problem, the input variable is

transformed into a high dimension space, and the

linear separability can be realized by introducing the

appropriate kernel function. The best classification

plane is:

gðxÞ ¼
Xn

i¼1

aiyikðxi; xÞ þ b ð3Þ

where g(x) is a predictor, ai is a Lagrange multiplier,

(xi, yi) is a known sample, x is unknown, b is the

vertical coordinate of the intersection, and k(xi, x) is a

kernel function.

3.2 Simulation Modeling Experiment

As is known to all, different MLAs are used to solve

the same problem, while their forecasting performance

and prediction accuracy are not the same. Therefore, it

is necessary to select the optimal algorithm for RCS

prediction in terms of hammering sound. Based on the

data obtained from tests, five prediction models of

KNN, NB, RF, ANN, and SVM were established to

analyze acoustic characteristics. The main steps to

build a model were outlined below.

3.2.1 Data Preprocessing

Before building a model, all the data needed to be

divided into two subsets for training and testing. The

general rule was to randomly extract 80% of the

available data for training, and the rest were used for

testing (Michalski et al. 2013). The training set was

used to determine model parameters and establish a

prediction model, and the test set was used to evaluate

model performance and verify the validity of a model.

There were 2014 sound intervals in all, of which 1614

were used as the training set and the other 400 as the

test set. According to the result of feature extraction,

the output variable was RCS, with the input param-

eters of AAC and HLFR.

Although inconsistent and wrong data were elim-

inated before modeling, data conversion was still

necessary to ensure the quality of input parameters.

With AAC and HLFR mostly ranged from zero to one,

data pattern was not obvious, thereby improving

prediction errors. In order to highlight the character-

istic value and reduce the effect of the program

runtime on the convergence speed, AAC and HLFR

were amplified together after comparison and verifi-

cation, which was multiplied by the model coefficient

m = 10.

3.2.2 Optimization of Model Parameters

The critical parameters of every prediction model

were adjusted by K-fold cross validation, thus the

corresponding performance was improved. The better

execution parameters were selected after performing

Table 2 Better execution parameters of five prediction models

MLAs Parameters of different models

KNN k = 5

NB a = 0.02, b = 0.03

RF numTrees = 5, maxDepth = 5

ANN n = 20

SVM C = 10, c = 0.1
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multiple calculations and comparisons, as shown in

Table 2. The KNN parameter k represents the number

of the nearest neighbors; the NB parameters are the

posterior probability a and b; the RF parameters

numTrees, maxDepth respectively represent the deci-

sion tree number as well as each tree’s maximum

depth; the ANN parameter is the hidden layer number

n; the SVM parameters are the penalty factorC and the

width of Gaussian radial basis kernel function (RBF)

parameter c.

3.2.3 Evaluation of Model Reliability

After training and testing the five models, the

predicted values were compared with 45 measured

values selected from 400 test samples for the sake of

evaluating the reliability of five prediction models. As

shown in Fig. 6, the scattered points represent the

measured values. The errors between the predicted

values and measured values are presented in Fig. 7,

which can directly reflect the deviation degree of the

predicted values from measured values. At the same

time, the accuracy and stability of each model were

evaluated by four statistic indexes (or performance

measures) to verify whether the model could realize

quantitative prediction, such as coefficient of deter-

mination (R2), mean absolute error (MAE), root mean

square error (RMSE), and mean absolute percent error

(MAPE). Theoretically, the prediction model works

best when R2 equals one andMAE, RMSE, andMAPE

equal zero. Table 3 summarizes the performance

measures of the five models for the training dataset.

The results showed ANN and SVM performed better

than KNN, NB, and RF. Table 4 summarizes the

performance measures of the five models for the test

samples. The results obviously indicated that ANN

and SVM had superior performance and that their

performance levels were very close. It can be seen

from Fig. 7 that the NB model had the greatest

deviation from the measured value, as well as the

largest degree of dispersion. The overall prediction

results of the KNN and RF model were better, but the

RCS errors of individual rock specimens were greater.

The SVM and ANN model predicted the highest

accuracy of RCS. Therefore, SVM and ANN were

better for widespread application in the prediction of

RCS based on acoustic characteristics.

3.3 Characteristic Mechanism of Acoustic

Spectrum

3.3.1 Correlation Analysis

With the help of the dual-variable Pearson correlation

analysis function of SPSS, a parametric correlation

analysis of acoustic characteristics (AAC and HLFR)

and RCS were conducted respectively with the results

as shown in Table 5. The Pearson correlation analysis

showed that confidence levels of the two characteris-

tics were both more than 0.9, which signifies that the

two characteristics were highly correlated with RCS.

In order to further understand the change trend

between acoustic characteristics and RCS, Fig. 8a, b

showed the scatter plots between two characteristics

and RCS respectively. According to the curve fitting of

the scatter points, it was found that the RCS was

roughly linear with the two characteristics, and the R2

of each was more than 0.9.

3.3.2 Mechanism Study

Based on the study of the mechanical characteristics of

rock by analyzing the acoustic signal spectrum, the

relationship between acoustic characteristics (AAC

and HLFR) and RCS was determined by comparing

the predicted value with the measured value, correla-

tion analysis, and curve fitting, etc. RCS was closely

related to its mineral composition, inter-granular

connection, structural characteristics, weathering and

fragmentation degree, particle size and shape. In this

work, the intrinsic mechanism of the correlation
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between RCS and acoustic characteristics was further

studied, and the attenuation characteristics and

frequency change of hammering sound were trans-

formed from the natural characteristics of the rock

itself.
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It can be seen from Fig. 4 that the initial amplitude

of each hammering signal was around 30000, and the

amplitude decreased gradually to zero after some time.

The signal attenuation was led by energy dissipation.

Thus, we tried to figure out the reason for energy

dissipation when the initial energy of the acoustic

signal was approximately the same. The sound signal

spread to the surrounding when hammering at the

surface of the rock. The complete signal was com-

posed of two parts of sounds generated by hitting the

rock: one that traveled through the air and the other

that traveled into the rock medium and reflected from

the medium surface layer. The former is roughly the

same, while the latter is easily influenced by the

Table 3 Performance

measures for training set
MLAs Sample size of training set Four statistic indexes

R2 MAE RMSE MAPE

KNN 1614 0.9832 0.1332 0.5973 0.2237

NB 0.8802 3.6703 3.8422 6.4912

RF 0.9784 0.4107 1.1028 0.6426

ANN 0.9873 0.1351 0.2740 0.2011

SVM 0.9913 0.0676 0.0817 0.1125

Table 4 Performance

measures for test set
MLAs Sample size of test set Four statistic indexes

R2 MAE RMSE MAPE

KNN 400 0.9826 0.1375 0.5956 0.2250

NB 0.8768 3.7084 3.9403 6.6941

RF 0.9731 0.6730 1.7627 1.0464

ANN 0.9874 0.1263 0.2752 0.2033

SVM 0.9906 0.0916 0.1009 0.1248

Table 5 Results of correlation analysis between acoustic characteristics and RCS

Acoustic characteristics Total number of samples Pearson correlation coefficient r Degrees of correlation

AAC 2014 - 0.9072 High-negative correlation

HLFR 2014 0.9209 High-positive correlation
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Fig. 8 Relationship diagrams a relationship between AAC and RCS, and b relationship between HLFR and RCS
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characteristics of the rock itself. The weaker rock was

susceptible to chemical weathering and easily decom-

posed into secondary hydrophilic minerals. This

caused the inter-particle connection state to transform

into a water-glue connection, which formed a discon-

tinuous spatial structure of the two different dielectric

phases of the mineral and air (or water). The acoustic

signal passed through the mineral-air (or water)

medium once, while energy loss occurred once. The

more the dielectric surface exists, the more energy was

lost, and the faster the signal decayed. Most of the

stronger rocks were crystalline and had higher density.

The internal continuous grain composition could be

regarded as a single dielectric body, and the signal

energy decayed slowly when passing through the

medium.

With regard to the frequency change of acoustic

signals, the developed method transformed them into

the problem of filter effect of different mediums. As

shown in Fig. 5, the low-frequency components were

greater than the high-frequency components in the

signal of the weaker rock, whereas the opposite was

true for the stronger rock. Any medium has an

absorption effect on the acoustic waves, and the

medium has a frequency selective absorption and

scattering effect on the acoustic waves. The charac-

teristics of the acoustic wave propagation medium

were different, as well as the absorption and scattering

of the waves. Because of the severe physical weath-

ering and more tectonic fissures, the weaker rock had a

weaker inter-granular connection, which led to more

pores in the grains, looser structure, and more porous

structures similar to honeycomb. Thus, the absorption

of the acoustic wave was enhanced and the penetration

ability of the wave was greatly weakened. It was

shown that the loss of the high-frequency part of the

signal was substantial, which caused the HLFR to

become smaller. Because the integrity of the stronger

rock was better, the acoustic absorption was smaller.

Therefore, the frequency components were richer and

high-frequency components formed the subject of the

signal, which caused the HLFR to be larger.

3.3.3 Discussion: Practical Inquiry

We put forward a new approach to measure RCS in

field operation by hammering sound after studying the

relationship between RCS and acoustic characteristics

in detail. Compared with the traditional indirect

testing method, this method can be applied to more

qualities of rock specimens and suitable for field

measurement. It is possible to adopt it for rock mass

classification to make up for the shortcomings of the

existing methods and play a greater role. Thus, the

correlation of RCS rating with AAC and HLFR can be

used to distinguish material properties of rock masses.

The rock mass quality was established based on

Chinese standard (China 1995) of engineering classi-

fication of rock masses. The brand new acoustic

characteristic indexes, AAC and HLFR, were added to

the classification standard to refine the corresponding

specification, as shown in Table 6. The better classi-

fication will be accepted by using comprehensive

indexes to quantify rock mass quality.

4 Conclusions

A new and non-destructive testing method to deter-

mine RCS based on MLAs and spectrum analysis of

geological hammer was proposed in the paper. The

hammering sound samples were successively prepro-

cessed by signal enhancement algorithm and double-

threshold method to eliminate noise. Our work

established five prediction models of RCS in accor-

dance with acoustic characteristics of AAC and

HLFR. The above-mentioned five MLAs were used

for performance evaluation and mechanism analysis,

Table 6 The correlation of RCS rating with AAC and HLFR based on Chinese standard

Degrees of solidity Hard rock Fairly hard rock Fairly soft rock Soft rock (including the extremely soft rock)

RCS [ 48.91 33.23–48.91 17.55–33.23 \ 17.55

AAC \ 0.84 0.84–0.93 0.93–1.00 [ 1.00

HLFR [ 0.45 0.22–0.45 0.10–0.22 \ 0.10
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and we ultimately obtained the following conclusions

according to the evaluation result and the mechanism

explanation: (1) The prediction models of RCS based

on SVM and ANN were better than the other three

models, and the predicted value was well close to the

measured value. And, the SVM model was slightly

superior in the prediction accuracy evaluation index.

(2) Two brand new indexes of acoustic signal were put

forward to simplify the prediction problem, i.e., AAC

could reflect the attenuation velocity of the acoustic

signal well, while HLFR can represent the energy of

the sound signal. The nature of acoustic signal of

geological hammer would be reflected with a mixture

of both, thereby grading the rock mass quality. (3) The

combination of multitaper estimation and spectral

subtraction and the improved double-threshold algo-

rithm were adopted for signal preprocessing, thus

improving the accuracy of RCS prediction. (4) By

analyzing the relationship between RCS and acoustic

characteristics, it can be concluded that the greater the

RCS, the smaller the AAC and the more slowly the

acoustic signal decayed, in the meantime, the greater

the HLFR and the high-frequency components were

richer, and vice versa. (5) The new method will

deserve extensive application in geological surveys

and construction acceptance to predict RCS conve-

niently and accurately based on spectrum analysis of

geological hammer.

Note that the rebound value was used to represent

RCS for the convenience of rock strength acquisition.

However, the accuracy of rebound value is generally

low, which is bound to affect the precision of RCS

prediction. The high-precision test techniques such as

ultrasonic-rebound combined method and uniaxial

compression test will be adopted to measure RCS in

future research, thus reducing the interference of

measurement errors.
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