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Abstract The wear rate of diamond wire saw plays a

vital role in the performance of sawing process.

Predicting the sawing performance is very important

in the production’s cost estimation and planning of the

dimension stone quarries. In this research, an adaptive

neuro-fuzzy inference system (ANFIS) is applied to

estimate the wear rate of diamond wire saw under

uncertain processes; hence, indirect prediction in

ANFIS is carried out using subtractive clustering

method (SCM) and fuzzy c-means clustering method

based on four effective rock properties, such as Shore

hardness, Schimazek’s F-abrasivity, uniaxial com-

pressive strength and Young modulus. For this

purpose, 38 rock samples were selected to test the

proposed model from Turkey quarries. The results of

indirect prediction indicated that the best performed

model was related to ANFIS-SCM with highly

acceptable degrees of accuracy 0.998 and 0.59 for

R2 of the train and test data sets, respectively. In

addition, group method of data handling type of neural

network is used to assess the factors influencing the

wear rate of the diamond wire saw. A sensitivity

analysis was performed on the laboratory test results

of studied rocks using three methods. In comparison to

the existing models, the estimated results showed that

a satisfactory performance could be obtained using the

proposed ANFIS-subtractive clustering method.

Keywords Wear rate � Diamond wire saw � ANFIS-

SCM � ANFIS-FCM � GMDH

1 Introduction

Nowadays, diamond wire cutting (DWC) in dimen-

sion Stone industry (plan and quarry) has an excessive

significance in spite of its economic and technological

problems. The wear rate of the diamond wire does not

affect so much operating costs when marbles or

limestones are extracted. It is worth mentioning that

the consumption of DW plays a key role in abrasive

stones such as granites. This is very important for

optimization and other technological studies related to

the DWC (Careddu and Marras 2015).
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In DWC method, after the complete preparation for

production, the vertical and horizontal holes perpen-

dicular to each other are drilled on blocks. Diamond

wire is threaded through these holes and mounted

around the drive wheel of the cutting machine. Then, it

is rotated with the drive wheel’s movement. Tension

and rotation forces required for cutting are provided by

the movement of a diamond wire-cutting machine

away from the cut surface on the rail. Water is applied

with spin direction of the wire as a coolant and as a

means of removing the particles (Özçelik and Bayram

2004). A schematic figure of DWC layout is shown in

Fig. 1.

Up to now, the performance evaluation of diamond

wire cutting has been well studied in the literature.

Some of these studies have been done on sawability of

dimension stone and some relationships have been

presented among rock properties and cutting rate, wear

rate and energy consumption. The performance of the

diamond wire saw in the hard rocks’ cutting process

was studied by Ciccu et al. (1998). The wear rate of

diamond beads in the cutting process of different

dimension stone types was investigated by Özçelik

et al. (2002) using the regression analyses. The effect

of dimension stone properties on the diamond wire

saw’s performance such as the diamond wire cutting

rate and wear were studied by Agus et al. (2003) using

a multiple regression approach. The diamond wire

cutting process was studied by Özçelik (2005) to

obtain the optimum working conditions of cutting

machines in the marble industry. The influence of

operating parameters on the performance of diamond

wire in cutting of granite was studied by Cai et al. The

results showed that the peripheral speed of the

diamond wire is important for tool life and energy

consumption (Cai et al. 2007). The production rate of

the diamond wire saw was investigated by Ataei et al.

(2012) using the statistical analysis. The performance

of diamond wire saw with respect to texture charac-

teristics of carbonate rock was studied by Ghaysari

et al. (2012). The production rate of diamond wire

saws was predicted by Sadegheslam et al. (2013) using

the multiple nonlinear regression analysis and artifi-

cial neural network. The granite sawing using the

diamond wire saw was studied by Careddu and Cai

(2014). This study focused on the diamond wire

technology. The difference between multi-wires and

older technologies was discussed in terms of their both

economic and environmental issues. The effect of

cutting wire tension on the production rate of diamond

wire in the cutting of travertine was studied by Almasi

et al. (2015). The harmony search algorithm was used

by Mikaeil et al. (2016) for evaluating the perfor-

mance of the diamond wire. The diamond wire saw in

basalt quarries was studied by Careddu et al. This

study provided a technical, economic and environ-

mental assessment of the diamond wire used in the

quarrying basalt (Careddu et al. 2017).

Artificial intelligence (AI) techniques have been the

most appropriate scientific tools to deal with impre-

cision and vagueness of human knowledge, complex

phenomena and systems for assessment of different

types of industrial, political, engineering, social and

environmental problems in recent decades (Berry et al.

1989; Bortolussi et al. 1990; Rad et al. 2012; Fattahi

2016; Haghshenas et al. 2016a, b; Salemi et al. 2017;

Fig. 1 Schematic

presentation of a diamond

wire-cutting layout (Özçelik

et al. 2002)
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Aryafar et al. 2018; Mikaeil et al. 2018a, b). Recently,

aside from traditional methods and empirical equa-

tions available, the use of these approaches have been

used successfully for modeling and prediction in field

of rock mechanics. Hence, this research presents three

AI techniques, namely ANFIS-SCM, ANFIS-FCM,

GMDH-type neural network to predict the perfor-

mance of sawing process through cutting operations.

The major advantages of these methods are their

capability of tolerate imprecision, simulation of

uncertainty systems and vague data. Adaptive ANFIS

and GMDH type of neural networks are used as other

statistical tools. Several effective rock properties such

as Shore hardness, Schimazek’s F-abrasivity, uniaxial

compressive strength and Young modulus are used as

input data and wear on beads is considered as an output

to the prediction of the diamond wire cutting’s

performance. The root mean square error (RMSE),

the mean square error (MSE) and the squared corre-

lation coefficient (R2) of the train and test data are

considered to assess ANFIS and GMDH-type neural

network models. In fact, this study is aimed to

investigate the application and efficiency of the

artificial intelligence to evaluate the performance of

diamond beads through cutting operations. This paper

is organized as follows. In Sect. 2, ANFIS, SCM,

FCM are described. In Sect. 3, GMDH is explained.

The study areas and laboratory studies are presented in

Sect. 4. The application of ANFIS-based SCM and

FCM are discussed in Sect. 5. Section 6 describes the

application of GMDH-type artificial neural networks

(ANN) and sensitive analysis with ANFIS model. In

Sect. 7, conclusions and recommendations for future

studies are presented.

2 Adaptive Network-Based Fuzzy Inference

System (ANFIS)

One of the most common Neuro-fuzzy systems

performed for Sugeno fuzzy system in a neural

structure is ANFIS model. The typical mathematical

tools such as differential equations are not appropriate

and efficient for modeling complex and uncertain

systems. ANFIS model proposed in 1993 is a

combined complex form of ANN and FIS (Jang

1993; Kasabov 2001). ANFIS model is an appropriate

model for predicting complex conditions and prob-

lems under uncertainty due to the learning power of

ANN model on the one hand, and application of logic

and formation of rule base and fuzzy data on the other

hand, and is capable of modeling qualitative aspects of

human knowledge and reasoning processes very

accurately without using the quantitative analysis

(Kasabov et al. 2013; Kecman 2001). In fact, the

structure of adaptive network includes a set of

connected nodes which are directly interconnected,

where each node is considered as a processing unit. In

ANFIS model as an adaptive model of this structure,

there is no limitation on the functions of nodes, except

that they must be differentiable section by section. In

terms of effectiveness, the Neuro-fuzzy network

corresponds to the fuzzy inference system (FIS).

ANFIS model has a high capability in modeling and

mapping input–output data. The structure of ANFIS

model includes 5 layers based on Fig. 2 which is

defined as follows:

The first layer: in each node i in this layer, using the

membership functions (MFs), each node produces the

membership belonging to each of the appropriate

fuzzy sets based on Eq. (1).

Fig. 2 Structure of ANFIS

system
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Ql;i ¼ lAi xð Þ for i ¼ 1; 2

or

Ql;i ¼ lBi yð Þ for i ¼ 3; 4

8
<

:
ð1Þ

where Ql,i is the membership degree of the fuzzy set

and l is the membership function. In these equations, x

and y are the inputs of node i, and Ai and Bi are

linguistic labels relating to this node.

The second layer: Each node in this layer is formed

by a node called II which its output is the multipli-

cation of all input signals based on Eq. (2). In this

layer, each output node indicates the firing strength of

a rule. In fact, in this layer, operator ‘‘AND’’ was used.

Q2;i ¼ wi ¼ lAi xið Þ � lBi yið Þ i ¼ 1; 2 ð2Þ

The third layer: In this layer, each node is named

with N fixed label which in ith node, the ratio of ith

rule’s firing strength is calculated based on Eq. (3) for

all rules’ firing strength.

Q3;i ¼ �Wi ¼
wi

P2
j¼1 wj

i ¼ 1; 2 ð3Þ

where �Wi is the output of this layer and is called

normalized firing strengths.

The fourth layer: Each node i in this layer is

matched with functions’ node based on Eq. (4). In

Eq. (4), �Wi is the output of the third layer and is called

normalized firing strengths. pi, qi and ri are parameters

of this node which are considered as inductive

parameters of the fuzzy model section.

Q4;i ¼ �Wi � fi ¼ �Wi pixþ qiyþ rið Þ ð4Þ

The fifth layer: This layer is only one node with

label
P

which calculates all outputs from the total

input signals based on Eq. (5). Therefore, in this layer,

obtained fuzzy results are calculated based on

defuzzifier rules in the form of non-fuzzy output.

Q5;i ¼
X

�Wi � fi ¼
P

wifi
P

wi

ð5Þ

Neuro-fuzzy model makes it possible for fuzzy

systems to use adaptive back propagation training

algorithm in parameters training topics. In this

method, using error gradient descend algorithm, the

error rate is distributed toward inputs and parameters

are corrected. This training method is exactly like the

error back propagation method used in artificial neural

networks. In fact, in artificial neural networks, this

method is known as error back propagation method.

2.1 Subtractive Clustering Method (SCM)

SCM was first introduced by Chiu (1994). This technique

is one of the most efficient methods for determining the

number of clusters and initial position of clusters’ centers.

In the subtractive clustering technique, each sample point

is considered as a potential cluster center. The cluster

center of all data was determined using SCM. Then,

automatic membership functions, rule base and the

location of MF within dimensions were generated using

the numbers of subtractive centers.

At the beginning of SCM process, a set of data points

x1; x2; x3; . . .; xnf g is considered in the m-dimensional

space. Then, each data point such as xi is considered as

the center of cluster for this set and a density measure

is determined for that xi based on Eq. (6).

Di ¼
Xn

j¼1

exp �
xi � xj
�
�

�
�2

ra

2

� �2

" #

ð6Þ

where Di is the density measure for xi�ra indicates a

neighborhood radius as a positive constant for each

data point under study. In addition, a data point with a

high density in the neighborhood radius has many

neighboring data points in this domain (radius). Data

points outside the domain of ra radius do not have any

high and indirect effect on the determination of the

density amount, but they impose a low impact on the

amount of density. In the next step, the first center of

cluster from among data points reaches a data point

with the highest amount of density, and xc1 and Dc1 are

determined as the center and amount of density in the

first cluster, respectively (Jang et al. 1997). Then, the

density of other xi is calculated based on Eq. (7).

Di ¼ Di � Dc1

Xn

j¼1

exp � xi � xc1k k2

rb

2

� �2

" #

ð7Þ

where rb indicates a positive constant defining a

neighborhood which includes measurable reductions

in the density measure.

Then, the amount of density for the next data point

is calculated and xc2 is determined and the process of

algorithm is corrected and updated until the required

number of clusters is obtained.

2.2 Fuzzy C-Means (FCM) Clustering Technique

One of the unsupervised learning methods is cluster-

ing, through which data are divided into clusters with
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the most familiar members. Therefore, FCM cluster-

ing method was proposed by Bezdak using the fuzzy

logic and membership degree concept based on the

generalization and extension of Hard C-mean (HCM)

method (Bezdek et al. 1984). This clustering technique

is one of the most efficient clustering methods for the

optimal management of a system. Fuzzy clustering

technique has different applications, including risk

management of mechanized tunnels based on the

evaluation of geological units (Haghshenas et al.

2016a, b), investigation of the effects of freezing on

the resistance of stones (Mikaeil et al. 2016) and

evaluation of Cretaceous stones (Rad et al. 2014).

The beginning of algorithm for determining the

number of clusters (c) is between larger than or equal

to 2 and smaller than or equal to n (number of

samples). Then, by determining m0 index as the

weighting factor for the amount of fuzziness in the

clustering process, the clustering process is started.

U 0ð Þ is guessed as initial partition matrix and each step

or replication of this algorithm is determined by r

value. Then, the center of clusters V
rð Þ

i

n o
per repli-

cation is calculated and the partitioned matrix for rth

replication is updated as ~U rð Þ. The process is defined

based on Eqs. (8) to (12).

l rþ1ð Þ
ik ¼

Xc

j¼1

d
rð Þ
ik

d
rð Þ
jk

 ! 2

m0�1ð Þ
2

4

3

5

�1

for Ik ¼ u ð8Þ

l rþ1ð Þ
ik ¼ 0 for all calsses i where i 2 ~Ik ð9Þ

Ik ¼ ij2� c\n; d
rð Þ
ik ¼ 0

n o
ð10Þ

~Ik ¼ 1; 2; . . .; cf g � Ik ð11Þ
X

i2Ik
l rþ1ð Þ
ik ¼ 1 ð12Þ

where l rþ1ð Þ
ik indicates the membership degree of kth

data in ith cluster for r þ 1 replication of algorithm. dik
is the Euclidean distance (distance function) between

the center of ith cluster and kth data and can be ordered

in the form of vector (Bezdek et al. 1984; Das and

Basudhar 2009).

In the last step, the result obtained from clustering

or in other words, the accuracy of algorithm eL is

evaluated. If Eq. (13) is satisfied, the result of clustering

achieved an appropriate optimization. Under this

condition, the computations can be stopped. Otherwise,

the computation process returns to the previous steps

and this ring will continue up to an acceptable level of

algorithm’s accuracy for optimization.

~U rþ1ð Þ � ~U rð Þ ¼ eL ð13Þ

ESKISEHIR

KUTAHYA

AFYON
USAK

MUGLA
ANTALYA

ANKARA

KAYSERI

TURKEY

N

Fig. 3 Location map of the investigated marble quarry areas under consideration
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3 Group Method of Data Handling (GMDH)-Type

Neural Networks

GMDH was proposed by Ivakhnenko as an algorithm

based on the neural network for solving complex and

imprecise problems (Ivakhnenko 1968). GMDH algo-

rithm can directly determine and obtain information

about the objective function through sampling data. This

algorithm is a self-organized and unilateral neural

network formed by several layers and neurons. In fact,

GMDG-type neural network includes a set of neurons

which is resulted from combining different pairs of a

quadratic polynomial (Ivakhnenko 1971; Sheik-

holeslami et al. 2014; Bagheri-Esfe and Safikhani

2016). By combining quadratic polynomials resulted

from all neurons, the algorithm produces an approximate

function (proper mapping) with output for a set of inputs

such as x ¼ xi1; xi2; xi3; . . .; ximf g with the minimum

possible error compared to output y based on Eq. (14).

ŷ ¼ f̂ xi1; xi2; xi3; . . .; ximð Þ for i ¼ 1; 2; 3; . . .;mð Þ
ð14Þ

The general form of GMDH basic neural network’s

mapping for input data based on output data can be

obtained according to Eq. (15). It is also called

Ivakhnenko polynomial.

y ¼ aþ
Xm

i¼1

bixi þ
Xm

i¼1

Xm

j¼1

cijxixj

þ
Xm

i¼1

Xm

j¼1

Xm

k¼1

dijkxixjxk

þ
Xm

i¼1

Xm

j¼1

Xm

k¼1

Xm

l¼1

eijklxixjxkxl þ � � � ð15Þ

where m is the number of data for values

x1; x2; x3; . . .; xm for an output such as y. GMDH-type

neural networks is very efficient for systems’

modeling, prediction, optimization and identification

of non-linear patterns (Ivakhnenko and Ivakhnenko

1995).

4 Study Areas and Laboratory Studies

This study investigated 38 different kinds of dimen-

sion stones by laboratory and field studies. In field

studies, the wear rate of beads is measured, while

laboratory tests provided us physical and mechanical

characteristics of rocks. Block cutting was performed

on three different rock types consisting of ten lime-

stone, thirteen marble and fifteen andesite samples. At

least three cutting operations were performed for each

rock type on-site, and their averages were taken and

recorded as a representative on-site measurement.

Location map of the investigated marble quarry areas

under consideration is shown in Fig. 3.

In this study, the wear values of diamond bead were

measured after a series of cutting tests in each studied

rock type using a digital micrometer. At the end of the

cutting test, the diameters of selected beads were

measured two times at points A–AI, B–BI, C–CI, D–DI

and E–EI, as shown in Fig. 4. The average of the

differences between the diameter values before and

after the cutting operation gave the average wear

amount on the diamond beads. The wear rate of each

diamond bead was calculated from these average

wears. The characteristics of studied rocks including

Shore hardness, Schimazek’s F-abrasivity, uniaxial

compressive strength and Young modulus and wear

rate of beads are given in Table 1. These data sets of

rock properties are used for training and testing the

constructing models.

5 Prediction of Wear Rate Using ANFIS Models

Wear rate is one of the most important factors

affecting diamond wire saw machine performance.

Hence; in order to predict wear rate in saw machine,

first the datasets in Table 1 are provided as input and

output data and then pseudo codes of ANFIS modeling

based on subtractive clustering method and Fuzzy

c-means clustering are written for computing in

MATLAB software. Then, after the preparation of

the pseudo-code of ANFIS algorithms in MATLAB,

the algorithms’ control parameters are adjusted in
Fig. 4 A representation of the five different points on the beads

at which measurements were taken
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Table 1 Diamond bead wear rate and characteristics of studied rock

Cutting no. Sample Cutting performance Rock characteristics

WR (mm/m2) UCS (MPa) SH YM (GPa) SFa (N/mm)

Andesite

1 Andesite1 0.00150 28.05 33.00 6.80 0.104

2 Andesite2 0.00230 47.39 39.93 7.60 0.134

3 Andesite3 0.00360 77.25 65.00 20.80 0.331

4 Andesite4 0.00340 84.02 63.62 23.50 0.290

5 Andesite5 0.00210 26.55 49.93 7.90 0.043

6 Andesite6 0.00560 67.41 67.00 15.50 0.531

7 Andesite7 0.00160 57.75 43.70 8.00 0.171

8 Andesite8 0.01570 87.53 61.38 30.56 0.313

9 Andesite9 0.01680 75.75 63.70 24.60 0.254

10 Andesite10 0.01590 81.35 62.48 25.40 0.292

11 Andesite11 0.00850 78.75 60.30 26.40 0.272

12 Andesite12 0.00800 82.50 61.20 28.30 0.320

13 Andesite13 0.00360 27.23 42.50 7.30 0.133

14 Andesite14 0.00220 51.92 41.20 7.76 0.203

15 Andesite15 0.00360 56.25 43.50 8.01 0.221

Real marble

16 Usak White 0.00370 69.00 47.00 12.20 0.021

17 Kozagac White 0.00280 42.00 40.00 12.10 0.034

18 Milas Lilac 0.00260 55.00 46.00 11.00 0.154

19 Afyon Cream 0.00300 64.00 46.00 11.80 0.014

20 Kutahya Lilac 1 0.00820 52.26 42.90 17.02 0.004

21 Kutahya Lilac 2 0.00980 79.00 43.05 17.50 0.004

22 Kutahya Violet 0.00820 63.49 43.25 21.14 0.004

23 Afyon Violet 1 0.00650 74.19 45.23 21.43 0.003

24 Afyon Violet 2 0.00490 51.84 41.60 15.96 0.003

25 Afyon Gray 1 0.00440 49.02 41.55 13.07 0.004

26 Afyon Gray 2 0.00440 45.57 39.85 15.72 0.003

27 Mugla Nacre 0.00290 28.68 50.45 12.74 0.003

28 Mugla White 0.00150 30.00 32.90 9.86 0.002

Limestone

29 Yesilova Beige 0.00310 70.50 56.00 9.90 0.014

30 Sivrihisar (Eskisehir) beige1 0.00370 72.00 60.00 12.50 0.014

31 Sivrihisar beige2 0.00380 70.00 62.00 13.20 0.013

32 Sivrihisar beige3 0.00390 68.00 58.00 12.20 0.012

33 Antalya Beige 1 0.00610 55.30 58.70 22.83 0.061

34 Antalya Beige 2 0.00850 65.80 58.15 25.24 0.104

35 Antalya Beige 3 0.00710 59.77 58.00 17.43 0.122

36 Antalya Beige 4 0.00820 56.75 59.48 20.35 0.370

37 Toros Black 1 0.01990 105.48 65.30 20.25 0.122

38 Toros Black 2 0.01573 110.77 64.75 17.94 0.121
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order to have a desired prediction and optimization,

including Maximum Epoch = 300, Initial step size =

0.1 and 0.5 for ANFIS-SCM and ANFIS-FCM,

respectively. MFs type and output MFs are considered

as Gaussian and linear for two modelings. The data set

consisted of 38 different kinds of dimension stones by

laboratory and field studies that use the 80% of the

dataset for training and remaining (20%) of it for

testing as random selection. In Modelings, after the

initial analysis, some limitations should be considered

Fig. 5 The membership functions (MFs) of rock properties for ANFIS-SCM model

Fig. 6 The membership functions (MFs) of rock properties for ANFIS-FCM model
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which include Max epoch and Initial step size equal to

100 and 0.5, respectively. After running of the

program, once the computing has reached to the max

epoch, the calculations are stopped. Figures 5 and 6

show the membership functions (MFs) of input data

(Rock properties) for ANFIS-SCM and ANFIS-FCM

models, respectively.

Two scenarios are designed in order to predict the

wear rate in performance of sawing machine. The

comparison results of the predicted wear rate versus

measured values for train and test data are depicted in

Figs. 7 and 8.

In comparison to the existing values of the wear

rate, prediction of results for train and test data show

that a satisfactory performance is obtained using the

proposed ANFIS-SCM model. A similar pattern was

repeated for ANFIS-FCM modeling with an appropri-

ate trend for train data, but this trend isn’t agreeable for

test data compared to ANFIS-SCM model.

Accordingly, modelings of ANFIS-SCM and

ANFIS-FCM for predicting wear rate summarized

the results in Table 2. After assessment of the results,

R2 for train and test data in ANFIS-SCM has higher

values than another models. Furthermore, there was

this superiority for other results.

Fig. 7 The comparison

between measured and

predicted wear rate using

ANFIS-SCM model for train

and test data

Fig. 8 The comparison

between measured and

predicted wear rate using

ANFIS-FCM model for train

and test data
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6 Prediction of Wear Rate Using GMDH-Type

Neural Network Models

In this work, assessment and prediction were per-

formed using the train and test data employed in the

GMDH type of neural network models. After several

analyses, the most appropriate control parameters

were obtained. The considered control parameters in

the prediction are the maximum number of neurons of

12 in a layer, maximum number of 5 layers and

iteration number of 300. Figure 9 shows the compar-

ison between predicted wear rate using GMDH type of

neural network models for train and test data and

measured wear rate from laboratory tests that is

Table 2 The comparison of train and test results for ANFIS-

SCM and ANFIS-FCM models

Results ANFIS-SCM model ANFIS-FCM model

R2
Train

0.998 0.998

R2
Test

0.59 0.391

RMSETrain 1.3863e-04 4.6743e-05

RMSETest 0.0043 0.0075

MSETrain 1.9218e-08 2.1849e-09

MSETest 1.8887e-05 5.6043e-05

SDTrain 1.4e-04 4.76e-05

SDTest 0.0041 0.0074

Fig. 9 The comparison

between measured and

predicted wear rate using

GMDH model for train and

test data

Fig. 10 Coefficient of

determination (R2) of

predicted GMDH-type

neural network modeling

and measured wear rate:

a train data and b test data
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calculated and obtained using pseudo code in

MATLAB software.

The R2 is calculated and drawn for train and test

data in Fig. 10. Furthermore, the results of evaluation

and prediction of train and test data are shown in

Table 3 and are compared with the results of ANFIS-

SCM model.

The results presented here show that ANFIS-SCM

technique is superior to GMDH-type neural network

based on values of the R2, RMSE, MSE and SD for

train and test data.

In this study, the ANFIS-SCM, ANFIS-FCM and

GMDH type of ANNs were used for estimating the

wear rate and then those modelings were compared

according to their capability and the highest accuracy.

A comparison was conducted between results of

laboratory and prediction of the wear rate. Finally,

after performing calculations and comparisons, the

priority of using wear rate predicting based on soft

computing techniques and laboratory is as follows:

ANFIS-SCM[ANFIS-FCM[GMDH-type neural

network.

7 Conclusion

This paper presented the application of three intelli-

gent models using GMDH-type ANNs and adaptive

neuro-fuzzy inference system based on the subtractive

clustering method and Fuzzy c-means clustering

approach to predict the wear rate for the diamond

wire saw machine performance from database of 38

different varieties of dimension stones from Turkey

mines. Artificial intelligence techniques have been

successfully used to estimate the performance of

sawing machine based on the cutting operations. As

evidenced from the results obtained, it can be

concluded that ANFIS-SCM is a reliable modeling

approach for forecasting the wear rate. The reasonable

correlation with a coefficient higher than 0.998 and

0.59 and appropriate RMSE: 1.3863e-04 and 0.0043

for train and test data indicates the validity of the

observed system. Hence, ANFIS-SCM technique can

be effectively used for prediction and found to be more

efficient than ANFIS-FCM and GMDH type of neural

networks. Also, ANFIS-FCM is superior to GMDH-

type neural networks. Future studies are focused on

comparing the methods presented here with other soft

computing approaches. Prediction of the wear rate can

also be assessed with Grey Wolf Optimizer (GWO),

Self-Organizer Map (SOM), neural networks based on

Particle Swarm Optimization (PSO) and Imperialist

Competitive Algorithm (ICA), Tabu search algorithm,

Ant Colony algorithm, etc.

References

Agus M, Bortolussi A, Careddu N, Ciccu R, Grosso B, Massacci

G (2003) Influence of stone properties on diamond wire

performance. In: Fourth international conference on com-

puter applications in the minerals industries (CAMI 2003)

Almasi SN, Bagherpour R, Mikaeil R, Khademian A (2015)

Influence of cutting wire tension on travertine cutting rate.

In: 24th international mining congress and exhibition of

turkey, pp 1096–1102

Aryafar A, Mikaeil R, Doulati Ardejani F, Shaffiee Haghshenas

S, Jafarpour A (2018) Application of non-linear regression

and soft computing techniques for modeling process of

pollutant adsorption from industrial wastewaters. J Min

Environ. https://doi.org/10.1016/j.measurement.2018.03.

056

Ataei M, Mikaiel R, Sereshki F, Ghaysari N (2012) Predicting

the production rate of diamond wire saw using statistical

analysis. Arab J Geosci 5(6):1289–1295. https://doi.org/

10.1007/s12517-010-0278-z

Table 3 The comparison

of train and test results for

ANFIS-SCM and GMDH-

type neural network

modelings

Results ANFIS-SCM model GMDH-type neural network model

R2
Train

0.998 0.78

R2
Test

0.59 0.41

RMSETrain 1.3863e-04 0.0021

RMSETest 0.0043 0.0045

MSETrain 1.9218e-08 4.24e-06

MSETest 1.8887e-05 2.049e-05

SDTrain 1.4e-04 0.0021

SDTest 0.0041 0.0047

123

Geotech Geol Eng (2018) 36:3779–3791 3789

https://doi.org/10.1016/j.measurement.2018.03.056
https://doi.org/10.1016/j.measurement.2018.03.056
https://doi.org/10.1007/s12517-010-0278-z
https://doi.org/10.1007/s12517-010-0278-z


Bagheri-Esfe H, Safikhani H (2016) Modeling of deviation

angle and performance losses in wet steam turbines using

GMDH-type neural networks. Neural Comput Appl.

https://doi.org/10.1007/s00521-016-2389-2

Berry P, Bortolussi A, Ciccu R, Manca PP, Massacci G (1989)

Optimum use of diamond wire equipment in stone quar-

rying. In: APCOM 89, pp 351–365. SME/TMS AIME

Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means

clustering algorithm. Comput Geosci 10(2):191–203.

https://doi.org/10.1016/0098-3004(84)90020-7

Bortolussi A, Ciccu R, Manca PP, Massacci G (1990) Simula-

tion and optimization of rock cutting with diamond wire.

In: Proceedings 22nd APCOM, Berlin, 1990, vol III,

pp 163–176

Cai O, Careddu N, Mereu M, Mulas I (2007) The influence of

operating parameters on the total productivity of diamond

wire in cutting granite. Ind Diamond Rev 67(3):25–32

Careddu N, Cai O (2014) Granite sawing by diamond wire: from

Madrigali ‘‘bicycle’’ to modern multi-wires. DIAMANTE

79:33–50

Careddu N, Marras G (2015) Marble processing for future uses

of CaCO3-microfine dust: a study on wearing out of tools

and consumable materials in stoneworking factories. Miner

Process Extr Metall Rev 36(3):183–191

Careddu N, Perra ES, Masala O (2017) Diamond wire sawing in

ornamental basalt quarries: technical, economic and envi-

ronmental considerations. Bull Eng Geol Env. https://doi.

org/10.1007/s10064-017-1112-6

Chiu SL (1994) Fuzzy model identification based on cluster

estimation. J Intell Fuzzy Syst 2(3):267–278. https://doi.

org/10.3233/IFS-1994-2306

Ciccu R, Manca P, Massacci G (1990) Simulation and opti-

mization of rock cutting with diamond wire. In: APCOM

‘90, 22nd international symposium, vol 3, pp 163–176.

ISBN: 3798313741

Ciccu R, Agus M, Bortolussi A, Massacci G, Careddu N (1998)

Diamond wire sawing of hard rocks. In: Superabrasives

and CVD diamond, theory and applications, pp 365–377

Das SK, Basudhar PK (2009) Utilization of self-organizing map

and fuzzy clustering for site characterization using piezo-

cone data. Comput Geotech 36(1):241–248. https://doi.

org/10.1016/j.compgeo.2008.02.005

Fattahi H (2016) Prediction of slope stability using adaptive

neuro-fuzzy inference system based on clustering methods.

J Min Environ. https://doi.org/10.22044/jme.2016.637

Ghaysari N, Ataei M, Sereshki F, Mikaiel R (2012) Prediction of

performance of diamond wire saw with respect to texture

characteristics of rock. Arch Min Sci 57(4):887–900.

https://doi.org/10.2478/v10267-012-0058-6

Haghshenas SS, Haghshenas SS, Barmal M, Farzan N (2016a)

Utilization of soft computing for risk assessment of a

tunneling project using geological units. Civil Eng J

2(7):358–364

Haghshenas SS, Neshaei MAL, Pourkazem P, Haghshenas SS

(2016b) The risk assessment of dam construction projects

using fuzzy TOPSIS (Case Study: Alavian Earth Dam).

Civil Eng J 2(4):158–167

Ivakhnenko AG (1968) The group method of data handling-a

rival of the method of stochastic approximation. Sov

Autom Control 13(3):43–55

Ivakhnenko AG (1971) Polynomial theory of complex systems.

IEEE Trans Syst Man Cybern 4:364–378. https://doi.org/

10.1109/TSMC.1971.4308320

Ivakhnenko AG, Ivakhnenko GA (1995) The review of prob-

lems solvable by algorithms of the group method of data

handling (GMDH). Pattern Recognit Image Anal C/C

Raspoznavaniye Obrazov I Analiz Izobrazhenii 5:527–535

Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference

system. IEEE Trans Syst Man Cybern 23(3):665–685

Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft

computing; a computational approach to learning and

machine intelligence. ISBN-13: 978-0132610667

Kasabov N (2001) Evolving fuzzy neural networks for super-

vised/unsupervised online knowledge-based learning.

IEEE Trans Syst Man Cybern Part B (Cybern)

31(6):902–918. https://doi.org/10.1109/3477.969494

Kasabov N, Dhoble K, Nuntalid N, Indiveri G (2013) Dynamic

evolving spiking neural networks for on-line spatio-and

spectro-temporal pattern recognition. Neural Netw

41:188–201. https://doi.org/10.1016/j.neunet.2012.11.014

Kecman V (2001) Learning and soft computing: support vector

machines, neural networks, and fuzzy logic models. MIT

press, USA

Mikaeil R, Ozcelick Y, Ataei M, Haghshenas SS (2016)

Application of harmony search algorithm to evaluate the

performance of diamond wire Saw. J Min Environ. https://

doi.org/10.22044/jme.2016.723

Mikaeil R, Haghshenas SS, Haghshenas SS, Ataei M (2018a)

Performance prediction of circular saw machine using

imperialist competitive algorithm and fuzzy clustering

technique. Neural Comput Appl 29(6):283–292. https://

doi.org/10.1007/s00521-016-2557-4

Mikaeil R, Haghshenas SS, Hoseinie SH (2018b) Rock pene-

trability classification using artificial bee colony (ABC)

algorithm and self-organizing map. Geotech Geol Eng

36(2):1309–1318. https://doi.org/10.1007/s10706-017-

0394-6
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