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Abstract The paper pertains to the development of a

new relationship expressing the Winkler modulus of

subgrade reaction as a function of elastic parameters

such as the modulus of elasticity and Poisson’s ratio of

the foundation soil, and the relative rigidity of the

foundation soil and the beam resting over the same. It

ensures that the maximum values of beam deflection

and bending moment computed by using both the

theory of elastic continuum and lumped parameter

modeling are either identical or very close to each

other. In this respect the developed expression can be

construed to be superior to those proposed by Biot and

Vesic, which respectively predict correct values for

only one of the quantities (either maximum bending

moment or maximum deflection). In addition, the

proposed model for subgrade modulus is applicable to

multiple load conditions as well unlike the other two

approaches as reported.

Keywords Beams on elastic foundation � Elastic

continuum � Young’s modulus � Subgrade modulus �
Finite difference method � Numerical modeling

1 Introduction

In recent years Winkler model in spite of its limita-

tions (Selvadurai 1979) is being increasingly used by

civil engineers in analyzing soil structure interaction

problems static (Daloglu and Vallabhan 2000) as well

as dynamic (Boulanger et al. 1999; Allotey and El

Nagger 2008; Prendergast and Gravin 2016). Use of

such models can be justified where the main objective

is the analysis of the foundation beam and not of the

foundation soil bed.

Objection to the use of Winkler model is also due to

the fact that the modulus of subgrade reaction used in

the model and as determined by plate load test

conducted in the field does not use any fundamental

property of soil. To bridge these gap seminal efforts

were made quite early by Biot (1937) and subse-

quently by other investigators like Vesic (1961),

Brown (1973); excellent discussions on these methods

have been made by several investigators (Selvadurai

1979; Scott 1981; Bowels 2001). As the works of Biot

(1937) and Vesic (1961) are widely referred and still
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being used (Sall et al. 2013) these are looked into in

some more details.

Biot (1937) and Vesic (1961) proposed expressions

relating the modulus of subgrade reaction of founda-

tion soils as a function of the elastic parameters of the

foundation soil and the relative rigidity of the foun-

dation soil and the footing resting over it and matched

the maximum bending moment and the maximum

deflection respectively. Both these approaches to some

extent blunt the objection to the use of modulus of

subgrade reaction expressing those as a function of the

fundamental elastic parameters of the soil and relative

rigidity of soil and the footing in finding the response

of beams on elastic foundation. However, none of the

above two expressions correctly predicts the maxi-

mum values of both the beam deflection as well as the

bending moment simultaneously. Use of Vesic’s

model does not ensure prediction of the maximum

bending moment developed on the footing treated as a

beam on elastic foundation and Biot’s model on the

other hand does not predict the maximum deflection,

which match correspondingly with those by theory of

elasticity solutions. Chandrasekaran (2001) reported

that none of the two models (Biot’s and Vesic’s) is

able to predict accurately either the maximum bending

moment or the deflection for multiple load conditions.

It is necessary to study the above aspect in some detail

and to improve the models so that predictions with

regard to the maximum bending moment and maxi-

mum deflection match with the theory of elasticity

solutions.

Recently renewed efforts have been made in this

direction by Klar et al. (2004) and also Iskander and

Gabr (2009) in analyzing Soil-Pipeline interaction due

to tunneling. They adopted Winkler springs and

Vesic’s expression to estimate the modulus of sub-

grade reaction and found that the equation may not be

adequate for such analysis.

The inadequacies of the existing lumped parameter

models led several investigators to suggest the use of

now proven numerical methods of analysis like fem

for analyzing elastic half space problems. But Winkler

foundation model due to its simplicity is widely used

by the practicing engineers and finding more attention

in tackling reinforced soil beds (Shukla and Chandra

1994; Madhav and Poorooshasb 1989; Yin 2000;

Albet and Kovacs 2003; Dey 2009) and soil–structure

interaction problems under both static and dynamic

conditions as reported earlier. Due to the reasons as

explained above it is not yet the time to discard the use

of Winkler based models in geotechnical engineering

research and practice as over the years it has acquitted

itself quite admirably in solving such interaction

problems.

Therefore, in this study, an effort has been made to

provide a better estimate of k as a function of

fundamental material properties like E and l, which

would not only provide better estimates of both

maximum bending moment and deflection simultane-

ously, but will also be applicable to multiple load

conditions. Thus, the new proposed model is an effort

to bridge the gap between the Single parameter

lumped parameter model based on Winkler hypothesis

and elastic theory approaches. This is achieved by

minimizing the squared error between the solutions

from the two approaches. The use of the new model for

k will also enhance the applicability of those computer

software, which had been developed earlier in the

fifties and sixties of the last century based on modulus

of subgrade reaction and are still frequently used. In

addition, in many new models for reinforced founda-

tion beds that are being developed using lumped

parameter models, the rheological model parameters

can be found as a function of the modulus of elasticity,

Poisson’s ratio and viscoelastic coefficient in a similar

manner as developed in this paper, leading to their

greater acceptability. In that sense the developed paper

is a small step towards development of newer models

combining the flexibility of lumped parameter models

and theoretical soundness of continuum mechanics

based models. However, it should be kept in mind that

some of the deficiencies of the basic model with

respect to the lack of continuity beyond the loaded

area still persist; the proposed equation may not be the

panacea that will give good results for all types of soil–

structure interaction problems and it may be necessary

to investigate the same.

1.1 Existing Models for Modulus of Subgrade

Reaction

For analyzing a flexible foundation for its structural

design using the Winkler foundation model it is

essential to evaluate the model parameter namely the

coefficient of subgrade reaction, k defined as: k ¼
�p=D; where a foundation of width b is subjected to a

load per unit area of p and the corresponding

settlement is D. The unit of k is kN/m3. The value of
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k is not constant for a soil. It depends on several factors

like the length and width of the foundation and on the

depth of the foundation as well. A comprehensive

study of the parameters affecting the co-efficient of

subgrade reaction has been presented by Terzaghi

(1955). As per this study the coefficient of subgrade

reaction decreases with the width of the foundation. In

the field load tests may be conducted on square plates

measuring 0.3 m 9 0.3 m and the values of k can be

calculated. For larger foundations of size bxl, the

values of subgrade modulus k(bxl) can be related to the

subgrade modulus of the smaller test plate (size

0.3 m 9 0.3 m) k0.3 using standard expressions as

proposed by Terzaghi. Subgrade modulus increases

with depth as the foundation settlement is dependent

on the modulus of elasticity of soil beneath the

foundation, which is a function of the spatial location

of the collected sample. It is necessary to plan

adequate site investigation and laboratory testing to

accurately calibrate the model used so as to ensure that

the results obtained are realistic. Several expressions

are available for modulus of subgrade reaction

accounting for the flexural rigidity of the foundation

to which the spring is attached whereas the others

specify the spring constants without consideration to

geometry or flexibility. The primary issue addressed

in this paper is the specification of the stiffness

parameter that correctly reflects the response of the

soil-beam system with reasonable accuracy. The

stiffness parameter, known as the coefficient of

modulus of subgrade reaction for static problems is a

difficult parameter to specify as it typically varies with

loading scheme, geometry of the foundation and the

type of subgrade material. Prendergast and Gavin

(2016) compared the performance of five different

subgrade reaction models that were typically devel-

oped for the application to static problems, for use in

small-scale dynamic modeling of a pile-soil system.

Two most well known and frequently expressions

proposed by Biot (1937) and Vesic (1961) correlating

the modulus of subgrade reaction (k) as a function of

the elastic parameters of the soil and the relative

rigidity of the soil are chosen for further exploration.

These are:

Biot’s Model: Biot (1937) presented a solution for

the problem of an infinite beam with a conventional

load, resting on a 3-D elastic soil continuum. He

correlated the continuum elastic theory and the

Winkler model by equating the maximum moments

in the infinite beam and developed an empirical

relation for the coefficient of subgrade reaction, ks as

shown in Eq. (1a).

ks ¼
0:95Es

1 � m2
s

� �
B4Es

1 � m2
s

� �
EI

" #0:108

ð1aÞ

where Es is the Young’s modulus of the soil elements,

B is the width of the foundation element, EI is the

flexural rigidity of the foundation element and ms is the

Poisson’s ratio of the foundation soil.

Vesic’s Model: Adopting a similar method Vesic

(1961) derived an equation for by matching the

maximum displacements of an infinite beam as shown

in Eq. (2a).

ks ¼
0:65Es

ð1 � m2
s Þ

B4Es

EI

� �1=12

ð2aÞ

Which is of similar form as that of Eq. (1a).The

above two expressions are useful in evaluating the

modulus of subgrade reaction K (= k x b) from triaxial

test conducted under appropriate drainage condition

on undisturbed soil samples collected from the field

located below the foundation level.

Other relations as proposed by Brown (1973) and

Vlasov and Leontiev (Scott 1981) are not discussed

here as those are not used very often.

Prendergast and Gavin (2016) noted that the above

two most widely used methods for foundation analysis

due to Biot’s and Vesic’s produced values, which

differs by about 27%.

1.2 The Developed Methodology

1.2.1 Objective Statement

The objective of the developed methodology is

explained with reference to a typical combined footing

resting on the surface of a homogeneous, semi-infinite,

isotropic and elastic foundation soil medium as shown

in Fig. 1. The modulus of elasticity of the footing is

Eb.

The length, width and depth of the footing are L, B

and d respectively. Thus the moment of inertia (I) of

the footing section is equal to Bd3

12
. Several transverse

point loads, Pi, and moment Mi act at different

locations of the footing. The unit weight of soil media

is c. The elastic modulus and Poisson’s ratio are taken
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as Es, ms respectively; the corresponding subgrade

modulus of soil is designated as k. The flexural

response of the footing is found out by treating it as a

beam on elastic foundation using elastic continuum

method and by using the concept of modulus of

subgrade reaction as well.

The objective of the paper is to develop new

relationships expressing the modulus of subgrade

reaction as a function of the elastic parameters of the

soil and the relative rigidity of the soil and the

structure (footing), such that use of both the above

approaches results in values of maximum deflection

and bending moments that are either identical or very

close to each other matching excellently with theory of

elasticity solutions.

1.3 Proposed Models for Estimating Modulus

of Subgrade Reaction

As reported none of the expressions for modulus of

subgrade reaction [Eqs. (1a) and (2a)] is able to

predict simultaneously both the maximum deflection

and the bending moment correctly due to the very

nature of the matching the Winkler solution and elastic

continuum solution equating either the maximum

moment (as in Eq. 1a) or the maximum deflection (as

in Eq. 2a). As such, it is necessary to formulate the

problem so as to achieve both the objectives simul-

taneously minimizing the prediction error for both the

quantities. This can be done by casting the problem as

one of optimization.

To meet the laid down objectives, two models are

suggested in this study, which are similar to the

original form of the Eqs. (1a) and (2a). The proposed

models are obtained by introducing two parameters a
and b into the existing expressions as follows.

Model 1: Following Biot’s expression the chosen

model is:

k1 ¼ aEs

1 � m2
s

� � B4Es

1 � m2
s

� �
EI

" #b

ð1bÞ

Model 2: The suggested model is similar to Vesic’s

expression:

k2 ¼ aEs

1 � m2
s

� � B4Es

EI

� �b
ð2bÞ

1.4 Optimization Formulation

1.4.1 Design Vector

The parameters a and b appearing in Eqs. (1b) and

(2b) need to be determined to estimate the value of the

Winkler modulus as a function of the soil and beam

properties. Thus, the design vector D for the proposed

parameter identification problem is:

D ¼ ða; bÞT

1.4.2 Objective Function

In order to match both the values of the predicted and

measured values of the deflection and bending

moment we use the well known method of least

square. Thus, the objective function is the sum of the

squared differences between the predicted and the

actual values of deflection and bending moment:

If Mi,m and Yi,m are respectively the maximum

bending moment and the maximum deflection pre-

dicted by using the modulus of subgrade reaction

approach and Mm and Ym are the corresponding values

obtained by using theory of elasticity approach then

the objective function (Error function) can be

expressed as follows.

k or Es, vs

EI

P1 P2 Pm-1 Pm

L B

d

M1 M2 Mm-1 Mm

udl: w

Fig. 1 Definition sketch
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Fi Dð Þ ¼ ðMm �Mi1;mÞ2 þ SfiðYm � Yi;mÞ2 ð3Þ

where Mi,m and Yi,m are respectively the maximum

bending moment and the maximum deflection pre-

dicted by using the modulus of subgrade reaction

approach, Mm and Ym are the corresponding values

obtained by using theory of elasticity approach, Sfi is a

scaling factor and i refers to the model used [Eqs. (1b)

or (2b)]. The minimization of the above objective

function Fi(D) with respect to a and b ensures that the

bending moment and deflection will match from the

two approaches irrespective of the choice of model

(i = 1, 2).

Because of the difference in the order of magnitude

of moment and deflection a suitable scaling factor Sf1

needs to be introduced in the objective function in

order to reduce the number of iterations to converge

(Fox 1971). Following Morgenstern and Price (1967)

the scaling factor is chosen as,

Sfi ¼
oðMm�Mi;mÞ

ok1

� �2

þ oðMm�Mi;mÞ
ok2

� �2

oðYm�Yi;mÞ
ok1

� �2

þ oðYm�Yi;mÞ
ok2

� �2
ð4Þ

The partial derivatives appearing in the above

expression are computed by using central difference

scheme of finite difference.

1.4.3 Minimization of the Objective Function

In the absence of any constraints imposed on the

design variable, minimization of the objective func-

tion (Eq. 3) is carried out with respect to the design

parameters a and b by using Powell’s (1964) conju-

gate direction method of multidimensional search and

quadratic fit for unidirectional search. The method

chosen is expected to have quadratic convergence. The

method is well known and available in standard text

books (Fox 1971).

1.4.4 Computation of Deflection and Bending

Moment

This section presents the methods for computing the

deflection and bending moment values appearing in

Eqs. (3) and (4) based on the lumped parameter model

and the elastic continuum model. The governing

equations and solution methods for both the

approaches are presented.

1.5 Governing Differential Equations

1.5.1 Winkler Model

Referring to figure below (Fig. 2), the footing treated

as a beam is divided into n equal segments of length

Dx with (n ? 1) nodes. The soil response is idealized

by reaction from discrete mechanical elements like

linearly elastic springs.

Thus the reactions Rj from foundation soil support

at each node can be determined as follows:

R1 ¼ 1

2
ky1Dx

�
�
Rj ¼ kyjDx

�

RNþ1 ¼ 1

2
kyNþ1Dx

ð5Þ

where k is modulus of subgrade reaction, yj is

deflection at node j and Dx is footing segment length.

The governing differential equations to represent

the flexural response of the combined footing ideal-

ized as a beamBending Equation:

d2y

dx2
¼ �Mx

EI
ð6Þ

Using central difference scheme the above differ-

ential equation can be written in a finite difference

form as follows:

yiþ1 � 2yi þ yi�1 ¼ �Mi

EI
Dx2 ð7Þ

where Mi is the bending moment at ith point that can

be determined as a function of Rj, Pj, uniformly

distributed load w and applied moment. Therefore,

(n - 1) equations can be established for i = 2, 3, 4,…,

n. To avoid the use of fictitious points, end points are

not used to write the equation. The two other equations

necessary for solving the (n ? 1) unknown come from

the two equilibrium equations, namely the overall

force and moment equilibrium equations as follows.

Force equilibrium
P

Fv ¼ 0ð Þ

Geotech Geol Eng (2018) 36:3091–3109 3095
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Xnþ1

j¼1

Rj �
Xm

j¼1

Pj � wL ¼ 0 ð8Þ

Moment equilibrium
P

Mi ¼ 0ð Þ

Xnþ1

j¼2

Rj � ðj � 1Þ � Dx �
Xm

j¼1

Pj

� Lj �
w � L2

2
�
X

Mapplied ¼ 0

ð9Þ

where Rj is the soil reaction which is a function of

nodal deflections from Eq. (5), Pj are acting column

loads and Lj is the distance of loads from left most

node number 1. Thus, the (n ? 1) unknown deflec-

tions y’s can be determined by solving these (n ? 1)

equations using Gauss elimination technique.

1.5.2 Elastic Continuum Model

Referring to figure (Fig. 3) above, the footing is

divided into n equal segments of length Dx. The soil

response is idealized as linearly elastic continuum

with elastic parameters Es and v. It is assumed that the

footing beam is supported on elastic soil continuum by

reactions Rj at each node from foundation soil. Hence

footing beam is also applying equal and opposite

reactions load at each node on the foundation soil

(Fig. 4). Using this analogy we can establish a

relationship between foundation soil reaction Rj and

deflections yj.

From theory of elasticity, the vertical displace-

ments at the surface of an semi-infinite elastic medium

acted upon by a concentrated load Rj are given by the

expression:

yj ¼
Rjð1 � l2Þ

prES

ð10Þ

This equation breaks down at r = 0, however if it is

assumed that load Rj is applied to soil through a square

plate of dimension BxB then the deflection of the

surface immediately below the load Rj is given by

(Smith and Pole 1980)

yo ¼ 3Rjð1 � l2Þ
pBES

ð11Þ

Thus,

Deflection at node 1 due to R1 ¼ 3R1ð1�l2Þ
pBES

Deflection at node 1 due to R2 ¼ R2ð1�l2Þ
pðBESÞðDx=B)

Deflection at node 1 due to R3¼ R3ð1�l2Þ
pðBESÞð2Dx=B)

Similarly the contribution from the other nodes can

also be written.

Deflection at node 1 due to Rnþ1 ¼ Rnþ1ð1�l2Þ
pðBESÞðnDx=B)

So, total deflection at node 1

y1 ¼ 3R1ð1 � l2Þ
pBES

þ R2ð1 � l2Þ
pðBESÞðDx=B)

þ � � �

þ Rnþ1ð1 � l2Þ
pðBESÞðnDx=B)

Similarly, total deflection at node 2

y2 ¼ R1ð1 � l2Þ
pðBESÞðDx=B)

3R2ð1 � l2Þ
pBES

þ � � �

þ Rnþ1ð1 � l2Þ
pðBESÞððn � 1ÞDx=BÞ

and other nodes are,

Fig. 2 Definition sketch of lumped parameter model
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ynþ1 ¼ R1ð1 � l2Þ
pðBESÞðnDx=BÞ

R2ð1 � l2Þ
pðBESÞððn � 1ÞDx=BÞ þ � � �

þ 3Rnþ1ð1 � l2Þ
pBES

The nodal deflections can be written in terms of the

nodal reaction forces as follows:

y1

y2

:

:

ynþ1

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼ð1�l2Þ
pBEs

�

3 B=Dx
B=2Dx

B=3Dx : : :

B=Dx 3 B=Dx
B=2Dx

B=2Dx
B=Dx 3 :

B=3Dx
B=2Dx : 3 :

: : : :

: : : :

: : : 3

2

6666666666664

3

7777777777775

R1

R2

Rnþ1

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

ð12Þ

The governing differential equations for the flexu-

ral response of the footing and its finite difference

form (Eq. 7) have already been stated (Eq. 6),

The two other equations necessary for solving the

(n ? 1) unknown come from the two equilibrium

equations: Force equilibrium and Moment equilibrium

of the footing under the application of loads are written

same as stated earlier and represented by Eqs. (8) and

(9).

The unknown deflections y’s can be determined by

solving these (n ? 1) equations using gauss elimina-

tion method (Fig. 5).

1.6 Non-dimensional form of Governing

Equations

1.6.1 Winkler Model

The equations above are converted into non-dimen-

sional form by making use of the following non-

dimensional parameters

R1 R2                        R3                                                                                                              Rn                     Rn+1xΔ xΔ xΔ

1          2 3  n n+1

Fig. 4 Reaction Forces on the Soil (elastic continuum)

Fig. 3 Definition sketch of elastic continuum model
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Yi ¼
yi

L
; Dx0 ¼ x

L
; k ¼ k

4EI

� 	1=4

;

Qi ¼
PiL

2

EI
; L0

k ¼ Lk

L
;

bk ¼
0:5 if k = 1 or n + 1

1:0 otherwise




X
M0

applied ¼ L

EI

X
Mapplied; w0 ¼ wL3

EI

ð13Þ

Bending equation (finite different form):

yiþ1 � 2yi þ yi�1 ¼ �Mi

EI
Dx2 ð14Þ

Moment at any node i:

Mi ¼
Xi�1

j¼1

bk � k � Dx2 � yj � ði � jÞ

þ
Xm

j¼1

Pj � ðDx � ði � 1Þ � LjÞ

þ w � ðði � 1Þ � DxÞ2

2
þ
X

Mapplied

ð15Þ

Mi as represented by Eq. (15) is put in bending

equation (Eq. 14) above; it is then expressed in a non-

dimensional form as:

4ðkLÞ4 � ðDx0Þ4
Xi

j¼1

bj � ði � jÞ

� Yj þ Yiþ1 � 2Yi þ Yi�1f g

¼ �ðDx0Þ2
Xm

j¼1

Qj � Dx0ði � 1Þ � L0
j

� �

� w0 � ðði � 1Þ � Dx0Þ2

2
�
X

M0
applied

ð16Þ

The force and moment equilibrium equations are as

follows:

Xnþ1

j¼1

Rj �
Xm

j¼1

Pj � wL ¼ 0 ð17Þ

Xnþ1

j¼2

Rj � ðj � 1Þ � Dx ¼
Xm

j¼1

Pj � Lj þ
wL2

2

�
X

Mapplied ð18Þ

The above expressions are written in a non-

dimensional form as,

4ðkLÞ4 � ðDx0Þ
Xnþ1

k¼1

bk � Yk ¼
Xm

k¼1

Qk þ w0 ð19Þ

4ðkLÞ4 � ðDx0Þ2
Xnþ1

k¼1

ðk � 1Þ � Yk

¼
Xm

k¼1

Qk � L0
k

� �
þ w0

2
�
X

M0
applied ð20Þ

where

Yi ¼
yi

L
; Dx0 ¼ x

L
; k ¼ k

4EI

� 	1=4

; Si ¼
RiL

2

EI
;

Qi ¼
PiL

2

EI
; L0

k ¼ Lk

L
;

J ¼ ð1 � m2Þ
p

; bk ¼
0:5 if k = 1 or n + 1

1:0 otherwise




X
M0

applied ¼ L

EI

X
Mapplied; w0 ¼ wL3

EI

ð21Þ

1.6.2 Elastic Continuum Model

The set of equations (Eq. 12) are converted into non-

dimensional form by making use of the non-dimen-

sional parameters as defined earlier:

Fig. 5 Reaction forces on

the beam
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Y1

Y2

:

:

Ynþ1

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼ EkI

EsBL3

3 B=a
B=2a

B=3a : : :

B=a 3 B=a
B=2a

B=2a
B=a 3 :

B=3a
B=2a : 3 :

: : : :

: : : :

: : : 3

2

6666666666664

3

7777777777775

S1

S2

Snþ1

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

ð22Þ

Moment at any node i:

Mi ¼
Xi�1

j¼1

Rj�ði� jÞ�Dxþ
Xm

j¼1

Pj�ðDx�ði�1Þ�LjÞ

þw�ðði�1Þ�DxÞ2

2
þ
X

Mapplied

ð23Þ

Putting this Mi in bending equation above and

writing the equation in a non-dimensional form,

ðDx0Þ3
Xi�1

j¼1

Sj � ði � jÞ þ Yiþ1 � 2Yi þ Yi�1f g

¼ �ðDx0Þ2
Xm

j¼1

Qj � Dx0ði � 1Þ � L0
j

� �

� w0 � ðði � 1Þ � Dx0Þ2

2

�
X

M0
applied

ð24Þ

Force equilibrium

Xnþ1

i¼1

Si ¼
Xm

i¼1

Qi þ w0 ð25Þ

Moment equilibrium

Xnþ1

i¼2

Si � ði � 1Þ � Dx0 ¼
Xm

i¼1

Qi � L0
i þ

w0

2

�
X

M0
applied ð26Þ

1.7 Summary of the Detailed Procedure

A brief account of the detailed procedure as developed

is presented below:

1. Read: a. The geometry of the footing (length, L;

breadth, B; and depth, d), soil parameters (k, Es

and m) and beam material (E)

b. The magnitudes of the Vertical loads, Pi and

Moments, Mi and their locations.

2. Compute moment of inertia of the beam.

3. For any given problem compute the deflection and

moment at different node points along the length

of the beam by using theory of elasticity approach

(Elastic continuum model) and pick up the

corresponding maximum values of deflection

and moment.

4. Now compute the deflection and moment at the

same node points as chosen in step 3 using the

Winkler model and pick up the corresponding

maximum values.

5. Construct the objective function as defined by

Eqs. (3) and (4) and minimize the same by using

optimization module of MATLAB staring from an

initial design point D ¼ ða; bÞT .

6. The process is continued till the convergence is

achieved for a desired accuracy. Otherwise steps 4

to vi are repeated till the convergence is reached.

2 Results and Discussions

A computer program was developed in C language to

implement the developed procedure to match theory of

elasticity and Winkler model solutions to sort out the

shortcomings cropping up with the use of models due to

Biot (1937) and Vesic (1961). The developed computer

program has been calibrated and validated with refer-

ence to several example problems for finding the

flexural response of combined footing resting on soil

beds and subjected to the multiple loadings as shown.

Geotech Geol Eng (2018) 36:3091–3109 3099

123



2.1 Example Problem 1: Validation

of the Developed Program

The following benchmark problem of a combined

footing subjected to vertical loads and moments for

geometric and material properties as shown in Fig. 6 is

used to show the correctness of the developed program

with respect to the flexural response of the footing.

The values of deflection and bending moment at

different section of the beam is predicted by using the

developed program as a part of the study using both

elastic continuum and Winkler model adopting the

expressions developed for the purpose. The predicted

vales are then compared with the solution provided by

Smith and Pole (1980).

In Table 1 the values of the deflection and soil

reaction at the designated nodal points as obtained

from the present analysis are presented and compared

L=8.0 m

Beam : Eb =20x106 kPa

Soil: Es=20000 kPa v=0.5 or 
K=9100 kPa

P1=320 kN
P2=400 kN

R1 R2 R3 R4 R5

1.0 m
7.0 m udl =16 kN/m

M=160 kN.m

1               2 3 4 5

Fig. 6 Definition sketch of example problem 1. (Reproduced with permission from Smith and Pole 1980)

Table 1 Comparison of the present solution with those reported by Smith and Pole (1980)

Node Deflection (m)a Soil reaction (kN)a Soil reaction (kN)b

Present study Smith and Pole (1980) Present study Smith and Pole (1980) Present study Smith and Pole (1980)

1 - 0.0139 - 0.0138 126.553 125.9 173.970 173.9

2 - 0.0092 - 0.0093 168.227 168.9 137.898 137.7

3 - 0.0073 - 0.0072 132.716 131.2 113.334 113.2

4 - 0.0121 - 0.0122 219.676 222.0 159.757 159.8

5 - 0.0221 - 0.0221 200.828 201.4 263.041 263.0

Sum – – 848.000 849.4 847.93 847.6

Error – – 0 1.4 0.07 0.4

aModulus of Subgrade Reaction Approach (Winkler Model)
bContinuum Mechanics Approach (Linearly elastic)

P=2000 kN

L=10.0 m

Beam : Eb , I

Soil: Es , I

Fig. 7 Definition sketch of example problem 2
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with the respective corresponding values reported by

Smith and Pole (1980). It is to be noted that the

computed deflections using Winkler model is directly

compared with those reported by Smith and Pole

(1980) whereas the soil reaction values are compared

for both the solutions obtained by Winkler and elastic

continuum models.

The comparison shows excellent agreement. Sum-

mation of all the reactions should be equal to the

externally applied load (848.0 kN). Deviation is

indicated as an error in the total load in the table.

With Winkler model the present solution shows no

error whereas in contrast the results obtained by Smith

and Pole (1980) shows a small error of 1.4 kN. But for

elastic theory, the deviation are negligible small the

values being 0.07 and 0.4 only. The moment equilib-

rium have been identically satisfied. After establishing

the correctness of the developed program sensitivity

studies are conducted to establish the number of

discrete elements in which the footing is to be divided

for achieving convergent solution. It is studied with

reference to a simpler problem as follows.

2.2 Example Problem 2: Convergence Study

A rectangular beam resting on elastic, homogeneous,

isotropic and semi infinite foundation soil is consid-

ered as shown in Fig. 7. The soil and footing data are

as follows:

Length of the footing L = 10.0 m, Width of the

footing B = 1.0 m, Thickness of the footing

H = 0.5 m, Modulus of subgrade reaction

k = 2000 kPa/m run, Young’s modulus of the footing

material Eb = 20 GPa, Young’s modulus of the

foundation soil Es = 20 MPa, Poisson’s ratio of the

foundation soil vs = 0.5, Point load at the midpoint of

the beam P = 2000 kN.

Convergence study was made by increasing the

number of elements in which the beam has been

divided and thereby decreasing the element size. For a

typical set of input values of relative stiffness of soil

and flexural rigidity of the beam, the effect of number

of elements on the normalized mid span beam

deflection is shown in Figs. 8 and 9. It is observed

that the numerical solution converges when the

number of elements exceeds 122 for Winkler model

and 80 for elastic continuum model beyond which

there is no change in the values of the solution and, as

such, these values are subsequently used for further

studies. With the help of the above two example

problems the correctness of the developed program

and convergence of the solutions have been demon-

strated. Thereafter some studies are made to check the

validity of some of the reported critical observations

regarding the relationships proposed by Biot (1937)

and Vesic (1961).

2.3 Critical Studies on Biot’s (1937) and Vesic’s

(1961) Solutions

For the centrally loaded beam as shown in Fig. 7, the

trend of the variation of deflection along the length of

the footing as estimated by using Biot’s and Vesic’s

relations (Eqs. 1a and 2a) for evaluation of modulus of

subgrade reaction k in Winkler’s model and elastic

continuum mechanics approach are shown in Fig. 10.

It is observed that the deflection values as obtained

by Winkler model in conjunction with the expressions

for modulus of subgrade reaction (Eqs. 1a and 2a)

differs significantly from the elastic continuum

Convergence curve 
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-0.00005
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0
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Fig. 8 Convergence curve

for determination of optimal
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(Winkler Model)
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approach have significant difference, and considera-

tion of the foundation as an elastic continuum results

in the least value of the maximum deflection (approx-

imately 1.5 mm) occurring below the point load.

When the modulus of subgrade reaction of the

foundation is estimated by using Biot’s relation, it

results in substantial increase in the value of the

maximum deflection (approximately 7.5 mm) but the

value is smaller than that (approximately 10 mm)

when it is computed by using Vesic’s relationship.

Thus, it is seen that use of Vesic’s expression for k

results in the maximum value of the maximum

deflection contrary to the normal expectation that the

maximum deflection of the beam when computed by

Convergence Curve
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Fig. 9 Determination of

optimal number of elements

(Elastic Continuum Model)

Deflection curve 
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)

Continuum
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Vesic relation

Lumped parameter 
model [Vesic’s K]

Lumped parameter 
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Fig. 10 Variation of beam deflection along its length (Example problem: 2)

Bending moment curve 
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Fig. 11 Variation of bending moment along its length (Example problem: 2)
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using the Vesic’s expression for k is likely to be

identical to the corresponding continuum mechanics

solution. Instead, the value computed by using Biot’s

expression for k results in a solution that is closer but

still quite different from the continuum mechanics

solution; but the differences between the values of

maximum deflections are significant.

Similarly the variation of bending moment along

the length of the footing computed by using the

approaches as reported above is presented in Fig. 11.

It is seen from the figure that the predicted value of

maximum bending moment from continuum mechan-

ics approach is significantly lower from the same

predicted by lumped parameter models (Winkler

springs). Here the moment value obtained (approxi-

mately 325 kN-m) from continuum mechanics

approach is supposed to be matching with that

predicted by using k value estimated (600 kN-m

approximately) by using Biot’s relationship. However,

the computed value of bending moment using Vesics’s

(1961) expressions (650 kN-m approximately) is

closer to the value predicted by using Biot’s (1937)

expression but far from that predicted by continuum

mechanics approach.

In Table 2, a quantitative error analysis has been

presented. It is observed that when Es is 10 Mpa, the

absolute errors in estimated deflections (when com-

puted by using Vesic and Biot’s expressions) with

respect to the continuum mechanics solution are about

6 and 29% respectively. For moments it is about 114%

and 93% on the conservative side. Thus the errors in

the predicted values of moments are very high and

cannot be allowed as the design would be very costly.

To explore this aspect, further computations were

made with higher values of Es. It is observed that the

higher Es values the corresponding errors are much

higher. Thus, from the above study, it can be

concluded that for general predictions the expressions

as suggested by Biot (1937) and Vesic’s (1961) are not

sufficient and their use is not proper. The studied

example problem reinforces the observation made by

Chandrasekaran (2001) that neither Biots expression

nor Vesics expression can simultaneously predict the

values of maximum deflection and maximum bending

moment matching with the corresponding elastic

solution.

Therefore, there is a need to explore and develop

new expressions for the modulus of subgrade reaction
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that will be useful for a wider range of values for the

elastic parameters.

2.4 Present Approach: Development of New

Models for Modulus of Subgrade Reaction

Therefore, for beter predictions an attempt has been

made here to develop new expressions similar to those

of Biot’s and Vesic’s. The objective function is so

chosen that on minimization both the bending moment

and deflection from the two approaches (i.e. the

Winkler model and elastic continuum model) match

excellenly. The optimized values of the parameter a
and b appearing in the expression for modulus of

subgrade reaction in Model 1 and Model 2 and the

corresponding values of the objective function for

different Es values different from those used earlier are

shown in Table 3

The following average values of the parameters, a
and b, as computed are chosen for Model 1 and Model

2.

Model 1: a = 10.3194 b = 0.023583

Model 2: a = 10.227876 b = 0.036522

Modulus of subgrade reaction values were com-

puted using the averaged values of a and b in Model 1

(Eq. 1b) and Model 2 (Eq. 2b); the deflection and

bending moment adopting the developed approach are

presented in Table 4. These values of a and b were

checked for several other loading configurations in

prediction of bending moment and deflection.

Finally the bending moment and deflection curves

are presented in Figs. 12 and 13 for visual inspection

and comparison.

The comparison shows that with Model 1 better

predictions are obtained matching with the continuum

mechanics solution (Fig. 12). However, for bending

moments the predictions made using both Model 1 and

Model 2 and the elastic continuum solutions are closer

to each other with minimal and insignificant error

(Fig. 13).

The analysis has been carried out for several soil

and beam parameter values and loading configuration.

The results are presented as follows in Tables 5 and 6:

From the results presented in Tables 5 and 6, it can

be seen that the relative error in deflection with the

change in Es values have marginal effect, the error

ranging from 0 to 0.13% and so also for moment,

which for all practical purpose can be considered to

be zero. But, it can be seen that the values of the

parameters k1 and k2 differs for different Es values. As

the absolute difference in these values are not much

(for a it is 0.63 for model 1 and 0.88244 for model 2;

for b it is -0.04009 for model 1 and -0.079184 for

model 2) average values of these parameters is

suggested to be used. When Model 1 is adopted the

average value of a is 10.3194 and b is 0.023583 where

as in case of Model 2 the average value of a is

10.227876 and b is 0.036522.

Using the above sets of a and b values, another

problem with different loading configuration has been

analyzed and the results are Presented as follows to

check if the solutions obtained for a different config-

uration of loading (Example Problem 3) leads to any

error or not. Other geometric and material proper-

ties are same as specified in the example problem 2

(Fig. 14).

It is observed that the predicted values of deflection

and moment from Model 1 and Model 2 are close to

the elastic continuum solution. For Es equal to

100 MPa the error in deflection is - 0.37313% when

Model 1 is used and 2.98507 when Model 2 is used; the

error in the value of the moment is - 0.00033% from

Model 1 and - 0.16092% from Model 2. It suggests

that the values of a and b are not significantly affected

by the loading configuration.

Table 3 Optimized Values of the parameters a and b

Elastic modulus of soil Es

(MPa)

Lumped parameter

approach using Model

1 (Eq. 1b)

Objective function E1

(k1, k2)

Lumped parameter

approach using Model

2 (Eq. 2b)

Objective function E2

(k1, k2)

a b a b

10 10.6329 0.011065 0.000004 10.62911 0.010086 1.1088E-05

100 10 0.051155 4.01E-08 9.74667 0.08927 2.1E-09

200 10.325388 0.00853 1.53E-08 10.307849 0.010209 1.54E-08
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Now a detailed study is presented as follows to see

if instead of using average values of a and b, better

predictions could be made using a and b values for

different ranges of Es values.

2.5 Variation of a and b Values with Soil Elastic

Modulus

From the above studies, it is observed that the values a
and b are not affected significantly by loading

Deflection curve 
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Fig. 12 Variation of beam deflection with length using the optimized parameters (Example problem 2)

Table 4 Comparison of the present solution with elastic solution (Example Problem: 2)

Elastic

modulus

of soil

Elastic continuum

approach

Lumped parameter

approach using

Model 1

% Error

in

deflection

% Error

in

bending

moment

Lumped parameter

approach using

Model 2

% Error in

deflection

% Error in

bending

moment

Es (MPa) Ym (m) Mm

(kN m)

Y1m (m) M1m

(kN m)

Ym�Y1m

Ym

Mm�M1m

Mm

Y2m (m) M2m

(kN m)

Ym�Y2m

Ym

Mm�M2m

Mm

10 - 0.00779 558.17 - 0.00778 558.169 0.12837 0.00012 - 0.0078 558.179 - 0.12836 - 0.00175

100 - 0.00139 312.47 - 0.00139 312.7 0 - 0.0736 - 0.00139 312.31 0 0.0512

200 - 0.00083 262.059 - 0.00083 262.058 0.1205 3.82E-7 - 0.00087 262.058 0.3614 7.63E-7
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configuration but varies with soil elastic modulus Es.

To highlight this aspect the variation of modulus of

subgrade reaction (k1 and k2) with Es are plotted and

presented in Figs. 15 and 16.

An empirical correlation has been established as

follows between k1 and Es by fitting a quadratic curve

as shown in Fig. 16. The value of regression coeffi-

cient shows excellent co-relation.

It has already been established that the relationship

as given by Model 1 (Eq. 1b) gives better results than

the same computed by using Model 2 (Eq. 2b). Now to

choose the appropriate values of a and b irrespective

of loading condition and modulus of elasticity values

the following study is made.

If average values of a and b are taken to be

10.30911 and 0.023559968 respectively the prediction

will have an error ranging from - 0.00033% to

2.98507. This range of error can be considered to be

negligible. The predicted values are very sensitive to

the number of digits after the decimal and, as such,

should not be rounded off and be used as given.

Here also the regression co-efficient values in the

three zones show excellent co-relations.

From the data presented in Fig. 13, a quadratic

curve for a can be fitted,

a ¼ 2 � 10�05E2
s � 0:0144Es þ 10:875

R2 ¼ 0:9736

Similarly, for k2, from Fig. 15 three zones were

identified to establish three separate curves to check if

better predictions could be made. These are:

Zone 1:

b ¼ 0:0001 E3
s � 0:0039E2

s þ 0:0362Es � 0:0051

R2 ¼ 0:95453

Zone 2:

b ¼ � 0:0008 E2
s þ 0:0787Es � 1:8976

R2 ¼ 1

Zone 3:

b ¼ 8:0 � 10�06E2
s � 0:0004Es þ 0:0145

R2 ¼ 1

Then the maximum error will lie with in the range

- 0.0100265–2.0561001% for zone 1,
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- 0.01250064–2.530255% for zone 2 and

- 0.0150687–3.0001205% for zone 3.

Thus it is seen that by dividing the curve in three

zones and predicting the values of b does not result in

better predictions. The order of error is similar to the

one where average values for these two parameters

were chosen. It is observed that for long beams using

Model 1, the errors are less than 0.1. 0.6 and 0.5% for

long, intermediate and short beams respectively. The

same with Model 2 are 0.05, 0.4 and 3.3% respec-

tively. Therefore it can be concluded that the proposed

relationship for the modulus of subgrade reaction can

be used irrespective of its’ length implying a signif-

icant improvement in the present state of

development.

2.6 Effect of Characteristic Length

It is well established that use of Vesic’s (1961)

expression works out excellently well for estimating

the flexural response of long beams only with an error

of the order of 2%. For finite beam Vesic (1967)

suggested the use of procedures developed by De

Beer, Habel, Ohde and Krsmanovitch. He showed that

for intermediate length the use of conventional

K-method results in the values of maximum error in

deflection, bending moment and the contact pressure is

of the order of - 15, 12 and - 20%. However, in this

study it has been found that even for long beam the

error could be very high with increasing value of Es

(Table 7). It is now checked whether the suggested

expression as developed (based on the conventional

Table 6 Comparison of the present solutions (Models 1 and 2) with elastic solution

Elastic

modulus

of soil

Elastic continuum

approach

Lumped parameter

approach using

Model 1

% Error in

deflection

% Error in

bending

moment

Lumped parameter

approach using

Model 2

% Error in

deflection

% Error in

bending

moment

Es (MPa) Ym (m) Mm

(kN m)

Y1m (m) M1m

(kN m)

Ym�Y1m

Ym

Mm�M1m

Mm

Y1m (m) M2m

(kN m)

Ym�Y2m

Ym

Mm�M2m

Mm

10 - 0.0168 894.013 - 0.01681 895.182 - 0.07143 - 0.13065 - 0.0168 895.187 - 0.05952 - 0.13126

100 - 0.00268 609.00 - 0.00269 609.006 - 0.37313 - 0.00033 - 0.0026 609.984 2.98507 - 0.16092

200 - 0.00162 523.51 - 0.00269 609.74 - 0.37313 - 0.1215 - 0.0027 609.873 - 0.74626 - 0.14334

Fig. 14 Example Problem

3: studies on the effect of

loading configuration

Fig. 15 Variation of K1 with elastic modulus of foundation soil

Fig. 16 Variation of k2 with elastic modulus of foundation soil
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K-method) in the present study could be extended to

beams of long, intermediate and short length.

The example problem that has been presented

earlier is solved with varying length meeting the

criteria of the beam being long, intermediate and short.

The computed values of maximum deflection and

moment along with the error visa vis the theory of

elasticity solution are presented in Table 7. It can be

seen from these two models that for all the types of

beams (long, intermediate and short) the computed

values of maximum deflection do not differ much from

each other but the difference in the predictions of

maximum bending moment increase as the character-

istics length is decreased. The absolute error for long,

intermediate and short beams being 0.39, 5.26 and

10.66 respectively (Table 7). But it is noteworthy that

the percentage differences of the present solutions

using traditional k-method vary from those from the

elastic continuum approach by no more than 0.888 and

3.33% with regard to maximum deflection and bend-

ing moment (Table 7).

3 Conclusions

The following conclusions are drawn from the study as

reported:

The developed method bridges the gap between the

methods based on conventional modulus of subgrade

reaction and the elastic continuum. Use of the newly

developed expressions (Model 1 and Model 2) for the

modulus of subgrade reaction results in excellent

predictions of both the maximum values of deflection

and bending moment simultaneously unlike the

methods proposed by Biot and Vesic, which are

capable of predicting either the value of the maximum

deflection or the maximum value of bending moment.

The respective errors in using the model 1 and model 2

are less than 0.1 and 3.3%. Performance of Model 1 is

marginally superior to that of Model 2. The obtained

solutions match excellently with hose predicted by

elastic continuum method. The predicted values also

show that the developed method is applicable for

different loading configuration irrespective of the

length of the beam (long, intermediate or short).

Average values of the model parameters valid for

model 1 and model 2 can be used in either of the

models effectively for different problems. In this

respect the proposed expressions are superior to those

presented by Biot and Vesic.
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