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Abstract This investigation aimed to examine the

load carrying capacity of model piles embedded in

sandy soil and to develop a predictive model to

simulate pile settlement using a new artificial neural

network (ANN) approach. A series of experimental

pile load tests were carried out on model concrete

piles, comprised of three piles with slenderness ratios

of 12, 17 and 25. This was to provide an initial dataset

to establish the ANN model, in attempt at making

current, in situ pile-load test methods unnecessary.

Evolutionary Levenberg–Marquardt (LM) MATLAB

algorithms, enhanced by T-tests and F-tests, were

developed and applied in this process. The model piles

were embedded in a calibration chamber in three

densities of sand; loose, medium and dense. According

to the statistical analysis and the relative importance

study, pile lengths, applied load, pile flexural rigidity,

pile aspects ratio, and sand-pile friction angle were

found to play a key role in pile settlement at different

contribution levels, following the order: P[ d[ lc/

d[ lc[EA. The results revealed that the optimum

model of the LM training algorithm can be used to

characterize pile settlement with good degree of

accuracy. There was also close agreement between

the experimental and predicted data with a root mean

square error, (RMSE) and correlation coefficient

(R) of 0.0025192 and 0.988, respectively.

Keywords Cohesion-less soil � Levenberg–
Marquardt MATLAB algorithm � Pile-bearing
capacity � Sand relative density � T test and F-test

1 Introduction

Pile foundations are slender structural elements situ-

ated beneath superstructures, commonly used as load

transferring systems and soil settlement controls at

sites where there are inadequate sub-soil layers. Pile

bearing capacity and associated settlement play a key

role in the design of pile foundations (Shahin 2013;

Tschuchnigg and Schweiger 2015; Unsever et al.

2015; Feng et al. 2016). It has been demonstrated by

Das (2015) that pile bearing capacity can be deter-

mined by dividing the ultimate applied load by a

certain safety factor, depending on the strength of the

structure and its serviceability. Associated settlement,

on the other hand, can be attributed as a consequence

of an increase in effective stress, resulting in elastic
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compression and a reduction in soil volume in the

effective stress zone (Momeni et al. 2014).

The stress–strain relationship of soil is non-linear

and settlement can be driven by an increase in relative

vertical stress (Loria et al. 2015; Jebur et al. 2017a). In

conventional procedures, pile settlement can be

determined by dividing the sub-soil layers into

sections. The total summation of the compression in

soil layers is equal to the settlement (Tomlinson 2014).

Uncertainties associated with a range of factors i.e.

soil stress history, soil compressibility, nonlinear

relationships between soil stress–strain and stress

distribution due to sampling, have been cited as

barriers to accurately determining pile settlement

(Shahin et al. 2002). Because of these difficulties,

there has recently been in increase in the number of

experimental and numerical studies concerning pile

bearing capacity (Mullapudi and Ayoub 2010; Xu

et al. 2013; Naghibi et al. 2014; Madhusudan and

Ayothiraman 2015). However, for simplification pur-

poses and by necessity, several hypotheses associated

with the significant parameters that govern pile

settlement, have been assumed. This has resulted in

the fact that the majority of current approaches fail to

achieve the required levels of accuracy with respect to

pile settlement (Nejad et al. 2009).

Due to this failing, in situ, static pile load tests

(SPLT), dynamic load tests (DLT), standard penetra-

tion tests (SPT) and cone penetration tests (CPT) are

still the most acceptable methods to measure pile

capacity and its associated settlement. However, while

essential, these come with their own difficulties in that

they are time consuming, present complications for the

construction process, are not environmentally friendly

and are also costly (Momeni et al. 2014).

There are situations where computational intelli-

gence (CI), based on artificial neural networks

(ANNs), has been introduced and found to be a more

robust and accurate approach in comparison to other

modelling methods (Nejad et al. 2009). ANN is a data

driven, mathematical approach used to mimic the

biological structure of the human brain and nervous

system (Momeni et al. 2014; Schmidhuber 2015; Jaeel

et al. 2016). Recently, the feasibility of ANN appli-

cations have been tested and successfully applied,

solving a range of problems related to geotechnical

engineering, giving acceptable levels of accuracy

(Momeni et al. 2014; Alkroosh et al. 2015; Jaeel et al.

2016).

Momeni et al. (2014) conducted a study examining

pile-bearing capacity using a hybrid genetic algorithm

approach (GA). To develop the database for network

training, 50 in situ pile-loading tests were performed

on concrete piles. Four factors were used as the most

effective model input parameters affecting pile-bear-

ing capacity; pile set, pile geometrical properties, drop

height and hammer weight. To provide the best model

output, trial and error was also used to select the

optimum model. A good fit was achieved when

comparing the results of the data with the predicted

(GA) model output, having a mean square error (MSE)

of 0.002. This substantiates the use of ANN as a

practical and efficient approach to modelling pile

capacity.

Shahin (2014) addressed the feasibility of recurrent

neural networks (RNN) to evaluate the pile bearing

capacity of steel piles. Six model input parameters

were found to be the most important factors influenc-

ing the steel pile bearing capacity, these comprised

pile diameter, pile effective length, the weighted

average cone point resistance over the pile tip zone of

failure, the weighted average friction resistance over

the pile effective depth, the average cone point

resistance over the penetrated depth and the weighted

average friction ratio over the pile embedment depth.

The results revealed that the RNNmodel had ability to

simulate the pile bearing capacity for steel piles with

some degree of success.

Despite many investigations highlighting the use of

artificial neural networks (ANNs) to simulate pile

bearing capacity and settlement, to date, there are still

specific gaps in the subject knowledge. Comprehen-

sive experimental tests evaluating the bearing capacity

of rigid and flexible concrete model piles, driven in

three different sand densities, carried out to create an

accurate database to develop and verify a new

Levenberg–Marquardt (LM) algorithm to predict pile

load-settlement response, would be a breakthrough in

deep foundation research.

2 Aim and Objectives

The current investigation has been performed to

address gaps in the geotechnical literature in relation

to the determination of accurate pile settlement, the

specific objectives are to:
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• Perform a series of comprehensive experimental

tests to explore the bearing capacity of concrete

piles having three aspect ratios (lc/d) of 12, 17 and

25 to simulate the response of rigid and flexible

piles, penetrated in three, relative sand densities

(Dr); loose, medium and dense.

• Develop an accurate laboratory database for the

ANN model.

• Utilise a newMATLAB training algorithm, i.e. the

Levenberg–Marquardt (LM) based ANN, to

develop a predictive model of pile settlement.

• Carry out hypothesis testing (T-tests and F-tests),

to establish how representative the database sub-

division, training, validation and testing are, with

respect to each other.

• Assess the relative importance (‘Beta’ value) and

the statistical significance (‘Sig’ value) as well as

outliers of all variables on the model output using

SPSS-23 software.

3 Materials and Methods

3.1 Sand Properties

The sand particles were composed of sub-rounded

particles, as confirmed by scanning electronic micro-

scopy (SEM) observations (Fig. 1a, b). Based on the

Unified Soil Classification System (USCS), this sand

is classified as poorly graded (SP). The coefficient of

uniformity (Cu) and the curvature coefficient (Cc) are

1.786 and 1.142, respectively. The sand was prepared

in three relative densities, Dr of 18, 51 and 83%, as this

represented the entire range of the in situ sand density.

The minimum and the maximum sand unit weight was

15.33 and 17.5 kN/m3, respectively. To maintain the

impact of the grain size distribution on the combined

soil-pile interaction, the ratio between the proposed

diameter of pile to the medium diameter (d50) of the

sand specimen should be 45 (Nunez et al. 1988). To

minimize the effect of the scale factor and to give a

precise simulation of the sand-pile interaction, it has

been suggested by Remaud (1999) that the ratio must

be 60 times the diameter of the pile. Taylor (1995)

however, proposed that the ratio should be at least 100.

In this study, the ratio of the diameter of the pile to

medium diameter (d/d50) is 133 as shown in Fig. 2,

meeting the scaling law criteria. Testing was carried

out following the procedure stated by Akdag and

Özden (2013).

3.2 Pile Loading Procedure

Precast concrete piles have been used in this study,

their aspect ratios (lc/d) measuring 12, 17 and 25, with

an outer diameter of 40 mm to investigate the

behaviour of rigid and flexible piles (Madhusudan

and Ayothiraman 2015). Model concrete piles are to

be used in this study since they are highly

Fig. 1 a and b Scanning electronic microscopy (SEM) views of the sand specimen
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recommended for deep foundation systems (Feng et al.

2016). For the mechanical applied load of the pile, a

static load test was run in accordance with the

procedure described by ASTM D1143-07 (American

Society for Testing and Materials ASTM 2013).

Compression loads were applied in increments using

a new hydraulic jack system type DBBSM, connected

at the top of the load cell, having a maximum capacity

of 10 kN. This was secured between the pile head

loading system and the hydraulic ram model

(ZE3408E-T). A Polytetrafluoroethylene (PTFE)

sheet was used in the pile-testing chamber in order

to reduce the friction between the chamber and the

sand specimen. The PTFE sheet has a coefficient

friction of\ 0.04 in comparison to steel sheet friction

coefficients of about 0.605 (Young and Freedman

2000). The loads were applied directly onto an

aluminium pile cap with a diameter of 150 mm and

thickness of 25 mm.

4 The Levenberg–Marquardt (LM) Algorithm

Model Development

The LM training algorithm is a data driven computing

method, which, more specifically, can be applied when

the relationship between model input and output

parameters are nonlinear (Nguyen-Truong and Le

2015). The LM algorithm based on artificial neural

networks (ANNs) considers three processing layers or

nodes; namely, an input layer, one or more hidden

layer(s) and an output layer (Bashar 2013). Those

layers form the ANN means of learning and detailing

the patterns controlling the dataset that the network is

constructed with. It is worth pointing out that the

objective of the hidden layer is to transform the model

input parameters into the output layer, multiplied by

connection weights and any bias either added or

subtracted. This computational intelligence (CI)

approach has been cited as a versatile and efficient

computational tool, which successfully solves prob-

lems that may be difficult to tackle using numerical

approaches. The multi-layer back propagation

(MLBP) method developed by Rumelhart et al.

(1986), is the most robust and popular process to train

the network in many fields of engineering and sciences

(Bashar 2013). In this study, the Levenberg–Mar-

quardt (LM) algorithm was trained using the (MLBP)

with training parameters, as shown in Table 1.

4.1 Pre-processing and Data Classification

To construct the Levenberg–Marquardt (LM) based-

ANN model architecture, to smooth and to eliminate

overfitting, the database is randomly classified into

three sets: training, validation and testing. The goal of

the training dataset is to create the network and fit the

model, while the testing set provides an independent

check of network performance during the training

process. The task for the validation set is to finally

Fig. 2 Profile of particle

size gradation in the sand

sample
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evaluate the performance and generalisation ability of

the ANN model, as reported by Shahin (2016) and

Jaeel et al. (2016). To develop an optimum (ANN)

model, all patterns that are present in the database need

to be enclosed in the training set. Because the testing

dataset was used to check the quality of the ANN

model, it needs to be representative of the training set

and should consequently comprise all patterns that

exist in the available database (Shahin and Jaksa

2005). The database was normalised between 0.0 and

1.0 before the training of the network, to eliminate the

influence of one factor over another and also to allow

each individual variable (IV) to receive the same

attention during the training process (Majeed et al.

2013; Nejad and Jaksa 2017). It is crucial that the

dataset used for the training, testing and cross

validation represent similar populations (Masters

1993). However, in terms of statistical analyses, the

T-test and F-test, were conducted, for normalised data

as shown in Table 2 to ensure that the training, cross

validation and testing datasets have similar statistical

parameters.

4.2 Statistical Significance of Each Independent

Variable (IV)

The level of contribution of each independent variable

(IV) to the dependent variable (DV) in the constructed

model has been ascertained by calculating the relative

importance, or Beta value, and the statistical signif-

icance (p value) using SPSS-23. Any IV at p[ 0.05

can be discounted as it has no substantial influence on

the model target (Field 2008; Hashim et al. 2017c).

Statistically, the closest to one the absolute Beta value

is, the more significant the impact of that IV on the

model (Pallant 2005; Hashim et al. 2017a, b). Table 3

shows that the applied load and the sand-pile interface

friction angle have the highest contribution to the

model output at Beta values of 0.787 and 0.613

respectively. Pile slenderness ratios, flexural rigidity

and pile length made a lesser contribution to the model

output. Moreover, results in Table 3 also revealed that

the maximum Sig value for all variables is less than

0.05, matching the statistical criteria. Based on the

statistical analyses, the ANN model, was trained with

five parameters, these being applied load, P, pile

slenderness ratio, lc/d, pile axial rigidity, EA, pile

effective length, lc and the interface friction angle, d.
The model output was pile settlement as illustrated in

Fig. 3.

4.3 Outliers

Outliers can be illustrated as points, or a single data

point, that appears to be incompatible with other

dataset observations (Walfish 2006). The performance

and the generalisation ability of the developed model

can be highly influenced by the presence of such

extreme points (Hashim et al. 2017c). Therefore, all

IVs and DVs should be screened before the training

process. The presence of outliers can be tested by

determining the Mahalanobis distances (MDs) fol-

lowing the statistical criteria reported by Tabachnick

and Fidell (2013). In this investigation, for five IVs,

the screening test revealed that the maximum MDs is

20.52. Whereas, for the experimental dataset, the

highest MDs was found to be 19.26 as given in

Table 3, which evidences the absence of the outliers.

A summary of the statistical parameters for the

models’ inputs and output, are given in Table 4.

Table 1 The Levenberg–

Marquardt (LM) training

parameters

Parameter Value Description

net.trainParam.epochs 1000 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.Ir 0.01 Learning rate

net.trainParam.Ir_inc 1.05 Ratio to increase learning rate

net.trainParam.Ir_dec 0.7 Ratio to decrease learning rate

net.trainParam.max_fail 6 Maximum validation failure

net.trainParam.max_perf_inc 1.04 Minimum performance increase

net.trainParam.mc 0.9 Momentum constant

net.trainParam.min_grad 1e-5 Minimum performance gradient

net.trainParam.show 25 Epochs between displays (NaN for no displays)
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4.4 Dataset Size

The reliability of the size of the dataset must be

precisely calculated in order to develop the best

relationship between the independent variables (IVs)

and the model output, and to obtain an efficient model

performance (Pallant 2005; Hashim et al. 2017c). For

the five input parameters, according to the equation

below (Eq. 1), the minimum dataset size required to

train the LM algorithm is 90 (Tabachnick and Fidell

2013). In this paper, there were 254 experimental

dataset points used to run the LM training algorithm,

satisfying the aforementioned statistical criteria.

N [ 50þ 8 � IVs ð1Þ

where N and IVs denote the required size of the sample

and number of independent factors to perform the LM

training algorithm.

5 Results and Discussion

5.1 Architecture and ANN Model Performance

The ANN network was trained utilising the Leven-

berg–Marquardt (LM) MATLAB algorithm version

R2017a, as it is a more reliable and a faster approach

than all other artificial neural approaches (Jeong and

Kim 2005). To include full details about the LM

Table 2 T-test and F-test results for the (ANN) model inputs and output

Variable and

data set

T-value Lower critical

value

Upper

critical value

T-test F-value Lower

critical value

Upper

critical value

F-test

Load (kN)

Testing - 0.39 - 1.97 1.97 Acceptable 1.01 0.68 1.56 Acceptable

Validation 0.43 - 1.97 1.97 Acceptable 1.07 0.68 1.56 Acceptable

Slenderness ratio Lc/d

Testing - 0.81 - 1.97 1.97 Acceptable 0.93 0.68 1.56 Acceptable

Validation 1.26 - 1.97 1.97 Acceptable 0.88 0.68 1.56 Acceptable

Pile length (m)

Testing - 0.88 - 1.97 1.97 Acceptable 0.92 0.68 1.56 Acceptable

Validation 1.10 - 1.97 1.97 Acceptable 0.90 0.68 1.56 Acceptable

Pile axial rigidity (EA)

Testing 0.33 - 1.97 1.97 Acceptable 0.95 0.68 1.56 Acceptable

Validation 0.58 - 1.97 1.97 Acceptable 0.91 0.68 1.56 Acceptable

Soil-pile friction angle d

Testing - 0.33 - 1.97 1.97 Acceptable 0.95 0.68 1.56 Acceptable

Validation 0.58 - 1.97 1.97 Acceptable 0.91 0.68 1.56 Acceptable

Settlement (mm)

Testing 0.86 - 1.97 1.97 Acceptable 1.37 0.68 1.56 Acceptable

Validation - 1.54 - 1.97 1.97 Acceptable 1.22 0.68 1.56 Acceptable

Table 3 Results of the

statistical analysis
IVs Sig. value Beta. value Maximum detected MDs

Applied load (P) 0.000 0.787 19.26

Sand-pile angle of interface friction (d) 0.000 0.613

Flexural rigidity (EA) 0.010 0.02

Slenderness ratio (lc/d) 0.020 0.139

Pile length (l) 0.000 0.101
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algorithm is beyond the scope of this study but can be

found in Hagan et al. (1996). The generalisation ability

and the performance of the proposed algorithm can be

evaluated using different performance measuring

indicators suggested in the open literature. In the

context of the present paper, the mean square error

(MSE) function was identified to measure the model

performance with an error goal set at zero. The

LOGSIG transfer function (TF) was utilised in the

hidden layer and the PURELIN transfer function was

used to interconnect layer two and three as shown in

Eqs. 2 and 3, and as recommended by Alizadeh et al.

(2012). It should be stated that the existence of the

transfer function in the hidden layer and output layer is

essential in order to transform the weighted sum of all

signals hitting on a neurons so as to select its ‘‘firing

intensity’’ (Majdi and Beiki 2010; Jebur et al. 2017b).

The experimental dataset, a total of 254 data points,

was randomly divided into three subsets, composed of

70% training (178 data points), 15% testing (38 data

points) and 15% validation (38 data points). After

training the ANN network, the results revealed that the

optimum ANN model consisted of three layers; the

input layer, one hidden layer with 10 neurons and an

output layer. As mentioned previously, the perfor-

mance of the LM algorithm was characterised by the

mean square error (MSE) as shown in Eq. 4. The main

objective of the training dataset is to learn the patterns

presented in the dataset by updating ANN biases and

weights (Trigo 2000; Jaeel et al. 2016). This training

process normally ends when the error value is

sufficiently small enough (Yadav et al. 2014). The

performance of the model under training is displayed

in Fig. 4, the results revealing that the minimum

square error (MSE) was 0.0025192 at an epoch of 215.

It can also be seen that the training process was

terminated to avoid overfitting once the cross-valida-

tion error started to increase. The variation in error

gradient, the Marquardt adjustment parameter (mu)

and checks for the validation are presented in Fig. 5. It

can be seen that the gradient error is 0.004691, while

the mu factor and the validation check numbers are 1e-

06 and 6 at an iteration of 221, respectively.

Fig. 3 Sketch of the optimised ANN topology
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The error histogram (EH) has been presented in

Fig. 6 to obtain additional verification of network

performance. The EH can also give an indication of

outliers and data features where the fit is significantly

poorer than the majority of the rest of the data (Yadav

Table 4 A statistical summary for the ANN inputs and output variables

Data set Statistical

parameters

Input variables Output

Load

(kN)

Slenderness

ratio lc/d

Pile

length (m)

Pile axial rigidity

(EA) (MN)

Sand-pile friction

angle d (�)
Settlement

(mm)

All data Maximum 6.782 25 1 251.2 30.2 14.243

Minimum 0.001 12 0.48 47.2 24.6 0.015

Mean 1.581 12.989 0.719 195.018 26.142 6.148

SD 1.526 5.376 0.215 91.252 2.504 4.51

Range 6.781 13 0.52 204 5.6 14.459

Training set Maximum 6.533 25 1 251.2 30.2 14.2435

Minimum 0.031 12 0.48 47.2 24.6 0.0025

Mean 4.012 18.023 0.721 196.696 26.097 6.555

SD 1.97 5.3 0.212 90.44 2.4827 4.568

Range 6.502 13 0.52 204 5.6 14.241

Testing set Maximum 6.521 25 1 251.2 30.2 13.76

Minimum 0.087 12 0.48 47.2 24.6 0.0267

Mean 4.11 1218.625 0.745 192.914 26.2 6.08

SD 1.96 5.535 0.2214 93 2.552 3.905

Range 6.435 13 0.52 204 5.6 13.738

Validation set Maximum 6.533 25 1 251.2 30.2 13.888

Minimum 0.0652 12 0.48 47.2 24.6 0.0026

Mean 3.8941 17.196 0.688 189.271 26.3 7.5121

SD 1.9 5.577 0.223 94.648 2.598 4.1365

Range 6.4677 13 0.52 204 5.6 13.885
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Fig. 4 Graph presenting the optimummean square error (MSE)
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Fig. 5 Performance diagrams for the ANN trained network
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et al. 2014; Abdellatif et al. 2015). In Fig. 6, the red,

green and the blue bars signify testing, validation and

training data, respectively. It should be noted that the

majority of data coincide with a zero error line, which

represents a scheme for outline verification to deter-

mine if the dataset is inadequate.

Zj ¼ f
X5

1

w
1ð Þ

ij Xi þ b
1ð Þ

j

 !

¼ 1

1þ exp
P5

1 �w
1ð Þ

ij xi þ b
1ð Þ

j

� � ð2Þ

y ¼
X5

1

w
2ð Þ

j zj � b 2ð Þ ð3Þ

MSE ¼ 1

n

Xn

1

ðmeasured ijð Þ � predicted ijð ÞÞ2
 !

ð4Þ

where the factors wij
(1) and bj

(1) are the synaptic

connection weights and threshold biases that were

identified during the training process between the

input and hidden layers respectively. wij
(2) and bj

(2) are

the synaptic connection weights and threshold biases

that were determined during the training process in the

output layer. Xi represents the number of input

parameters that used in the first layer (input layer). f

is the log-sigmoid transfer function, which is used to

transform the weighted sum in the hidden layer. MSE

is the Mean Square Error indictor that is utilised to

evaluate the performance of the LM trained network

by measuring the error percentage between the

measured and the predicted values.

5.2 Evaluation of the Robustness of the ANN

Model

In this section, the results of the experimental load-

settlement (Q–S) tests were compared with the

predicted values established by the optimum model

of the LM trained network. A series of experimental

pile load tests were carried out on concrete pile

models. The testing program comprised of three piles

with slenderness ratios (lc/d) of 12, 17, and 25 with

diameters of 40 mm to examine the behaviour of rigid

and flexible piles. In total, 254 points were recorded

from the experimental pile load-settlement results

using two strain type displacement transducers

(SDTs), with 50 mm travel distance connected to a

P3 strain indicator. In addition, the applied loads were

recorded using a calibrated load cell type (DBBSM

Fig. 6 Error histogram

during training, testing and

validation
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series S-Beam), having a maximum capacity of

10 kN. As previously mentioned, the supervised

Levenberg–Marquardt (LM) algorithm was utilised

to develop and train the ANN network based on

MATLAB, version (R2017a).

Figures 7, 8 and 9 illustrate the extent of the fit

between the experimental and predicted normalised

load-carrying capacity of concrete piles, subject to

axial loads at different stages of mechanical loading

for loose, medium and dense sand. The load carrying

capacity variations are typical for pile foundations

subject to axial mechanical loading systems, i.e.

varying from pile head to pile toe due to the increase

in developed shaft resistance in the effective soil zone.

The results revealed that the pile load carrying

capacity values display a clear elastic branch for a

pile loaded at about 200 N in loose sand, 400 N in

medium sand, and about 800 N in dense sand, where

local nonlinearity is observed. Furthermore, plastic

mechanisms involved in the soil surrounding the pile

are the leading cause of the non-linearity of the load-

settlement curve; as the applied load increases, the pile

response shows nonlinearity until reaching a maxi-

mum capacity at about 10% of pile diameter following

the pile load test criteria reported by BSI (BS EN

8004:1986). For model piles with a slenderness ratio

(lc/d) of 12 driven in loose sand, the maximum pile

capacity is about 520 N. While, for piles with lc/d of

17, and 25 the maximum pile capacity is about 750 and

950 N respectively. Comparing the results of the

model pile tested in medium and dense sand, for a

model pile with slenderness ratio of 12, the maximum

pile capacity is about 1050 N in medium sand and

about three times this value (3, 150 N) in dense sand.

Moreover, the maximum bearing capacity for piles

with an aspect ratio of 17, driven in medium and dense

sand is about 1400 and 4350 N correspondingly.

Furthermore, for pile with slenderness ratio of 25, the

maximum pile capacity in dense sand is almost three

times the pile capacity tested in medium sand. It

should be mentioned that this increase in pile capacity

with the increase in the pile effective depth (lc) and

sand relative density can be assigned due to an

increase in the point bearing (end bearing) and

mobilised skin friction resistance developed within

the contacted soil in the effective stress zone.

According to the graphical comparisons between the

measured and the predicted values, for loose sand, the

predicted results are slightly overestimated for the pile

load-test curves in case of pre-yield working settle-

ment. Moreover, there was an excellent fit between the

proposed LM training algorithm and measured values

in post-yield pile load tests responses for all cases,

with a correlation coefficient (R) of 0.99 for all data.

Fig. 7 Profiles of measured

versus predicted pile load

tests for model piles

embedded in loose sand
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This demonstrates that the proposed algorithm is a

reliable method that can be applied to predict pile

load-settlement curves with an acceptable level of

accuracy.

For further evaluation of the reliability and the

performance of the proposed LM algorithm the results

were also presented graphically with the correspond-

ing experimental settlement in the form of a regression

calibration curve (Fig. 10). As can be seen, the

training algorithm satisfies the robustness test. All

the measured and predicted points are matched well

and close to the best-fit line with correlation

Fig. 8 Profiles of measured

versus predicted pile load

tests for model piles

embedded in medium sand

Fig. 9 Profiles of measured

versus predicted of pile load

tests for model piles

embedded in dense sand
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coefficients of 0.99139, 0.98565, 0.988819 and

0.99008 for training, validation, testing and all data,

substantiating the application of the LM algorithm

based on ANN as an effective predictive tool that

behaves in an acceptable manner.

Lastly, the performance of the LM algorithm was

also examined graphically, as demonstrated in Fig. 11.

The testing dataset has been utilised to plot a

regression calibration curve between fitted versus

predicted values, with a 95% confidence interval (CI).

Significant agreement can be observed between the

measured versus predicted values, with a root mean

square error (RMSE) and correlation coefficient (R) of

0.0478 and 0.988, which also confirms that ANN,

based on the Levenberg–Marquardt (LM) MATLAB

training algorithm, can successfully reproduce the

results of the experimental pile settlement with a high

degree of accuracy.
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Fig. 10 Regression profiles of the experimental versus predicted settlement for the training, testing and validation of all data
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Fig. 11 Calibration plot of resulting model for the testing

dataset at a 95% confidence interval (CI)
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6 Concluding Remarks

A series of experimental studies have been conducted

to examine the pile bearing capacity of piles embed-

ded in sandy soil with sand densities (Dr) of 18, 51 and

83%. According to the statistical parameters, the

applied load (P), sand-pile friction angle (d), pile axial
rigidity (EA), pile slenderness ratio (lc/d), and pile

effective length (lc) were identified as the most

important input parameters on model output with

different weights, following the order: P[ d[ lc/

d[ lc[EA. The results of the screening dataset test

reveals that the maximumMDs is less than the critical

value (20.52), which confirms the absence of outliers

in the experimental dataset. The LM training algo-

rithm based ANN has favorable features such as

simplicity, high efficiency, ease of application and

generalisation, which makes it an attractive choice to

capture highly non-linear load-settlement responses.

In conclusion, based on the results of the graphical

comparison of pile carrying capacity and the regres-

sion calibration curve, the proposed algorithm can be

used as an efficient data-driven approach to accurately

model pile settlement with a root mean square error

(RMSE), correlation coefficient (R) and mean abso-

lute error (MAE) of 0.050192, 0.98819 and

0.0025192, respectively. One of the advantages of

the proposed method is that pile settlement can be

successfully simulated using the LM algorithm, with

five input parameters that can be easily determined

without the need to perform expensive and time-

consuming tests.
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