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Abstract This study explores the potential of adap-

tive neuro-fuzzy inference systems (ANFIS) for

prediction of the ultimate axial load bearing capacity

of piles (Pu) using cone penetration test (CPT) data. In

this regard, a reliable previously published database

composed of 108 datasets was selected to develop

ANFIS models. The collected database contains

information regarding pile geometry, material, instal-

lation, full-scale static pile load test and CPT results

for each sample. Reviewing the literature, several

common and uncommon variables have been consid-

ered for direct or indirect estimation of Pu based on

static pile load test, cone penetration test data or other

in situ or laboratory testing methods. In present study,

the pile shaft and tip area, the average cone tip

resistance along the embedded length of the pile, the

average cone tip resistance over influence zone and the

average sleeve friction along the embedded length of

the pile which are obtained from CPT data are

considered as independent input variables where the

output variable is Pu for the ANFIS model develop-

ment. Besides, a notable criticism about ANFIS as a

prediction tool is that it does not provide practical

prediction equations. To tackle this issue, the obtained

optimal ANFIS model is represented as a

tractable equation which can be used via spread sheet

software or hand calculations to provide precise

predictions of Pu with the calculated correlation

coefficient of 0.96 between predicted and experimen-

tal values for all of the data in this study. Considering

several criteria, it is represented that the proposed

model is able to estimate the output with a high degree

of accuracy as compared to those results obtained by

some direct CPT-based methods in the literature.

Furthermore, in order to assess the capability of the

proposed model from geotechnical engineering view-

points, sensitivity and parametric analyses are done.

Keywords Estimation � Pile axial load bearing

capacity �Cone penetration test �Adaptive neuro fuzzy
inference systems � Tractable formulation

1 Introduction

Deep foundations are mainly used in situations that the

underlying soil layer is not enough capable of bearing

the applied loads where it is not possible to use shallow

foundations. The main objective of using piles is to

transfer structural loads to a strong layer which is able

to support the applied loads. Thus, the safety and

stability of pile supported structures depend on the

behavior of piles. In order to ensure the stability of the
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foundation, it is necessary to make an accurate

estimation of the pile bearing capacity, particularly

for pre-design purposes. This problem has been

challenging for many geotechnical engineers and not

yet entirely been handled due to many factors and

uncertainties affecting the system behavior including

complicated behavior of piles in soil, soil disturbance

due to pile installation and sampling, and pile load

transfer mechanism (Kiefa 1998).

Based on characteristics of load transfer to the

underlying layer, the staticaxial load bearing capacity

of the pile (Qu) can be generally considered as the sum

of end-bearing capacity of the pile (Qt), i.e. the bearing

capacity of the compact stratum or a stiff layer where

applied loads are transferred onto and the shaft friction

capacity (Qs) that loads are carried through friction of

the surrounding soil along the shaft and can be

represented as the equation as follows (Niazi and

Mayne 2013):

Qu ¼ Qt þ Qs ¼ qt:At þ
Xn

i¼1

fsðiÞ :Asi ð1Þ

where qt is the unit end bearing capacity, At is the area

of the pile at tip, fs unit shaft resistance of the ith soil

layer through which the pile shaft is embedded; Asi is

the area providing frictional resistance with the

adjacent soil in the ith layer against axial displacement

It is worth mentioning that the end-bearing capacity

(Qt) plays the overriding role in granular soils,

whereas in cohesive soils the shaft friction capacity

(Qs) dominates. In this regard, considering the type of

pile is an important issue for the design and analysis of

piles (Tomlinson and Woodward 2014).

The most usually utilized approaches to determine

the bearing capacity of piles can be classified into

following groups: (1) full scale pile load tests (2)

analytical and semi empirical methods (3) correlation

with in situ tests. Pu may be obtained using laboratory

testing methods; however, it is necessary to conduct

several field and laboratory experimentations such as

standard penetration test (SPT), unconfined compres-

sion test, soil classification, etc. due to the variability

and large number of soil properties which are needed

as input variables for the static analysis. Hence,

laboratory methods would have some certain draw-

backs such as being cumbersome, expensive and time

consuming. On the one hand, full scale pile load tests

cannot be used for other engineering purposes to

assess the pile behavior as they are highly expensive.

On the other hand, dynamic load tests require special

equipment expertise for monitoring, recording and

interpreting the obtained data. Among various in situ

experimentations, cone penetration test (CPT) may be

regarded as the most frequently utilized method for

characterization of geo-materials properties at differ-

ent depth. Besides, CPT is the most commonly used

method for soil investigation in Europe as it is rapid,

economical and is able to continuously obtain infor-

mation from soil (Omer et al. 2006). CPT is basically

composed of a cylindrical rod with a cone tip which is

driven into the soil and measure the tip resistance and

sleeve friction due to this intrusion which can be

considered as a model pile. Two main parameters

obtained from the CPT test, cone resistance and sleeve

friction, can be regarded as base and shaft resistance of

the pile respectively. In addition, the resistance

parameters are used to classify soil strata and to

estimate strength and deformation characteristics of

soils at different depth. CPT is a simple, quick, and

economical test that provides reliable information

about undistributed in situ continuous soundings of

subsurface soil (Abu-Farsakh and Titi 2004; Eslami

1996; Niazi and Mayne 2013; Omer et al. 2006).

Furthermore, it is recently possible to apply this test

for a wide range of geotechnical applications adding

up different devices to cone penetrometer.

Quite a few approaches are proposed for calculating

the axial pile capacity using CPT data. These methods

may be mainly classified into two methods (Niazi and

Mayne 2013):

(1) Direct approach The unit toe bearing capacity

of the pile (qt) is evaluated from the cone tip

resistance (qc), and the unit skin friction of the

pile is evaluated from either the sleeve friction

(fs) profile or qc profile.

(2) Indirect approach The CPT data, qc and fs, are

firstly used to evaluate the soil strength param-

eters such as the undrained shear strength (Su)

and the angle of internal friction /. These

parameters are then used to evaluate the qt and

the unit skin friction of the pile/ using formulas

derived based on semi-empirical or analytical

methods. In this major quite a few models have

been proposed by various researchers.
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1.1 Schmertmann (1978) Method

The Schmertmann (1978) method is based on the

result of the 108 load tests on pile carried out by

Nottingham (1975). The ultimate tip resistance (Qp) of

pile can be calculated as:

Qp ¼
qc1 þ qc2

2

� �
Atip ð2Þ

where Atip is pile tip area; qc1 and qc2 are the minimum

of the average cone tip resistances of zones ranging

from 0.7 to 4 D below the pile tip, and over a distance

8 D above the pile tip, respectively. The average cone

resistance values are obtained from the graphical

representation of the failure surface, which is assumed

to follow a logarithmic spiral as introduced by

Begemann (1963). The method limits the average of

qc1 and qc2 to 15 MPa.

Based on this method, the ultimate shaft resistance

(Qs) of pile is given by:For clay:

Qs ¼ acfsAs ð3Þ

For sand:

Qs ¼ as
X8D

d¼0

1

2
fsAs þ

XL

d¼8D
fsAs

" #
ð4Þ

where D and As are pile width or diameter, pile-soil

surface area, respectively; ac and as are the ratio of pile

shaft resistance to the sleeve friction for sand and clay;

ac varies from 0.2 and 1.2 and is a function of the

values of the sleeve friction, while as depends on the

ratio of the embedment length of pile to the pile width

or diameter and varies from 0.4 to 2.4; fs is the average

sleeve friction; product of fs and ac must not exceed

120 kPa.

1.2 deRuiter and Bringen (1979) Method

The method proposed by de Ruiter and Beringen

(1979) is based on the experience gained in the North

Sea. In clay, both unit tip resistance and shaft

resistance are determined from undrained shear

strength using following equations:

Unit tip resistance in clay:

qp ¼ NcSu ð5Þ

Unit shaft resistance in clay:

f ¼ a0Su ð6Þ

where a0 is adhesion factor (0.5 for OC clays and 1 for

NC clays); Nc is bearing capacity factor and Su is the

undrained shear strength obtained from the following

equation:

Su ¼
qca

Nk

ð7Þ

where Nk is the cone factor and varies from 15 to 20.

For unit shaft resistance of a pile in sand, the

following equation is used:

f ¼ minffs; qc=300; 120 kPag ð8Þ

where qc and fs are cone resistance and sleeve friction,

respectively. Calculation of pile tip resistance in sand

with this method is similar to Schmertman (1978)

method.

1.3 Bustamante and Gianeselli (1982) (LPC)

Method

LPC method, also called French method, is based on

the experiments conducted by Bustamante and

Gianselli (1982) for the French highway department.

According to this method, both unit tip and shaft

resistance are determined from the cone resistance,

neglecting sleeve friction. The unit tip resistance is

estimated using following equation:

qp ¼ kbqca ð9Þ

where qca is the average of the qc values over the

influence zone which ranges between 1.5 D below and

above the pile tip (D is pile diameter); kb is a factor

depending on soil material and pile installation type.

The ultimate shaft resistance in this method can be

calculated by the following formula:

f ¼ qc

ks
ð10Þ

where Ks is a factor that depends on pile material and

installation method, and qc is the average cone

resistance value over the pile embedment length.

Furthermore, codes and guidelines, e.g. Eurocode-7

(1997) and ERTC3 (1999), suggest different methods

for direct or indirect estimation of pile load bearing

capacity based on CPT data (Niazi and Mayne 2013;

Omer et al. 2006). Although great efforts have been

made to develop appropriate models using analytical
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methods and assumptions, they often made their

conclusions by optimizing the analytical results with

their obtained experimental data through empirical

methods. In other words, such models are designated

through simplifying assumptions and more important

they are initiated from few observations and control-

ling few models through simple statistical regression

analyses to find the appropriate model. Besides, the

suggested values by guidelines are often too conser-

vative and general. This is highly related to the

complex parameters affecting the system behavior

which cannot thoroughly be considered for producing

constitutive models considering information obtained

from CPT results.

Recently, Shahin (2010) have utilized artificial

neural networks (ANNs), Alkroosh and Nikraz

(2011)and Alkroosh and Nikraz (2012) demonstrated

the capability of gene expression programming (GEP)

and Kordjazi et al. (2014) used support vector machi-

nes (SVM) for prediction of ultimate axial load-

carrying capacity of piles through experimental CPT

data. It is worthmentioning that themodels obtained by

those artificial intelligence based approaches repre-

sented better performance in comparison with the

traditional analytical formulas. Such soft computing

techniques may be considered as good alternatives to

traditional methods for tackling real world problems as

they can automatically learn from observed data to

construct a predictionmodel. Besides, these techniques

have become more attractive because of their capabil-

ity of information processing such as non-linearity,

high parallelism, robustness, fault and failure tolerance

and their ability to generalize models. Also, they have

been successfully applied to many civil engineering

prediction problems (Alavi and Sadrossadat 2016;

Fattahi and Babanouri 2017; Khandelwal and Arma-

ghani 2016; Sadrossadat et al. 2013, 2016a, b, 2017;

Tajeri et al. 2015; Xue et al. 2017; Ziaee et al. 2015;

Žlender et al. 2012).

This paper explores the capability of adaptive

neuro-fuzzy inference system paradigm to find an

optimal model for indirect estimation of the ultimate

load bearing capacity of piles through a reliable

collection of CPT results. The major criticism asso-

ciated with ANFIS in comparison to some other soft

computing is the fact that it produces black-box

models as such techniques usually do not provide

practical prediction equations. To cope with these

issues, the calculations required for input processing

output and model development by ANFIS are explic-

itly explained and the derived model is represented in

present study. In order to verify the robustness of the

obtained model several validation and verification

study phases are conducted.

2 Adaptive Neuro-Fuzzy Inference Systems

ANFIS combines the advantages of fuzzy inference

systems (FIS) with the learning ability of ANN and

presents all their benefits in a single framework. The

selection of the FIS is the main concern in designating

the ANFIS model (Jang et al. 1997). Several FIS

systems have been already developed in the literature

based on fuzzy reasoning and the employed fuzzy if

then rules e.g. (Mamdani 1977; Takagi and Sugeno

1985; Tsukamoto 1979). There are two types of

commonly utilized fuzzy inference systems: Mamdani

and Takagi–Sugeno (TS) or Sugeno. In Mamdani

model both input and output variables are fuzzy

(Mamdani 1977), whereas, in TS or the sugeno

inference system the output is expressed as a linear

function of the input variables which takes a numerical

value (Takagi and Sugeno 1985).The main difference

between them is the fact that while theMamdani model

uses the human expertise and linguistic knowledge to

design the membership functions and if–then rules, TS

model uses optimization and adaptive techniques to

establish the system modeling and also uses less

number of rules. Furthermore, when a numerical or

crisp output is required, then, the data-driven rule

generation with TS model is selected. Also the output

membership function in TS is simpler designed as

either linear or constant (Sadrossadat et al. 2016b;

Takagi and Sugeno 1985). This inference system is

more commonly used in ANFIS formodeling problems

(Sugeno and Kang 1988). Considering two input

variables (x, y) and one output (f), the two if–then rules

in first-order TS type can be represented as follows:

Rule 1: if x = A1 and y = B1, then

f1 = p1x ? q1y ? r1
Rule 2: if x = A2 and y = B2, then

f2 = p2x ? q2y ? r2

where pi, qi, and ri are the consequent parameters

obtained from the training, A and B labels of fuzzy set

defined suitable membership function.
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ANFIS optimizes the model parameters using the

ANN architecture. In ANFIS, the input variables are

propagated forward in a network similar to the MLP

architecture layer by layer. Best consequent parame-

ters are determined by the least-squares method

(LSM), while the premise parameters are assumed to

be fixed for the current cycle through the training set.

Next, the error values propagate backward to adjust

the premise parameters, using back propagation

gradient descent method (Sadrossadat et al. 2016b;

Žlender et al. 2012). In this algorithm, the weighted

values are changed to minimize the following error

function (E):

E ¼ 1

2

X

n

X

k

ðtnk�hnkÞ
2 ð11Þ

where tnk and h
n
k are, respectively, the calculated output

and the actual output value, n is the number of samples

and k is the number of output neurons.

As illustrated in Fig. 1, there are five essential

layers in which the mathematical computations in

ANFIS are performed. The process in each layer may

be described as follows (Sadrossadat et al. 2016b):

Layer one Each node in this layer modifies the

values of the crisp input variables by using member-

ship functions (fuzzification step). Every node i in this

layer is an adaptive node. Parameters in this layer

determine the final shape of the membership function

and are called premise parameters. The output of the

ith node of the first layer may be MFs such as linear,

triangular, trapezoidal, Gaussian, generalized bell or

several other functions. Here, MFs are described by

Gaussian functions as selected for the qult modeling.

O1; i ¼ lAi
ðxÞ ¼ e

�ðx�ciÞ2

2r2
i for i ¼ 1; 2 ð12Þ

O1; i ¼ lBi
ðxÞ ¼ e

�ðx�ciÞ2

2r2
i for i ¼ 3; 4 ð13Þ

In equations above, x is the input to node i, and Ai is

the linguistic label associated with this node function.

So, theO1, i (x) is essentially the membership grade for

x and y which is assumed to be a Gaussian function. ci
and ri are respectively the center and width of the ith

fuzzy set Ai or Bi. These parameters are adjusted

Premise Part Consequent Part

∑

x

A1

A2

Π N

y

B1

B2

Π N

Layer 1
Fuzzification

Layer 2
Implication

Layer 3
Normaliation

Layer 4
Defuzzification

Layer 5
Combination

Output

Adaptive Node

Fixed Node

Fig. 1 A typical first-order TS model reasoning and the basic ANFIS architecture
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during model optimization and are referred to as

premise parameters.

Layer two The antecedent parts of rules are

computed in this layer. This layer consists of the

nodes labelled
Q
, which multiplies the incoming

signals and sends the product out.

O2; i ¼ wi ¼ lAi
ðxÞ : lBðyÞ for i ¼ 1; 2 ð14Þ

Layer three Each node in this layer is a fixed node

labeled N. The ith node calculates the ratio of the ith

ratio of the firing strengths of the rules as follows:

O3; i ¼ �wi ¼
wi

w þ w2

for i ¼ 1; 2 ð15Þ

Layer four The fourth layer is the second adaptive

layer of ANFIS architecture, i.e., defuzzification layer.

The nodes in this layer are adaptive with linear node

functions. Parameters in this layer are called conse-

quent parameters which are parameters of output

membership functions. These parameters are adjusted

during the training of the model considering the

utilized datasets.

O4; i ¼ �wifi ¼ �wiðpixþ qiyþ riÞ ð16Þ

The parameters in this layer (pi, qi, ri) are to be

determined and are called consequent parameters.

Layer five The node in this layer is a single fixed

node and computes the final model output as the

combination of all incoming signals from every fired

rule. It is a weighted average combination which is

indicated as follows:

Overall output ¼ O5; i ¼
X

i
�wifi ¼

P
i wifiP
i fi

ð17Þ

3 Experimental Database

A comprehensive database including the results of the

108 extensive load tests on axially loaded piles has

been drawn from the earlier studies by Eslami (1996)

and Pooya Nejad (2009). The database consists of

information about load test results and pile geometry

along with the CPT measurements along the pile

embedment length and pile tip. The CPT data consist

of cone tip resistance (qc1, qc2, qc3) and sleeve friction

values (fs1, fs2, fs3) along the pile embedded length as

well as the average cone tip resistance (�qc�t) around

the pile failure zone. The pile embedded length is

divided into three equal segments with the same

thickness, and the average values of qc and fs are

calculated to consider the variability of the soil

properties. Piles are either driven or bored, made up

of different materials (concrete, steel, composite),

with various shapes (square, round, octagonal, trian-

gle, pipe and H section), and different tip conditions

(open and closed). The soil types include sands, clays

and silts and mixture of them, in single and multiple

layers (Kordjazi et al. 2014).The maintained load test

was conducted on most of the cases in the study, in

which the pile is loaded in several increments equal to

15% of the design load, each maintained for 5 min.

The loading is then continued until reaching 300% of

the design load (Fellenius 1975).

The results of the compression load test were

plotted in the form of curves describing foundation

displacement as a function of applied load. The failure

is defined as the point in which excessive displace-

ments take place under a relatively small increase in

loading, typically associated with an abrupt change in

the load–displacement curve characteristics. In the

database, the 80% criterion interpretation method was

used in the cases that the failure point was not easily

defined (Hansen 1963). It is worth mentioning that

various part of the database have been used by various

researchers (Alkroosh and Nikraz 2011, 2012; Kord-

jazi et al. 2014; Shahin 2010). The utilized data and

descriptive statistics of variables for developing the

ANFIS model are given in Tables 1 and 2,

respectively.

4 Numerical Simulation of Bearing Capacity

After reviewing the literature and the structure of the

existing models in this field, the main influential

parameters which are considered in the database

include: type of pile static load test (maintained or

constant rate of penetration), pile material (steel,

concrete and composite), pile installation method

(driven or bored), pile tip condition (close or open),

embedment length of pile (Lemb), perimeter of the pile

(O), cross sectional area of the pile tip (At), the average

pile tip resistance along the pile embedded length (qc1,

qc2 and qc3), average sleeve friction along the embed-

ded length of the pile (fs1, fs2 and fs3), average cone tip

resistance about pile tip failure zone (�qc�t). Among

these variables, the average CPT measurements are
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Table 1 The utilized data for developing the ANFIS model

References Type

of test

Type

of pile

Installation

method

End of

pile

At

(cm2)

Af

(m2)

qca

(MPa)

fsa

(kN)

qct

(MPa)

Pu

(kN)

ANFIS

Abu-Farsakh et al.

(1999)

ML C DR CL 5806.4 112.86 1.613 9.39 11.11 5435 6596.38

Albiero et al. (1995) ML C BO CL 960 10.47 1.497 80.49 3.47 645 786.7

ML C BO CL 1260 11.99 1.497 80.49 3.29 725 790.56

Altaee et al. (1992) ML C DR CL 810 12.69 3.86 105.84 3.58 1000 771.83

ML* C DR CL 810 17.31 5.2 126.32 7.9 1600 1223.36

Avasarala et al.

(1994)

ML C DR CL 960 22.72 5.65 71.21 5.43 1260 1344.37

ML* C DR CL 2500 22.27 14.307 82.51 4.85 2070 1684.98

ML* C DR CL 960 17.82 7.157 158.06 6.29 1350 1185.56

Bakewell Bridge

(unpublished)

ML C BO CL 2827.4 13.74 13.357 121.52 10 518 2024.59

Ballouz et al. (1991) ML C BO CL 7854 31.8 8.497 105.08 10 4029 4295.64

ML C BO CL 6575.6 29.1 3.227 68.76 6 3000 2646.23

Briaud et al. (1988) ML C DR CL 2030 15.49 3.92 181.59 6.16 1330 936.68

ML C DR CL 1230 9.21 2.753 115.38 2.02 800 515.42

ML S DR OP 80 8.69 4.953 124.82 15.2 590 960.87

ML* S DR OP 80 9.92 6.06 164.1 11 1070 1097.89

ML* C DR CL 1600 13.6 3.69 97.86 12.8 1240 1318.15

ML* C DR CL 1600 34.01 2.32 67.36 6.35 1330 1743.03

ML S DR OP 100 9.8 3.98 165.04 6.5 470 756.8

ML C DR CL 20 18.77 3.063 77.14 4.5 1250 1002.55

ML C DR CL 30 21.7 4.508 151.04 9.19 1170 1065.12

ML C DR CL 1600 12.19 4.913 48.24 4.1 600 815.71

ML C DR CL 1230 18.95 3.173 97.53 3.3 1070 880.18

ML C DR CL 2030 11.8 5.96 179.1 8.4 1160 1106.8

ML* C BO CL 960 9.91 6.507 198.21 8.4 1170 919.51

ML* C DR CL 1600 16.84 2.81 104.38 9.64 1170 1157.38

ML* C BO CL 960 9.46 3.513 122.07 5.9 720 820.34

ML* C DR CL 1600 18.3 1.5 170.82 14.2 870 1303.72

ML* C DR CL 1230 22.68 7.003 145.13 6.05 1070 1361.07

ML* C DR CL 1600 18.46 5.517 129.14 10 1140 1479.01

ML C DR CL 1600 18.14 7.357 168.36 7.64 1020 1368.62

ML* C DR CL 1230 35.43 8.06 147.35 10.25 1560 2188.14

ML* C DR CL 1600 31.1 1.67 53.35 1.18 1780 1630.87

ML* S DR OP 100 11.02 8.2 349.64 15.8 2100 1973.32

ML C BO CL 960 11.91 3.96 93.05 9.2 1390 1175.32

ML C DR CL 1600 11.99 2.293 70.69 4.2 640 872.52

ML* C DR CL 2030 19.5 2.367 89.75 11.8 1500 1416.84

ML S DR OP 80 15.08 2.323 78.38 7.63 1210 1091.54

ML C DR CL 1600 14.25 5.573 70.27 8.95 1140 1394.58

ML* C BO CL 960 13.92 3.587 97.75 8.15 1100 1113.51

ML C DR CL 2030 27.33 5.82 121.63 7.89 1420 1925.69

ML* C DR CL 1230 9.5 3.763 168.92 6.74 1470 704.08

ML S DR OP 100 15.19 5.733 125.84 8.95 520 1290.01
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Table 1 continued

References Type

of test

Type

of pile

Installation

method

End of

pile

At

(cm2)

Af

(m2)

qca

(MPa)

fsa

(kN)

qct

(MPa)

Pu

(kN)

ANFIS

ML S DR OP 80 14.82 2.22 78.64 7.63 1240 1083.65

ML C BO CL 960 7.24 5.62 171.09 14.88 880 1212.65

ML C DR CL 1230 7.79 5.85 196.6 7.6 1050 797.2

ML S DR OP 80 15.03 2.323 78.38 7.63 1260 1091.11

ML S DR OP 100 23.27 6.737 146.65 9.75 1370 1422.8

Brown et al. (2006) CRP* C BO CL 2827.4 19.08 2.123 75.88 1.7 2205 1516.94

ML C BO CL 2827.4 10.98 2.123 75.88 6 1800 1011.02

Campnella et al.

(1989)

ML S DR CL 620 17.31 2.22 20.28 6.75 630 1096.34

ML S DR CL 820 14.12 1.63 13.08 0.85 290 660.78

ML* S DR CL 820 32.05 5.393 27.15 2.3 1100 1022.61

ML* S DR OP 6580 194.65 5.25 37.09 4.2 7500 7416.21

Hill (1987) ML C DR CL 3080 52.76 9.083 125.08 21.8 5785 5542.89

Fellenius et al.

(2004)

ML CO DR CL 1294.6 58.1 2.653 33 2 1915 2313.7

Fellenius et al.

(2007)

ML C DR CL 1225 8.75 4.573 308.41 5.74 1500 1638.77

Finno (1989) ML S DR CL 1280 22 6.91 63.02 1.15 1010 727.79

ML S DR CL 1990 21.69 6.91 63.02 1.15 1020 1034.93

Florida Dept. of

Trans. (2003)

CRP C DR OP 7458.7 111.47 2.45 23.97 11.14 10,910 9854.63

Gambini (1985) ML S DR CL 860 10.5 5.863 88.37 21.4 625 1342.03

Harris and Mayne

(1994)

ML C BO CL 4536.5 41.09 5.457 121.4 20 2782 3405.32

Haustoefer et al.

(1988)

ML C DR CL 1260 14.66 5.067 83.99 9.7 1300 1386.65

ML C DR CL 2030 26.02 10.703 122.5 12.62 4250 2713.89

Horvitz et al. (1981) ML C BO CL 960 17.59 5.347 63.33 5.83 900 1222.12

Laier (1994) ML S DR OP 140 45.2 11.403 134.14 19.5 2130 2504.47

Matsumoto et al.

(1995)

ML S DR OP 410 20.83 24.707 81.91 27.11 4700 4299.11

ML S DR OP 410 20.83 24.707 81.91 27.11 3690 4299.11

Mayne (1993) ML C BO CL 4420 40.13 5.383 118.33 5.72 4500 3467.08

McCabe and Lehane

(2006)

ML C DR CL 625 6.07 0.833 10 0.25 60 555.72

Neveles (1994) ML C DR CL 2920 35.37 9.663 50.62 11.55 3600 3290.86

ML* S DR CL 3420 38.14 9.663 49.22 11.26 3650 3519.46

Nottingham (1975) ML S DR CL 590 13.2 6.5 76.55 6.3 675 1253.69

ML C DR CL 940 16.92 5.753 70.56 4.37 810 1074.6

ML C DR CL 2020 27.15 6.29 130.52 5.74 1755 1812.3

ML* C DR CL 2030 16.67 12.803 323.05 11.77 1845 2133.64

ML* S DR CL 590 19.54 7.883 97.37 22.3 1620 1911.08

ML* C DR CL 1230 22.46 5.77 70.21 8.87 1485 1638.61

ML* C DR CL 2030 14.58 3.437 52.86 9.5 1140 1284.09
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included in the model to account for the soil properties

variability. These values have been used as input

variables for establishing various models by research-

ers (Alkroosh and Nikraz 2011, 2012; Kordjazi et al.

2014; Shahin 2010). The selected variables as inde-

pendent input variables in present study are different

from those provided by other AI based approaches. At

and As are considered to be as input variables in the

model development in order to account for the pile

geometry as well as the fact that these parameters have

direct influence on the bearing capacity in terms of

physical behavior and from geotechnical engineering

viewpoints. It is worth mentioning that the As is

calculated by multiplying the perimeter and the pile

embedded length, and has not been considered in the

previously published models in the literature for

Table 1 continued

References Type

of test

Type

of pile

Installation

method

End of

pile

At

(cm2)

Af

(m2)

qca

(MPa)

fsa

(kN)

qct

(MPa)

Pu

(kN)

ANFIS

Omer et al. (2006) ML C DR CL 1320 11.08 6.36 182.2 18 2475 1944.09

ML C DR CL 1320 11.08 6.643 195.16 20 2257 2656.78

ML C DR CL 1320 11.08 6.643 195.16 20 2670 2656.78

ML C DR CL 1320 11.08 6.36 182.2 18 2796 1944.09

O’neil (1986) ML S DR CL 590 11.29 2.467 42.33 4.5 780 904.51

ML S DR CL 590 11.29 2.94 64.43 2.8 800 750.18

O’neil (1988) ML S DR CL 590 5.45 5.527 39.05 5.8 490 674.17

Paik and Salgado

(2003)

ML S DR OP 325.72 14.43 11.457 69.8 20 1140 650.88

ML S DR CL 995.38 7.81 11.457 69.8 6 1620 1249.29

Peixoto et al. (2000) ML C DR CL 324 9.47 1.97 135.58 2.69 260 571.9

Reese et al. (1988) ML C BO CL 5030 61.23 9.913 267.36 13.08 5850 6217.2

ML C BO CL 5030 61.23 9.637 266.39 18.25 7830 7484.64

Tucker and Briaud

(1988)

ML S DR OP 140 23.88 10.177 86.23 19.71 2900 1180.94

ML S DR CL 960 16.03 17.25 75.17 20.8 1300 1402.42

ML S DR CL 1260 18.62 17.25 75.57 20.5 1800 1849.23

Tumay and Fakhroo

(1981)

ML S DR CL 960 31.8 1.37 20.38 7.72 1710 1528.13

ML C DR CL 6360 108.29 2.93 34.47 2.35 3960 4250.15

ML C DR CL 960 10.58 8.53 136.97 1.25 900 364.34

ML* C DR CL 1075 46.31 1.353 19.81 4.68 2160 1940.96

ML* S DR CL 1260 47.72 1.66 21.78 4.68 2800 2173.48

ML* C DR CL 2030 66.51 1.663 21.2 3.76 2950 3395.14

ML* C DR CL 5630 60.13 1.56 38.34 2.36 2610 2848.99

Urkkada Ltd (1995) ML* S DR CL 710 29.91 3.17 26.84 1.58 1690 970.35

ML* S DR CL 710 27.08 3.057 29.29 1.43 1240 889.79

US Dept. of

Transportation

(2006)

ML C DR CL 3721 41.99 6.673 74 5.6 3100 4011.99

ML CO DR CL 3038.46 33.63 6.673 74 5.6 2551 3169.4

ML CO DR CL 2752.5 32 6.673 74 1.7 2500 2913.29

Viergever (1982) ML C DR CL 630 9.36 3.553 27.85 2.56 700 443.11

Yen et al. (1989) ML S DR CL 2910 66.22 5.23 53.63 9.85 4330 3944.29

ML* S DR CL 2910 66.22 6.177 57.82 9.8 4460 4121.02

ML maintained load, CRP constant rate of penetration, C concrete, CO composite, S steel, DR driven, BO bored, CL closed, OP open

*Test samples
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indirect estimation of Pu of piles through interpreting

information obtained by CPT methods which can be

taken into account as a highly significant input

variable. Thus, the proposed formulation of Pu is

considered as a function in terms of following

parameters:

Pu ¼ f ðAt; As; �qc�s; �qc�t; �fsÞ ð18Þ

where, At is the pile tip cross sectional area, As is the

shaft area, �qc�s is the average cone tip resistance along

the embedded length of the pile,�qc�t is the average

cone tip resistance over influence zone, and �fs is the

average sleeve friction along the embedded length of

the pile. It should be noted that the failure zone is

defined in accordance with Eslami (1996), in which it

extends to 4 D below and above the pile tip when soil

tip is located in homogenous soil; 4 D below and 8 D

above the pile tip in the case that the pile tip is located

in a nonhomogeneous strong layer underneath a weak

layer; and 4 D below and 2 D above the pile tip when

the pile tip is situated in a weak layer with a strong

layer above in which D is the equivalent diameter of

pile cross section.

5 Data Preprocessing for Model Development

Artificial intelligence based computing techniques as

well as statistical regression approaches generally use

datasets for developing models. Thus, some issues

regarding the data preprocessing must be taken into

account for providing more accurate models consid-

ering the limited range of data (Sadrossadat et al.

2016a; Ziaee et al. 2015). In fact, the correlation

between independent input variables and the output,

different scales of data, distributions of variables

considering their range in the employed database

highly affect the prediction accuracy obtained by

modeling techniques. In this regard, normalization

techniques may be used to adjust the scale of the data.

Normalization of data may be regarded as adjusting

data values provided on different scales to a notionally

common scale. It increases the speed of training in

machine learning algorithms and is especially efficient

where the range of raw data vary widely. More, it is

recommended to normalize or standardize the inputs

in order to reduce the chances of getting stuck in local

optima or unchanged outputs (Xue et al. 2017; Ziaee

et al. 2015). Feature scaling is a method can be used to

standardize the range of variables or features of data.

Feature standardization makes the values of each

feature in the data have mean close to 0 the unit-

variance. In addition, this technique can be used to

restrict the range of values in the dataset between any

arbitrary values a and b. the general form of the

formula used for feature scaling to normalize the raw

data of variables to a range of [a, b]:

Xn ¼ aþ a� bð Þ Xmin � X

Xmax � Xmin

ð19Þ

where Xmax and Xmin are the maximum and minimum

values of the variable and Xn is the normalized value.

In the present study, a = 0.05 and b = 0.95.

A major problem in generalization of the obtained

models is the overfitting. It is the case in which the

error on the datasets obtained by the model is driven to

Table 2 Descriptive statistics of variables in database used for developing ANFIS model

Parameter At (cm
2) Af (m

2) qcave-shaft (MPa) fsave-shaft (kN) qcave-tip (MPa) Pum (kN)

Mean 1736.02 26.46 5.84 101.89 8.82 1965.86

Median 1230 17.98 5.388 81.91 7.63 1340

Mode 960 11.08 6.673 74 20 1140

Standard deviation 1674.09 26.35 4.23 66.29 6.19 1702.20

Kurtosis 3.28 16.80 6.49 2.46 0.44 8.06

Skewness 1.86 3.53 2.13 1.35 1.02 2.47

Range 7834 189.2 23.874 340.25 26.86 10,850

Minimum 20 5.45 0.833 9.39 0.25 60

Maximum 7854 194.65 24.707 349.64 27.11 10,910

Count 108 108 108 108 108 108
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a very small value, but when new datasets are

presented to the model, the error becomes very large.

A commonly used approach to avoid overfitting is to

test the model on another group of data which are not

used in the training process. To avoid overfiting, It is

recommended that the available database should be

classified into three sets: (1) training, (2) validation,

and (3) test subsets (Alavi and Sadrossadat 2016;

Sadrossadat et al. 2016a, b; Shahin et al. 2004; Ziaee

et al. 2015). The training set is utilized to fit the

models, the validation set is used to estimate predic-

tion error for model selection and the test set which is a

group of unseen datasets is used for the evaluation of

the generalization error of the selected model. In

present study, 70% of the data sets are taken for the

training and validation processes. The remaining 30%

of the data sets are used for the testing of the obtained

ANFIS models.

6 ANFIS Model Development

In order to develop prediction models through ANFIS

algorithm, a code was written in MATLAB 2011b

environment based on genfis3 which is an advanced

fuzzy inference technique used in MATLAB. There

are many difficulties in developing fuzzy models due

to the large number of degrees of freedomwhich needs

expert knowledge. During the input processing output

modeling, quite a few parameters are required to be

found e.g. the number and the type of MFs, rules,

selection of the logical operations and etc. These

values may be achieved using the process of trial and

error or using optimization algorithm based

approaches.

Considering the complexity and complicated

behavior of Pu the determination of MFs would be

difficult. In addition, a TS model is needed to fuzzify

crisp or numerical values. On the other hand, simpli-

fication of fuzzy models is important to make the rule

simple and interpretable. This can be achieved by

optimizing the number of fuzzy sets for each input

variable and or reducing the number of rules

(Sadrossadat et al. 2016b). Besides, these values

directly affect the complexity of the obtained ANFIS

models which is a significant aim of this paper. Herein,

the fuzzy c-means clustering (FCM), is chosen due to

its efficiency and simplicity (Sadrossadat et al. 2016b).

In present study, the number of clusters is considered

to be 4 in order to generate simpler formulation

ANFIS-based model which is obtained after several

run. It is worth mentioning that the number of clusters,

MFs and rules are considered to be equal in genfis3.

Besides, input MFs are considered to be Gaussian

functions as follows, where linear functions were used

as output MFs as was mentioned in Sect. 2. In

inference method, AND is prod, OR is probor,

implication is prod and aggregation is sum. The

detailed definitions of these represented expressions

are described in Matlab functions.

The structure of ANFIS model for predicting the Pu
of piles is represented in Fig. 2.

The general form of fuzzy rule extracted from

ANFIS model can be represented as follows where i

varies between 1 to 4:

If At is in1cluster(i) and As is in2cluster(i) and �qc�s

is in3cluster(i) and �qc�t is in4cluster(i) and �fs is

in5cluster(i) then Pu is out1cluster(i).

In expression above, At is in1cluster1 indicates that

At is considered as the first input variable which is

selected from the first cluster. As was mentioned, in

present study and is used in constructing rules in

inference method which means MFs should be

multiplied.

Consequently, the weighted average method

(wave) is utilized as the defuzzification method. It is

one of the most frequently used methods in fuzzy

applications (Lee 1990; Mishra et al. 2015; Sadrossa-

dat et al. 2016b; Yilmaz and Yuksek 2009). Wave is

typically applied to symmetrical output MFs such as

those provided in this study, i.e. the Gaussian MF. It is

formed by weighing each MF, using its respective

maximum membership value which is the center of

symmetrical MF. The algebraic expression of wave is

given as follows:

c� ¼

Pn

i¼1

lAiðciÞ:ci
Pn

i¼1

lAiðciÞ
ð20Þ

In equation above, c* is the defuzzified real-valued

output where lAi(x) is the ith MF and ci is the center of

the ith fuzzy set Ai, respectively.
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7 Explicit Formulation of the Obtained ANFIS

Model

Considering the aforementioned issues for develop-

ment of the models and the process of input processing

output in ANFIS in addition to the ANFIS architec-

ture, the obtained model can be explicitly represented

via a complex formula as the following equations. It is

noteworthy that normalized variables are used as input

and output variables in the training process as

explained before. Therefore, the first step is to

normalize values input variables and accordingly, in

order to obtain a real value of Pu, the output should be

denormalized. Herein, the normalization is calculated

through following equation:

Xn ¼ 0:05þ 0:9ð Þ Xmax � X

Xmax � Xmin

ð21Þ

where Xmax and Xmin are the maximum and minimum

values of the variable and Xn is the normalized value.

Considering input variables in this study, wi can be

represented as follows:

wi ¼ e

�ðAn
t
�ciÞ2

2r2
i � e

�ðAns�ciÞ2

2r2
i � e

�ðq�n
c�t

�ciÞ2

2r2
i � e

�ðq�n
c�s�ciÞ2

2r2
i

� e

�ð�f ns �ciÞ2

2r2
i ð22Þ

Fig. 2 The structure of

ANFIS model for predicting

the ultimate axial load

bearing capacity of the pile

Table 3 The Gaussian MF properties for corresponding input

variables in ANFIS model

MF (i) Input variable ri ci

1 At 0.175 0.519

Af 0.108 0.27

qca - 0.286 0.112

fsa - 2.986 - 0.185

qctip - 0.496 0.173

2 At - 1.827 - 0.32

Af - 0.74 - 1.254

qca 6.155 1.619

fsa 1.172 - 0.197

qctip - 0.364 0.1

3 At 0.375 0.13

Af 0.385 - 0.067

qca 0.9 0.409

fsa 0.325 0.327

qctip 0.264 0.233

4 At 4.917 1.208

Af 1.812 2.629

qca - 1.236 0.113

fsa - 1.336 1.463

qctip - 1.355 1.319
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in which n means the normalized value of the variable,

ci and ri are the center and width of the ith Gaussian

membership function for the corresponding input

variable which can be calculated through the obtained

values after training process summarized in Table 3. It

should be noted that the number of MFs, clusters and

rules are obtained to be 4 for the optimal model

presented in present study. Therefore, i varies between

1 and 4.

Accordingly, the firing strengths of weights and the

output variable which gives normalized values can be

calculated using Eqs. (23) and (24):

�wi ¼
wj

P4

j¼1

wi

ð23Þ

pnu ¼
X4

i¼1

�wiðai:An
t þ bi:A

n
s þ ci:�q

n
c�t þ di:�q

n
c�s þ ei:�f

n
s

þ fi:Þ
ð24Þ

where ai to di are the linear function coefficients which

are obtained after training process and are summarized

in Table 4.

Finally, considering the maximum and minimum

values of Pu in the range of datasets used for ANFIS

model development in this paper, the de normalization

function can be calculated as follows:

Pu ¼ 11452� 12055� Pn
u ð25Þ

In order to precisely assess this complex formula,

an example is provided in this paper. The values of

sample number 39 in Table 1 are assumed to be

calculated via the obtained ANFIS model. In that

sample, At, As, �qc�s,
�fs, and �qc�t are 960 cm2,

13.92 m2, 3.587 MPa, 97.75 kPa and 8.15 MPa

respectively.

Firstly the values should be normalized using

Eq. 21. The normalized values of At, As,�qc�s,
�fs, and

�qc�t are 0.12, 0.0448, 0.1153, 0.2597, 0.2941, respec-

tively. Considering Eq. 22 and the obtained values of

ci and ri for each variable and corresponding MF, w1,

w2, w3 and w4 are calculated 0.008, 0.163, 0.866, and

0.177, respectively. Accordingly, �w1 to �w4 can be

calculated. The Pu factor is obtained equal to 0.097

through Eq. 24 and considering the aforementioned

values of coefficients in Table 4. After denormalizing

the obtained value, the final value of Pu is calculated

equal to 1113.5 kN.

8 Results and Discussions

8.1 Performance Analysis of ANFIS Model

Although There would be several models obtained by

ANFIS prediction technique; however, an optimal

model should meet some criteria before the selection.

In this regard, quite a few procedures and statistical

criteria have been suggested by researchers in the

literature. In this paper, correlation coefficient (R),

root mean square error (RMSE) and mean absolute

error (MAE) are employed to assess the accuracy of

the ANFIS model. It is suggested that there is a strong

correlation between the predicted and observed values

if R[ 0.8 or R2[ 0.64 which means the prediction

capability of the model is acceptable (Sadrossadat

et al. 2013, 2016a, b; Smith 1986). It is noteworthy that

only considering R as a model performance evaluation

criterion would not be sufficient to examine the

accuracy of a model because it is insensitive to

additive and proportional differences between model

predictions and observed values. Therefore, RMSE

andMAE are considered as additive criteria to obtain a

robust model. The lower the RMSE and MAE values,

the better the model performance would be. These

Table 4 The obtained

coefficients of linear output

MFs after training the

ANFIS model

MF (i) Weights

ai bi ci di ei fi

1 - 1.298 0.0024 0.940 0.210 - 0.967 1.195

2 - 0.159 4.463 - 4.73 1.986 - 0.631 0.965

3 - 0.316 - 0.232 1.127 - 0.490 0.288 0.098

4 1.343 0.932 0.227 0.628 1.867 - 1.844
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parameters are calculated using the following

equations:

R ¼
Pn

i¼1 ðoi � �oiÞðpi � �piÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðoi � �oiÞ2

Pn
i¼1 ðpi � �piÞ2

q ð26Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ðpi � oiÞ2

n

vuuut
ð27Þ

MAE ¼ 1

n

Xn

i¼1

pi � oij j ð28Þ

where oi and pi are the actual and predicted output

values for the ith output, respectively, �oi and �pi are the
average of the actual and predicted outputs, and n is

the number of samples.

In order to represent the capability of the obtained

ANFIS models, the predicted versus observed values

are demonstrated in Fig. 3. It can be figured out that

the ANFIS-based model with high R and low RMSE

and MAE values is able to predict the actual values

with a high degree of accuracy. Besides, close R,

RMSE and MAE values on the training and testing

data suggests that it has both good predictive abilities

and generalization performance in addition to the fact

that overfitting is avoided.

Furthermore, in order to ensure about the prediction

performance of the ANFIS model, its prediction

capability should be assessed and compared with

those of other conventional models. In this regard, the

same test datasets employed for producing ANFIS

model are considered and the comparative analyses

results are represented in Fig. 4. It should be noted that

test data are unseen in input processing output

procedure which means that they have not been

employed for producing the ANFIS model. Therefore,

they can be considered as new data for the generated

ANFIS model and the predictability and generaliza-

tion performance of the ANFIS model can be check

using them. It is worth mentioning that the obtained

values made by CPT-based methods are extracted

from the previously published research by Eslami

(1996) as these methods cannot estimate Pu factor

using the available information which can be regarded

as a negative point of those approaches as they require

further information to estimate the Pu factor. It has also

been shown that the results obtained by different

methods vary differently for the same case (Briaud

1988; Abu-Farsakh and Titi 2004).

As can be seen, the obtained ANFIS model with

higher R value and less RMSE and MAE outperforms

other models. This way of observing mismatches or

differences between predicted and measured values

made by different models can also represent how

models can estimate the target value, e.g. Schert-

mann’s model overestimates the Pu factor in many

cases.

Moreover, another statistical analysis procedure is

employed here for evaluating external capability of the

ANFIS model on testing datasets which has been

proposed by various researchers (Abu-Farsakh and

Titi 2004; Alkroosh and Nikraz 2011, 2012; Kordjazi
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et al. 2014). This procedure can be done based on four

criteria:

(1) The equation of the best fit line of estimated (Pu)

versus measured pile capacity (Pm) with the

corresponding coefficient of determination.

(2) The arithmetic mean (l) and standard deviation
(r) of Pup/Pum. It can be suggested that a model

is highly capable of predicting the target values

when l (Pup/Pum) is closer to 1 and r (Pup/Pum)

is closer to 0.

(3) The 50% cumulative probability (P50%) of Pup/

Pum. The closer the value of P50% to 1, the better

model would be. In order to calculate P50%, Pup/

Pum values estimated by the model should be

arranged in an ascending order (1, 2, 3,…, i,…,

n). Thereafter, the cumulative probability can

be calculated using the following equation:

P ¼ i

nþ 1
ð29Þ

where i is the order number given for the

calculated ratio of Pup/Pum, n is the number of

data which is considered to be the number of

testing data here.

(4) The coefficient of efficiency (E) which com-

pares the predicted and observed values of

ultimate axial bearing capacity and evaluates

how well the model is able to explain the total

variance of the data. This parameter can be

calculated through the following equations:

E ¼ E1 � E2

E1

ð30Þ

E1 ¼
Xr

t¼1

ðPum � �PumÞ2 ð31Þ

E2 ¼
Xr

t¼1

ðPup � PumÞ2 ð32Þ

The overall performance of the ANFIS model and

each traditional CPT-based model may be considered

as an overall rank index (RI) which is defined as the

sum of the ranks from the different criteria (i.e.
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Fig. 4 A comparative plot of experimental and predicted Pu (kN) values using different models for test data
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RI = R1 ? R2 ? R3 ? R4). The lower the RI, the

better the estimation performance of the model is. The

results of the statistical analysis are summarized in

Table 5.

8.2 Parametric Analysis

Quite a few studies were done in order to evaluate the

generalization, validation and prediction capability of

the proposed ANFIS model through some statistical

criteria in addition to the fact that the results were

compared with those of obtained by some CPT-based

methods proposed by various researchers in the

literature. Although the ANFIS model results repre-

sented that the ANFIS model is of great prediction

capability, the ANFIS model is required to be assessed

from engineering viewpoints in terms of physical

behavior. For this purpose, the response and behavior

of the models may be evaluated to different input

variables and should be compared with those exper-

imentally or theoretically provided in the literature. To

cope with this issues, a parametric analysis can be

performed as recommended by several researchers

(Alavi and Sadrossadat 2016; Sadrossadat et al. 2013;

Tajeri et al. 2015; Ziaee et al. 2015). The parametric

analysis represents the response of the ANFIS-based

Pu model to variations of variables. The mentioned

method can be done through varying only one

independent input variable while the other variables

are remained constant at their mean values. Thereby, a

set of artificial data is generated for each variable

according to their range in the employed database. The

obtained values are then presented to the model and

the output is calculated. This procedure is repeated

using other variable, one by one, until the model

response is obtained for all of the predictor variables.

It is expected that Pu must increase with increasing

the amount of At, As, �qc�s,
�fs, �qc�t as have been

represented by researchers in the literature (Abu-

Farsakh and Titi 2004; Alkroosh and Nikraz

2011, 2012; Eslami 1996; Kordjazi et al. 2014). As

is represented in Fig. 5, the obtained results of the

parametric study conform that the ANFIS model can

predict the Pu factor regarding the physical behavior

and from engineering viewpoints.

8.3 Sensitivity Analysis

Another significant issue to assess a model is to find

out the contribution and importance of each parameter

which can be achieved through a sensitivity analysis

(SA). The results of SA on model represent how much

a model is affected by the variation of each indepen-

dent input variable. The SA conducted in the present

study is based on varying each input from its minimum

to maximum value regarding to its range in the utilized

database and the model output is calculated while the

other inputs are fixed at their means (Kiani et al. 2016).

According to the strictly increasing tendency of all

variables as represented in Fig. 6, this type of SA is

used here. The percent of each obtained output

difference for each variable is computed which is

often referred to as the sensitivity index (SI). The SI

(%) values can be calculated using the following

equations:

Li ¼ f ðxmaxÞ � f ðxminÞ ð33Þ

SIi ¼
Li

Pn

j¼1

Li

� 100 ð34Þ

Table 5 The results of the statistical analysis for different models for test data

Method Best fit calculation Arithmetic

calculation of pup/

pum

Cumulative

probability

Coefficient

of efficiency

Overall rank

Model Pfit/Pm R R1 Mean SD R2 Pp/Pm at P50 R3 E R4 RI Final rank

ANFIS 0.97 0.96 1 1 0.22 1 0.99 2 0.93 1 5 1

Schmertmann (1978) 0.82 0.89 2 0.9 0.35 3 0.89 5 0.74 2 12 2

DeRuiter and Beringen (1979) 0.84 0.84 4 1.03 0.4 2 0.93 3 0.69 4 13 3

Bustamante and Gianeselli (1982) 0.87 0.87 3 0.93 0.4 4 0.79 6 0.73 3 16 4
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where f(xmax) and f(xmin) are the predicted values of

maximum and minimum of the independent input

variable over the ith input domain, and n is the number

of involved variables.

The process of SA was conducted and the obtained

SI (%) results for each variable are demonstrated in

Fig. 6. As is illustrated, the obtained ANFIS model is

more sensitive to the variation of the considered input

variable, i.e. the shaft area of pile (As), followed by �fs,
�qc�t, �qc�s and At. The obtained results can be verified

by those obtained by (Abu-Farsakh and Titi 2004;

Eslami 1996; Kordjazi et al. 2014). All in all, the SI

value for each variable used in an equation or a model

is unique. Besides, it would be recommended that

engineers are required to highly know about the

significance and effect of each variable on models and

equations they use for design purposes.
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Fig. 5 A parametric

analysis of proposed ANFIS

model for indirect

estimation of Pu
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9 Summary and Conclusion

This paper aimed at investigating the robustness of

ANFIS method for estimating the ultimate axial load

bearing capacity of piles using CPT data which is a

crucial problem in geotechnical engineering. In this

regard, a collection of data was used for the develop-

ment of the models. The selected database contained

information about the pile installation method, pile

material, full-scale pile load test and CPT data.

However, the model was developed to simultaneously

take into account At, As, �qc�s,
�fs, �qc�t as input variables

obtained from pile load test and CPT results due to the

fact that these variables are more meaningful from

geotechnical engineering viewpoints. It is well-known

that there exist some practical equations to estimate

the ultimate axial load bearing capacity of piles based

on experimental results obtained by CPT, as was

presented in the paper. It should be highlighted that the

strength of ANFIS algorithm, as a predictive tool,

absolutely lies in its high precision for prediction and

approximation purposes; however, the main weakness

of ANFIS modeling technique which has scholarly

been visited in the existing literature is the fact that it

has not been able to generate explicit models or

equations which can be used for hand-calculation

aims. In other words, ANFIS has been considered as a

black-box predictive tool. In this paper, the obtained

optimal ANFIS model was converted to an explicit

tractable formula which can be used for pile design

uses. Additionally, engineers are required to know

about the degree of accuracy, the physical behavior of

the model, the relative significance of each variable

and the validation and verification of the models they

use in their computations or calculations. In this

regard, several criteria were offered to assess the

generalization performance of the model and sensi-

tivity and parametric analyses are conducted and

discussed. The parametric analysis results demon-

strated that the obtained model output, i.e. Pu,

increases with increasing At, As, �qc�s,
�fs, �qc�t as it

was expected. The relative importance values of input

variables obtained by the sensitivity analysis indicate

the all input variables influence on the output to a large

extent the obtained ANFIS takes into account all input

variables. However, the sensitivity analysis results

obtained by each model would be unique and the

proposed ANFIS model is more sensitive to As

variation followed by �fs, �qc�t, �qc�s and At. The

obtained results of the parametric and sensitivity

studies approve that the ANFIS model can accurately

predict the Pu factor regarding the physical behavior

and from engineering viewpoints. The results of

several comparative performance analyses of existing

models confirmed that the proposed ANFIS model is

up to standard for indirect estimation of the ultimate

load bearing capacity of piles as it notably outper-

formed traditional models in terms of generalization

and predictability. Finally, numerical models highly

depend on the data used in their process of model

development. The capability of such models is mostly

limited to the range of the data, information and soil

strata used for their calibration, and also the formu-

lation depends on the available variables, in the

database. To rise above this, the model should be

retrained and improved to make more accurate

predictions for a wider range, more variables or other

types of soils.
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