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Abstract Application of artificial neural networks

(ANN) in various aspects of geotechnical engineering

problems such as site characterization due to have

difficulty to solve or interrupt through conventional

approaches has demonstrated somedegreeof success. In

the current paper a developed and optimized five layer

feed-forward back-propagation neural network with

4-4-4-3-1 topology, network error of 0.00201 and

R2 = 0.941 under the conjugate gradient descent

ANN training algorithm was introduce to predict the

clay sensitivity parameter in a specified area in south-

west of Sweden. The close relation of this parameter to

occurred landslides in Swedenwas themain reasonwhy

this study is focused on. For this purpose, the informa-

tion of 70 piezocone penetration test (CPTu) points was

used to model the variations of clay sensitivity and the

influences of direct or indirect related parameters to

CPTu has been taken into account and discussed in

detail. Applied operation process to find the optimized

ANNmodel using various training algorithms aswell as

different activation functionswas themain advantage of

this paper. The performance and feasibility of proposed

optimized model has been examined and evaluated

using various statistical and analytical criteria as well as

regression analyses and then compared to in situ field

tests and laboratory investigation results. The sensitivity

analysis of this study showed that the depth and pore

pressure are the two most and cone tip resistance is the

least effective factor on prediction of clay sensitivity.

Keywords Clay sensitivity � Landslide � Artificial
neural network model � Piezocone penetration test

1 Introduction

Homogeneity and isotropy are two properties that are

take into account for most of the materials such as steel,

concrete and timber in civil engineering design (Shahin

et al. 2001; Park 2011). Although for the soils, it has

been proved that due to complexity of geological

formation which causes the imprecise physical pro-

cesses, the geotechnical engineering properties of soil

show varied and uncertain behavior (Jaksa 1995).

Therefore developing analytical or empirical models

in some simplified situations are feasible; however

models that are more practical and less expensive than

the analytical ones are of interest (Shahin et al. 2001;

Park 2011). Inherent soil variability, loading, time and

construction effects, human error, errors in soil boring,
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sampling, in situ and laboratory testing, characterization

of the shear strength and stiffness of soils are someof the

recognized uncertainty sources.

In this regard, Artificial Neural Networks (ANNs) as

an alternate method is well suited to model complex

problems where the relationship between the model

variables is unknown (Hubick 1992). The ANNs are

relatively crude electronic and computational models

based on the neural structure of the brain consist of

billions of highly interconnected neuronswhich provide

a strong predicting and classification tool (e.g. Mau-

lenkamp and Grima 1999; Zurada 1992; Fausett 1994).

Original ANNs as a sub system of Artificial

Intelligence (AI) was introduced by McCulloch and

Pitts (1943), and since then as an applicable tool have

been used successfully for modeling of various fields

of science and technology (e.g. Maier and Dandy

2000; Shahin et al. 2001; Zaheer and Bai 2003; Das

2005) in particular to almost all aspects of geotech-

nical engineering to solve complicated problems (e.g.

Sayadi et al. 2013; Shahin et al. 2008; Basheer et al.

1996; Zhou and Wu 1994; Baziar and Ghorbani 2005;

Goh 2002; Hanna et al. 2007; Kim and Kim 2006;

Mayoraz et al. 1966; Fernandez-Steeger et al. 2002) as

well as estimating geotechnical soil properties (e.g.

Celik and Tan 2005; Lee et al. 2003; Yang and

Rosenbaum 2002; Erzin 2007; Gribb and Gribb 1994;

Sinha and Wang 2008; Cal 1995).

In the present paper applicability of ANNs in

estimation of clay sensitivity (St) as one of the

geotechnical soil properties has been notified. Accord-

ing to literature reviews the clay sensitivity parameter

has a close relation to a unique type of high sensitive

clay namely quick clay in Sweden (e.g. Nadim et al.

2008, Rankka et al. 2004; Rosenquist 1953; Torrance

1983; Lundström et al. 2009; Solheim et al. 2005;

Abbaszadeh Shahri et al. 2015) and some other

northern countries such as Norway, Canada, USA

and Russia. Existence relation between this parameter

with quick clay which is prone to slide and considered

as the main responsible of occurred landslide in

Sweden is the reason of focusing on this factor.

Reduction of clay shear strength to a very small

fraction of its former value on remoulding at constant

moisture content is called St and cyclic loading

produced by wind, waves, ice and snow accumulation,

earthquakes and other live loads cause cyclic stresses on

foundations may lead to quick clay conditions and

catastrophic failure. Terzaghi (1944) originally defined

the St in terms of unconfined compressive strength

(UCS) however; the concept of St as a ratio between the

undisturbed undrained shear strength (Su) and the

remaining strength after a so complete remoulding of

the material that no further reduction can occur

(disturbed undrained shear strength, Sur) is commonly

used to describe the possible loss of strength in clay due

to remoulding (Åhnberg and Larsson 2012). The Su can

be assessed by in situ testingmethods such as field shear

vane and piezocone penetration test (PCPT or CPTu).

The CPTu is a special type of Cone Penetration Test

(CPT) which allows additional measurement of pore-

water pressure (u) generated during the penetration as

well as cone tip resistance (qc), sleeve friction (fs) and

depth (e.g. Baligh et al. 1980; Tumay et al. 1981;

Zuidberg et al. 1982; Lunne et al. 1997; Cai et al. 2010;

Abbaszadeh Shahri et al. 2015). The CPTu not only

provide valuable information on soil types but are also

useful in deriving correlations with the engineering

properties of soil for the purposes of analysis and design

of foundations. In the recent years, the CPT and CPTu

have been used as standard investigation tools, mainly

to determine quickly the soil profile (through the

friction ratio) as well as estimation of the Su. In case of

cohesive soils, the Su is the most important quantity for

geotechnical design in clay (Schmertmann 1975;

Anagnostopoulosi et al. 2003; Robertson 1999) and

hence many empirical correlations have been devel-

oped to find a clear relationship between qc and Su from

in situ tests such as CPTu and laboratory tests (e.g.

Lunne and Kleven 1981; Jamiolkowski et al. 1982; Aas

et al. 1986; Stark and Juhrend 1989; Mitchell and

Brandon 1998; Lunne et al. 1986; La Rochelle et al.

1988; Rad and Lunne 1988). However, the accuracy of

these correlations is poor, and their underlying theory is

undependable (Kim et al. 2006).

The objective of the present paper is to evaluate the

feasibility of different ANN algorithms to predict St
using CPTu data. The quick propagation, conjugate

gradient descent, quasi-Newton, limited memory

quasi-Newton and Levenberg–Marquardt were the

trained tested and developed ANN algorithms.

The optimized ANN model was selected using try

and error method and tested by several statistical

analyses criteria. The results showed that the conju-

gate gradient descent algorithm with minimum net-

work root mean square error (RMSE) indicate better

correlation with measured data. The performed sen-

sitivity analysis in this study represented that depth
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and pore pressure are the two most effective and cone

tip resistance is the least effective factors on prediction

of St.

2 Study Area and Available Data

The selected area in this study with several subzones is

around the Göta River near the Lilli Edet in the

southwest of Sweden (Fig. 1) which has been recently

studied by the Swedish Geotechnical Institute (SGI).

A part of the mentioned area has been the subject of

several geophysical investigations as well as CPTu

analysis as referenced by Abbaszadeh Shahri et al.

(2015).

Large number information for CPTu data and some

laboratory test results are available in SGI website

which this study used a total of 70 CPTu geotechnical

test points and their available laboratory results

belonging to subzones 5 and 7. The evidences of

previous investigations indicate that the quick clay has

been detected in glacial clay as layers or planes in clay

sediments (Lindskog 1983; Klingberg 2010).

3 Estimation of Clay Sensitivity Using CPTu Data

To determine the St, the CPT or CPTu has been used to

estimate the peak andminimum Su of clay soils through

empirical relations (Robertson 1999). However there

Fig. 1 Location of studied

area in this paper (Swedish

Geotechnical Institute (SGI)

web site; http://bga.

swedgeo.se/bga/)
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are several methods for estimating the minimum Su of

soils from in situ tests (Worth 1984; Lunne et al. 1997;

Seed and Harder 1990; Stark and Mesri 1992; Wride

et al. 1999; Yoshimine et al. 1999; Ishihara 1993).

Typically, the peak Su from CPTu data is estimated

using Eq. (1) as proposed by Lunne et al. (1997).

Su peakð Þ ¼
qt � rv

Nk

ð1Þ

where qt total cone penetration resistance corrected for

unequal end area effects, Nk empirical cone factor

between 10 and 20 with an average of about 15, rv
total overburden stress

Another possibility to calculate Su is the use of

effective cone resistance (qE) which can be defined by

Eq. (2).

Su ¼
qE
Nke

¼ qt � u2

Nke

ð2Þ

where Nke is the empirical cone factor (for the

expression using qE).

According to Lunne et al. (1997), the minimum

(residual) Su in clays often assumed to be equal to fs,

since the clay is almost fully remoulded as it passes the fs
and hence the clay sensitivity can be define by Eq. (3).

st ¼
Su peakð Þ
Su minð Þ

¼ qt � rv

fs � Nk

ð3Þ

The correction of fs (Lunne et al. 1997) and qc
(Robertson et al. 1986) for pore water pressure can be

obtained by Eqs. (4) and (5).

ft ¼ fs �
u2 � Asb � u3 � Astð Þ

As

ð4Þ

qt ¼ qc þ u2 1� að Þ ð5Þ

where ft corrected sleeve friction, u2 water pressure at

the base of sleeve (measured pore pressure), Asb cross

section area of sleeve at the base, Ast cross section area

of sleeve at the top, As surface area of sleeve, a ration

between cone base un affected by the pore water

pressure to total shoulder area.

The suggested normalized friction ratio (Fr) by

Robertson (1990) is defined as Eq. (6) and hence the

clay sensitivity can be estimated by Eq. (7) fromCPTu

data.

Fr ¼
fs

qt�r0
v

� 100 ð6Þ

st ¼
100

Fr � Nk
����!Nk¼10�20

st ¼
10

Fr
to st ¼

5

Fr
ð7Þ

where r0
v is effective overburden stress.

In the case of soft clays the measured qc values are

relatively small and hence even minor errors can

influence the measured values significantly (Rémai

2013). Therefore for very soft clays the use of excess

pore water pressure may be better to find a reliable

correlation (Eq. 8). Based on Robertson et al. (1986)

and Robertson (1990), pore pressure ratio (Bq) and

normalized cone resistance (qcnrm) can be defined as

Eqs. (9) and (10).

Su ¼
Du
NDu

¼ u2 � u0

NDu
ð8Þ

Bq ¼
u2 � u0

qt � rv
ð9Þ

qcrnm ¼ qt � rv
r0v

ð10Þ

where u0 in situ pore pressure, rv and r0v total and

effective overburden stress and NDu is the empirical

cone factor (Lunne et al. (1985): 4 and 10; Karlsrud

et al. (1996): 6 and 8; Hong et al. (2010): 4 and 9).The

qcnrm and Fr in normally consolidated insensitive clays

is around 2–6 and 5–10 % respectively (Robertson

1999).

Robertson (2008) defined the Eq. (11) for estimat-

ing the St.

St ¼
Su

Sur
¼ 7:1

Fr
ð11Þ

where Sur is remoulded Su at the same water content of

undisturbed Su.

By increasing the St of the clays, the fs and friction

ratio will decrease (Robertson 1999). Based on this

relation, in general St[ 50 characterizes the quick

clay, however as shown in Fig. 2 different classifica-

tions for sensitivity have been developed which show

that the quick clay has been defined based on its

geotechnical behavior rather than its composition. In

Sweden quick clay are defined as clays with St[ 50

and Sur\ 0.4 kPa (Rankka et al. 2004) whereas in

Norway, they are defined as clays with St up to 30 and

Sur\ 0.5 kPa (Lundström et al. 2009) and in Canada

as clays with Sur\ 1.0 kPa and a liquidity index of at

least 1.2 (Robitaille et al. 2002).
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4 Applied Method

The efficiency of ANN in handling of highly non-

linear relationships in data, even when the exact nature

of such relationship is unknown can be considered as

one of the major advantages of ANN. Therefore, due

to the potential of mapping complex and non-linear

relations between input and output variables of a

system which are commonly used in non-linear

engineering problems, the ANNs can be applied

successfully in learning related classification, gener-

alization, characterization and optimization functions.

The ability of ANNs for working with incomplete

data, possess an error tolerance and show gradual

convergence have been proved and hence they can

easily formmodels for complex problems. Especially in

the development of solutions for semi-structural or non-

structural problems, ANN models can provide very

successful results that are cheaper, faster and more

adaptable than traditional methods. Hence, Networks

are suitable approach to decompose a complex system

into simpler elements or gathering simple elements to

produce a complex one (Bar-Yam 1997).

Among of the various algorithms for training neural

networks, the feed-forward back-propagation algo-

rithm is the most efficient, simplest and also most

general ones which are used for supervised training of

multilayered neural networks. Back propagation

works by approximating the non-linear relationship

between the input and output by adjusting the weights

values internally. It can further be generalized for the

input that is not included in the training patterns

(predictive abilities).

In general, training and testing are common two

stages of the back propagation network. Before taking

new information, a network should be trained to

provide the most efficient learning procedure for

multilayer neural network. This fact that back-prop-

agation algorithms are especially capable of solving

predictive problems makes them very popular. The

operations of the back propagation neural networks

can be divided into feed forward and back propagation

steps. In the feed forward step, an input pattern is

applied to the input layer and its effect propagates,

layer by layer, through the network until an output is

produced.

As shown in Fig. 3, an artificial neuron as the basic

element of a neural network consists of input, weights,

bias, transfer function, activation function and output.

Each neuron receives inputs x1, x2, …, xn attached

with a weight wi which shows the connection strength

of input for each connection which then multiply by

the corresponding weight of the neuron connection.

A bias (bi) can be defined as a type of connection

weight with a constant nonzero value added to the

summation of inputs and corresponding weights ‘u’,

given in Eq. (12) (Cevik et al. 2011).

Fig. 2 Comparison of different classifications of St values

(figure is provided by Abbaszadeh Shahri)

Fig. 3 Basic component of an artificial neuron and simplified

procedure of D-rule (gradient descent)
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ui ¼
X

H

j¼1

wijxj þ bi ð12Þ

The summation ui is transformed using a scalar-to-

scalar function called an activation or transfer function

(u(ui)) yielding a value called the unit’s ‘‘activation’’,
given in Eq. (13).

Yi ¼ f uið Þ ð13Þ

In the output layer, the neuron computes the total

weighted input xj (Eq. 14) and then calculates the

activity yj using some function of the total weighted

input (Fig. 3). The Fermi (Logistic or Sigmoid) and

hyperbolic tangent functions (Eqs. 15 and 16) are very

popular activation functions which this study consid-

ered both of them.

xj ¼
X

n

i¼1

yiwij ð14Þ

yi ¼
1

1þ e�xj
sigmoid ð15Þ

yi ¼
exj � e�xj

exj þ e�xj
hyperbolic tangent ð16Þ

The network’s actual output value is then compared

to the expected output, and an error signal is computed

for each of the output nodes (Eq. 17).

E ¼ 1

2

X

n

i¼1

yi � dið Þ2 ð17Þ

Since all the hidden nodes have, to some degree,

contributed to the errors evident in the output layer, the

output error signals are transmitted backwards from

the output layer to each node in the hidden layer that

immediately contributed to the output layer. This

process is then repeated, layer by layer, until each node

in the network has received an error signal that

describes its relative contribution to the overall error.

Once the error signal for each node has been

determined, the errors are then used by the nodes to

update the values for each connection weights until the

network converges to a state that allows all the training

patterns to be encoded (Eq. 18).

wji t þ 1ð Þ ¼ wji tð Þ þ Dwji t þ 1ð Þ ð18Þ

where t is the iteration number between the output and

hidden layers and Dw indicates the next value of the

adaptation weights.

The back propagation algorithm looks for the

minimum value of the error function in weight space

using a technique called the D-rule or gradient descent
(Fig. 3; Eq. 18) (Rojas 1996; Rumelhart et al. 1986).

The weights that minimize the error function are then

considered to be a solution to the learning problem.

5 Assessing the Optimized Network Architecture

In this paper, different types of networks using the

MATLAB, NuMap7 (nonlinear regression/approxi-

mation networks) and NuClass 7 (nonlinear classifi-

cation networks) which have developed in university

of Texas at Arlington have been examined (training

and testing) and developed to find an optimized ANN

architecture model to predict the St.

Application of different ANN algorithms including

quick propagation, conjugate gradient descent, quasi-

Newton, limited memory quasi-Newton and Leven-

berg–Marquardt is advantage of this paper. The

logistic, hyperbolic tangent and linear functions were

used for activation of hidden and output layers and the

sum-of squares were employed as output errors

function respectively. The operation to find the

optimized network architecture based on try and error

method was started with one hidden layer and logistic

activation function. Three components including the

number of neurons, training algorithm and activation

functions were considered and then the process was

executed in three different stages. In each stage two of

the mentioned components are fixed and the other will

change. Therefore, numerous structures using differ-

ent training algorithms with various activation func-

tions as well as number of neurons in hidden layers

were generated and controlled. For example, in

number of neuron 10, several structures such as 4-4-

3-3-1, 4-3-4-3-1, 4-3-2-5-1 and 4-3-5-2-1 separately

was controlled for all training algorithms using

hyperbolic tangent, logistic and then linear function.

Then the operation was repeated and tested for the

same structure using both logistic and hyperbolic

tangent in different hidden layers. The value of

network correlations and minimum root mean square

error (RMSE) were the criteria to select the optimized

network structure model. For each tested model the

network error using RMSE was calculated and as

presented in Fig. 4, the minimum error was observed

in number of neurons 11 which is correspond to 4-4-4-
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3-1 structure. This ANN structure model under

training of conjugate gradient descent ANN algorithm

and using the logistic activation function both in

hidden and output layers was selected as the optimized

structure model (Fig. 5). The characteristics of used

database and ANN algorithms are given in Tables 1

and 2. The percentage of data for training, testing and

validation with randomized selection were considered

as 55, 20 and 25 % respectively.

In order to evaluate the results, the regression

analyses between measured and predicted clay sensi-

tivity values using the optimized ANN structure were

performed (Fig. 6; Table 3). To compare the data

scattering a 1:1 slope line has been used to show the

dispersion of obtained data which can be used for

interpretation of exact prediction and correlation

(Fig. 7).

6 Discussion

In the recent years the ANN algorithms were modified

many times and as a large number of training algorithms

appeared that generally have improved characteristics

as compared with the original. The quick propagation

method (Fahlman 1988; Fahlman andLebiere 1990) is a

heuristic modification of the back propagation algo-

rithm shows good results when working with most

problems. The conjugate gradient descent method

(Shewchuk 1994) ensures perfect training speed when

working with up to 2000 training sets.

The Levenberg–Marquardt method as an advanced

non-linear optimization and fastest available algo-

rithm for multi-layer perceptrons illustrates excellent

results when working with small training sets. How-

ever, the Levenberg–Marquardt can only be used on

networks with a single output unit with small networks

(a few hundred weights) because its memory require-

ments are proportional to the square of the number of

weights in the network. It is only defined for the sum

squared error function and therefore it is only appro-

priate for regression problems (Levenberg 1944;

Marquardt 1963; Lourakis 2005; Nielson 1999;

Transtrum and Sethna 2012).

Fig. 4 Network performances of applied ANN algorithms for

different number of neurons and some of the tested structure

architectures

Fig. 5 Optimized network structure in this study

Table 1 Characteristics of

employed ANN architecture

and datasets

Number of input neurons 4

Number of output neurons 1

Number of hidden layers 3 layers (layer 1: 4; layer 2: 4; layer 3: 4)

Number of total dataset 2734

Range of input data for ANN Depth (m) 1.25 (min) 43.86 (max)

Cone tip resistance (MPa) 0.137 (min) 2.661 (max)

Sleeve friction (KN) 2.3125 (min) 1431.1 (max)

pore pressure (KPa) 16.5 (min) 3345.09 (max)
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On the basis of Newton’s method, the quasi-

Newton algorithm computes an approximate Hessian

matrix during any iteration based on the gradients

whereas the limited memory quasi Newton as a

variation of quasi Newton avoids the need to store

Hessian matrix and thus require less memory and can

be used for bigger networks (Bertsekas 1995).

As mentioned above, due to number of data, the

author didn’t expect to get suitable results with

Levenberg–Marquardt method regarding to other

Table 2 Properties of used ANN algorithms

ANN training algorithm Network

error

Number of

iteration

Activation function

Hidden layer Output

Quick propagation 0.00303 501 Hyperbolic tangent Hyperbolic tangent

Conjugate gradient descent 0.00201 501 Logistic Logistic

Quasi-Newton 0.00242 501 Hyperbolic tangent Logistic

Limited memory quasi-Newton 0.00281 501 Logistic Logistic

Levenberg–Marquardt 0.00318 501 Hyperbolic tangent Logistic

Fig. 6 Regression results

of the measured and

predicted clay sensitivity

using the employed ANN

algorithms
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tested algorithms because it works well for small data

sets, however the quick propagation method showed

moderate adaptability (Fig. 6). Hence the competition

for best applicable algorithm was between the

conjugate gradient descent, quasi Newton and limited

memory quasi Newton methods.

According to obtained RMSE as selection criteria

for optimized ANN model, the conjugate gradient

Table 3 Obtained results of applied ANN models for prediction of clay sensitivity using CPTu data

Train data Test data Validate data All data

Correlation R2 Correlation R2 Correlation R2 Correlation R2

Quick propagation 0.930 0.843 0.933 0.865 0.938 0.887 0.931 0.855

Conjugate gradient descent 0.949 0.927 0.951 0.949 0.967 0.948 0.952 0.941

Quasi-Newton 0.947 0.922 0.948 0.912 0.931 0.909 0.945 0.916

Limited memory quasi-Newton 0.937 0.903 0.934 0.912 0.948 0.915 0.940 0.905

Levenberg–Marquardt 0.915 0.809 0.913 0.830 0.920 0.822 0.915 0.815

Fig. 7 Dispersion of

measured and predicted St
values regarding 1:1 slope

line for the selected area

Geotech Geol Eng (2016) 34:745–758 753
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descent showed the minimum RMSE but based on the

network type and number of used data sets, the author

also expected to get reasonable results from quasi

Newton and limited memory quasi Newton regarding

to quick propagation and Levenberg–Marquardt as

shown in Fig. 6. In Fig. 7, the located points on the 1:1

slope line indicate exact prediction and correlation

which can demonstrate the accuracy of predicted St
values using the tested ANN algorithms.

Moreover, in addition of using RMSE and coeffi-

cient of determination (R2), the performance of selected

ANN algorithms were tested by mean absolute per-

centage error (MAPE), variance absolute relative error

(VARE), median absolute error (MEDAE) and vari-

ance account for (VAF) statistical criteria (Eqs. 19–22).

Higher value of VAF and lower values of MAPE,

VARE and MEDAE illustrate better network perfor-

mance in prediction of St as presented in Table 4.

MAPE ¼ 1

n
�

X

n

1¼1

ti � xi

ti

�

�

�

�

�

�

�

�

� 100

" #

ð19Þ

VARE ¼ 1

n
�

X

n

i¼1

ti � xi

ti

�

�

�

�

�

�

�

�

� mean
ti � xi

ti

�

�

�

�

�

�

�

�

� �2
" #

� 100

ð20Þ

MEDAE ¼ median ti � xið Þ ð21Þ

VAF ¼ 1� var ti � xið Þ
var tið Þ

� �

� 100 ð22Þ

where ti and xi are measured and predicted values.

The sensitivity analysis (Jong and Lee 2004;

Eq. 21) as a method for determination of the effec-

tiveness of each input parameter showed that depth

with 47.932 % and pore pressure ratio with 42.76 %

are the most and cone tip resistance with 37.59 % is

the least effective input parameters for St prediction

using the selected ANN model (Fig. 8).

Rij ¼
Pm

k¼1 xik � xjk
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pm
k¼1 x

2
ik

Pm
k¼1 x

2
jk

q ;

xi and xj: elements of data pairs

ð23Þ

To represent how the obtained results of CPTu data

and ANN algorithms can fit to real data; tow test points

from different subzones of studied area randomly have

been selected. At the first, by use of the CPTu data the

predicted soil profile for each test point based on

Robertson et al. (1986) was provided and then corre-

lation between results of confirmed ANN architecture

between CPTu results and measured data as a function

of depth were executed and plotted (Fig. 9). The

collected laboratory results of clay sensitivity show that

34.96 % data falls in the range of 20\St\ 30,

33.21 % in the domain of St[ 32 and 31.818 % in

the range of 16\St\ 20. The detailed results of

sensitivity classifications (Fig. 2) are given in Table 5

Table 4 Results of statistical criteria for tested ANN algorithms

Quick propagation Conjugate gradient

descent

Quasi-Newton Limited memory

quasi-Newton

Levenberg–Marquardt

MAPE 8.783 6.476 (X) 6.89 8.320 9.237

RMSE 0.00303 0.00201 (X) 0.00242 0.00281 0.00318

VARE 9.30 5.84 (X) 6.53 7.08 10.64

MEDAE 0.049 0.029 (X) 0.032 0.039 0.051

VAF 94.76 97.28 97.31 (X) 96.65 90.80

R2 0.85 0.941 (X) 0.916 0.905 0.815

Fig. 8 Sensitivity analysis of input parameters in prediction of

clay sensitivity
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which can be compared and correlated with the

presented test point examples in Fig. 9 respectively.

It is proved that the ANN models can be varied

from case to case. However, the proposed model in

this study can be a very good initial guess to develop

and adapt for another area. Due to flexibility of

proposed ANNmodel in this study, it is recommended

that without changing the model structure, use other

training algorithms and then change the activation

functions alternately. In final step, the number of

neurons or neuron arrays can be considered.

7 Conclusions

ANNs can be applied for problems where the

relationships may be quite dynamic or non-linear

and can provide an analytical alternative to conven-

tional techniques which are often limited by assump-

tions. ANN can capture many kinds of relationships

and allows to model phenomena which otherwise may

have been very difficult or impossible to explain. This

modeling capability, as well as the ability to learn from

experience, has given ANNs superiority over most

traditional modelingmethods since there is no need for

making assumptions about what the underlying rules

that govern the problem in hand could be.

In the present paper several ANN algorithms with

CPTu as inputs and clay sensitivity as output were

tested and developed and the procedure to find the

optimized ones were executed. The results of try and

error method for testing numerous ANN structure

architecture showed that increasing the number of

hidden layers up to 4 in ANN will be able to improve

Fig. 9 Comparison of measured sensitivity with predicted values by CPTu data and various types of tested ANN algorithms. The

predicted soil profile for each test point have been obtained using proposed method by Robertson et al. (1986)

Table 5 Comparison of available data in the study area with define range by previous researchers

Proposed classification St values

16–20 (31.818 %) 20–30 (34.96 %) [32 (33.21 %)

Skempton and Northey (1952) Quick clay (100 %)

Rosenquist (1953) Medium quick clay (66.778 %) Very quick clay

Soderblom (1969) Medium sensitivity (66.778 %) High sensitivity

Karlsson and Hansbo (1989) Medium sensitivity (66.778 %) High sensitivity

Le Bihan and Leroueil (1981) High sensitivity Very high sensitivity (68.17 %)

Canadian Foun. Engng Manual (2006) Medium sensitivity (66.778 %) High sensitivity ([40)
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the results and in this condition the prediction of clay

sensitivity by ANN can be reliable and reasonable and

then the 4-4-4-3-1 structure due to minimum RMSE

and higher correlation coefficient was confirmed as the

developed optimized network structure. The proposed

model for the selected area in this paper can be update

and adapt for another area. However, the optimized

topology can play an important role for initial guess to

develop and making compatible for another area.

Depending on the nature of the application and the

strength of the internal data patterns it can generally

expect a network to train quite well and hence

according to obtained results in Table 2 and Fig. 4,

in this study the conjugate gradient descent training

algorithm gives better results and therefore it can be

applied as an alternative method for reasonable

prediction of sensitivity and also the condition of data

scattering using a 1:1 slope line to show the correlation

were presented.

The sensitivity analysis showed that the depth and

pore pressure are the two most and cone tip resistance

is the least effective factor on estimation of clay

sensitivity in this study.

A comparison between the proposed classifications

by other researcher with our data to show adaptability

percentage was executed (Table 5). The performed

correlation between the laboratory and ANN results

with predicted soil profile using the CPTu data

represent a good condition whereas the nearly most

of all measured sensitivity and those obtained by

CPTu data and ANN algorithms fall in the part of soil

profile which indicate the sensitive fine grained.
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Lourakis MIA (2005) A brief description of the Levenberg-

Marquardt algorithm implemented by levmar. Technical

Report, Institute of Computer Science, Foundation for

Research and Technology—Hellas

Lundström K, Larsson R, Dahlin T (2009) Mapping of quick

clay formations using geotechnical and geophysical

methods. Landslides 6:1–15

Lunne T, Kleven A (1981) Role of CPT in North Sea foundation

engineering. In: Symposium on cone penetration engi-

neering division, ASCE, pp 49–75

Lunne T, Robertson PK, Powell JJM (1997) Cone penetration

testing in geotechnical practice. Blackie Academic, EF

Spon/Routledge Publ, New York, p 312

Lunne T, Christoffersen H, Tjelta T (1985) Engineering use of

piezocone data in North Sea clays, In: Proceedings of

ICSMFE–11; San Francisco, 2, 1985, pp 907–912

Lunne T, Eidsmoen T, Gillespie D, Howland JD (1986) Labo-

ratory and field evaluation of cone penetrometer. In: Pro-

ceedings of in situ ‘86, use of in situ tests in geotechnical

engineering. ASCE GSP 6, Blacksburg, Virginia,

pp 714–729

Maier HR, Dandy GC (2000) Neural networks for prediction

and forecasting of water resource variables: a review of

modeling issues and applications. Environ Model softw

15:101–123

Marquardt DW (1963) An algorithm for least-squares estima-

tion of nonlinear parameters. SIAM J Appl Math

11:431–441

Maulenkamp F, Grima MA (1999) Application of neural net-

works for the prediction of the unconfined compressive

strength (UCS) from equotip hardness. Int J Rock Mech

Min Sci 36(1):29–39

Mayoraz F, Cornu T, Vuillet L (1996) Using neural networks to

predict slope movements. In: Proceedings of VII interna-

tional symposium on landslides, Trondheim, June 1966, 1.

Balkema, Rotterdam, pp 295–300

McCulloch WS, Pitts WH (1943) A logical calculus of ideas

immanent in nervous activity. Bull Math Biophys

5(4):115–133

Mitchell JK, Brandon TL (1998) Analysis and Use of CPT in

earthquake and environmental engineering. In: Keynote

lecture, proceedings of ICS’98, vol 1, pp 69–97

Nadim F, Pedersen SAS, Schmidt-Thomé P, Sigmundsson F,
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