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Abstract In general, soil–geosynthetic interface

behaviour is modeled by interface element which

involves the assumption of stiffness values which are

difficult to determine experimentally. Most of the

geosynthetic-reinforced earth structures fail at the

interface of the geosynthetic and the soil due to slip or

plastic yielding of the reinforced soil. Hence, for a

proper design of the soil–geosynthetic interface, an

artificial neural network (ANN) model can be used as

an alternative approach for the prediction of the soil–

geosynthetic interface behavior. The present study

uses an ANN model to predict the peak shear stress

along the cohesive soil–geosynthetic interface. Three-

layer feed-forward back-propagation neural networks

with 4, 10 and 15 hidden nodes using three different

learning algorithms are examined. Out of three

learning algorithms, Bayesian regularization learning

algorithm with four hidden nodes is used for its highest

coefficient of determination (R2 = 0.988) for the

testing set and all of the predicted data falling within

the 99% prediction interval. The prediction perfor-

mance of the ANN model with Bayesian regulariza-

tion learning algorithm with four hidden nodes is

compared with the multi-variable regression analysis.

Different sensitivity analyses to quantify the most

importance input parameters are also discussed. A

neural interpretation diagram to visualize the effect of

input parameters on the output is presented. Finally, a

predicted model equation is obtained based on the

neural network parameters.

Keywords Artificial neural network � Peak shear

stress � Sensitivity analysis � Multi-variable

regression � Statistical analysis

1 Introduction

In general practice, modeling of soil–geosynthetic

interface behavior is done by introducing interface

elements. This can be accomplished by a number of

ways like, node compatibility spring element; com-

posite layer model; joint element of zero or non-zero

thickness; etc. (Andrawes et al. 1982; Love et al. 1987;

Gens et al. 1988; Poran et al. 1989; Burd and

Brocklehurst 1990; Wilson-Fahmy and Koerner

1993; Abdel-Baki and Raymond 1994; Yamamoto

and Otani 2002). But all these methods involve

horizontal and vertical stiffness values which are very

difficult to determine experimentally. To overcome

this difficulty Poulos and Davis (1974) and Basudhar

et al. (2008) modeled interface as a contact problem

and assumed that failure would occur due to a slip at

the interface between the soil and the geosynthetic and
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not due to yielding of the reinforced soil. It is very

essential to provide an accurate estimate of the

properties of the interface for an accurate prediction.

The properties of the soil–geosynthetic interface

depend on many factors, like, nature of force along

the interface (direct shear or pullout mode); physical

and mechanical properties of the soil (density, grain

shape and size, grain size distribution, moisture

content, cohesive strength, frictional angle, etc.),

mechanical properties of the geosynthetic (ultimate

tensile strength, stress at 5% strain) and shape and

geometry of the geosynthetic. However, the most

important parameters are the density of the soil,

moisture content of the soil, soil–geosynthetic adhe-

sion, soil–geosynthetic interface frictional angle,

properties of the geosynthetic and normal stress on

the shear plane. It is observed that the interface shear

resistance at the high density polyethylene (HDPE)–

clay interface is maximum when the clay is in the

compacted condition and minimum when the clay is

near saturation (Mitchell et al. 1990; Lopes 2002).

Previous studies conducted at the Louisiana Trans-

portation Research Center (LTRC) on geogrid rein-

forcement in cohesive soils also showed that increased

moisture content resulted in decreased pullout resis-

tance (Farrag and Morvant 2003a, b). Large direct

shear tests showed that increase in molding moisture

content and/or decrease in dry density caused an

appreciable reduction in the cohesive soil–geosyn-

thetic interface shear resistance (Farrag and Griffin

1993; Farrag 1995; Farsakh et al. 2007).

Even though these methods are widely used,

reliable predictions are uncertain due to the variability

of soil properties. To overcome the problem, ANN

model can be used as a suitable alternative. Since it is a

data driven process, it can learn from history. It can

also adapt to any anomaly which gets unnoticed by

most of the traditional techniques for the prediction

of soil–geosynthetic interface behavior. Several

researchers have used the ANN model to predict

different soil behaviours like skin friction of the piles

in clay (Goh 1995); ultimate bearing capacity of piles

(Lee and Lee 1996); slope stability prediction (Sakel-

lariou and Ferentinou 2005); undrained lateral load

capacity of piles (Das and Basudhar 2006); the

residual frictional angle of clay (Das and Basudhar

2008); elastic modulus of jointed rock mass (Maji and

Sitharam 2008); prediction models for soil com-

paction and permeability (Sinha and Wang 2008);

modeling sulfuric acid induced swell in carbonate

clays (Sivapullaiah et al. 2009); the compression index

of soils (Park and Lee 2011); effective stress param-

eters of unsaturated soils (Ajdari et al. 2012); ground

settlement prediction (Kanayama et al. 2014); predic-

tion of unconfined compressive strength of geopoly-

mer stabilized clayey soil (Mozumder and Laskar

2015) etc.

From the above study it can be observed that the

ANN has been used successfully in solving various

geotechnical engineering problems. The detailed dis-

cussion of ANN is refrained in the present study and

can be found in the literature (Minsky and Papert

1969; Lippman 1987; DARPA 1988; Caudill 1989;

Caudill and Butler 1992). The ANN is considered as a

black box system as it is unable to explain the

fundamental principles of prediction. Therefore, inter-

pretation of weights may be considered the subject of

future research (Goh et al. 2005). Keeping in mind the

above limitations the present study uses a feed forward

back propagation neural network model with 4, 10 and

15 hidden nodes to predict the peak shear stress at the

cohesive soil–geosynthetic interface. Three learning

algorithms, namely Bayesian regularization (BR),

Levenberg–Marquardt (LM) and scaled conjugate

gradient (SCG) have been used. A comparison study

has been done to obtain the best learning algorithm.

Sensitivity analysis is employed to quantify the

important input parameters for prediction of the peak

shear stress (PSS).

2 Development of Prediction Model

2.1 Development of ANN Model

The ANN process mainly consists of four steps,

namely, collection of data, selection of a network type,

selection of a learning algorithm and selection of a

criterion for stopping the process. In the present study,

the data are taken from the research paper of Farsakh

et al. (2007). The data consist of dry density of

cohesive soil (c), moisture content of cohesive soil in

percentage (%w), normal stress on the shear plane

(rn), soil–geosynthetic adhesion (ca) and soil–geosyn-

thetic interface frictional angle (d) as the inputs and

peak shear stress at cohesive soil–geosynthetic inter-

face (T) as the output. Similar approach of input–

output pattern has already been studied by other
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researchers (Monjezi et al. 2006; Sarkar et al. 2010;

Sobhani et al. 2010; Yaprak et al. 2013). In the present

study, out of 90 data points, 70% are considered for

training the ANN model (shown in Table 1) and rest

30% for testing the model (shown in Table 2) as

suggested by Shahin et al. (2004). Statistical param-

eters of the training and testing data are given in

Table 3. Since the input parameters have different

units of measure, normalization of their values is

necessary, hence all the variables (inputs and output)

are normalized in the range [-1, 1]. ANN model has

been implemented in MATLAB R2013a environment

with neural network toolbox, with three different

learning algorithms as mentioned above. A three-layer

feed-forward back-propagation neural network with

one hidden layer is adopted as suggested by previous

researchers (Rumelhart et al. 1986; Lippman 1987;

Sonmez et al. 2006) while the number of hidden

neurons is determined using a heuristic model as

suggested by Sonmez et al. (2006). The heuristic

model is shown in Table 4. The model shows that the

hidden neurons may vary from 1 to 15. Figure 1 shows

the relationship between the numbers of neurons

against MSE during the training. It is observed from

the figure that 4, 10 and 15 numbers of hidden neurons

give the optimum architecture of ANN model based on

the minimum value of mean square error (MSE) of the

training data set. Hence, in the present study the

optimum numbers of hidden neurons are taken as 4, 10

and 15. Once network weights and biases are initial-

ized randomly, training of the network starts. Hyper-

bolic sigma transfer function is used as the transfer

function for calculating the output from a certain

neuron from its inputs. During training, the progress is

constantly updated in the training window. The major

challenge in the successful application of ANN is

when to stop the training. If training is inadequate,

then the network will not be fully trained, whereas if

training is extreme then it will memorize the training

pattern or learn noise. Normally the network stops

when gradient of performance reaches a threshold

value or when the number of failed validation reaches

a prefixed number or when the number of epoch

reaches a certain specified number. The gradient will

become very small as the training reaches a minimum

of the performance and validation checks represent the

number of successive iterations that the validation

performance fails to decrease. An epoch is a cycle of

forward and backward process through which the

network weights and biases are modified. For the

present study, the stopping criterion for the number of

epoch is 1000, the magnitude of gradient of perfor-

mance is 10-7 and the number of failed validation

checks is 6.

The performance of ANN model is reported in

terms of five statistical parameters, namely the coef-

ficient of determination (R2), mean square error

(MSE), mean absolute percentage error (MAPE),

variance absolute relative error (VARE) and median

absolute error (MEDAE).

2.1.1 Bayesian Regularization (BR) Learning

Algorithm

To advance the generalization capabilities of the

conventional back-propagation algorithm MacKay

(1991) and Neal (1992) introduce Bayesian back

propagation neural networks. It is based on the

Bayesian statistical approach (Box and Tiao 1973)

and originated in the field of highest entropy (Gull

1988). To create a well generalized network, the

Bayesian regularization learning algorithm involves

constraining the number of the network parameters

through a regularized that penalizes the more complex

weight functions in favor of simpler functions. This

procedure is carried out by adding a penalty term to the

sum squared error. Instead of just giving a single

‘‘optimum’’ prediction, the Bayesian approach pro-

vides a probability distribution over the predicted

value. This is frequently very important as it provides

information on the characteristic error of the predic-

tion that arises from the uncertainty associated with

interpolating noisy data. In order to create a prediction

model with the most accurate response, three artificial

neural networks with 4, 10 and 15 hidden neurons are

developed. Comparison of predicted peak shear stress,

PSS (Y), with experimental peak shear stress, PSS (T),

for training and testing sets, using ANN with 4, 10 and

15 hidden neurons, is shown in Fig. 2. From the

figures it is observed that the ANN model with four

hidden neurons gives the highest correlation coeffi-

cient R being equal 0.995 for the training set and 0.994

for the testing set. The standard error is also observed

to be the smallest, 1.11 and 1.14 respectively as shown

in Fig. 2a, b. In order to validate the predicted PSS

values obtained from proposed ANN model with

experimental values, a 99% prediction interval is

chosen. 99% prediction interval is defined as an
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Table 1 Summary of training data for peak shear stress of soil geosynthetics interface (from Farsakh et al. 2007)

Sl. no. Soils and geosynthetics c (kN/m3) w (%) rn (kPa) ca (kPa) d (�) T (kPa)

Training data

1 Clay 6 and BX-6100 15.08 12 50 12.7 27.7 38.9

2 Clay 6 and BX-6100 15.25 18.8 25 1 15.4 7.9

3 Clay 6 and BX-6100 15.25 18.8 50 1 15.4 14.8

4 Clay 6 and BX-6100 15.25 18.8 75 1 15.4 21.7

5 Clay 6 and BX-6100 16.70 18.8 25 12.6 11.5 17.7

6 Clay 6 and BX-6100 16.70 18.8 50 12.6 11.5 22.8

7 Clay 6 and BX-6100 16.70 18.8 75 12.6 11.5 34.8

8 Clay 6 and BX-6100 17.63 18.8 75 11.7 21.2 40.8

9 Clay 6 and BX-6100 16.27 21 25 4.7 12.2 10.1

10 Clay 6 and BX-6100 16.27 21 75 4.7 12.2 21

11 Clay 6 and geotextiles 15.08 12 25 13.5 22.8 24

12 Clay 6 and geotextiles 15.08 12 75 13.5 22.8 48.9

13 Clay 6 and geotextiles 15.25 18.8 50 4.7 19.6 22.5

14 Clay 6 and geotextiles 15.25 18.8 75 4.7 19.6 34.1

15 Clay 6 and geotextiles 16.70 18.8 25 3.7 25.5 15.6

16 Clay 6 and geotextiles 16.70 18.8 50 3.7 25.5 27.5

17 Clay 6 and geotextiles 17.63 18.8 25 19.2 18.6 27.6

18 Clay 6 and geotextiles 17.63 18.8 50 19.2 18.6 36

19 Clay 6 and geotextiles 16.27 21 25 4.4 21.8 14.4

20 Clay 6 and geotextiles 16.27 21 50 4.4 21.8 24.4

21 Clay 6 and geotextiles 16.27 21 75 4.4 21.8 32.7

22 Clay 25 and BX-6100 16.01 11 75 12 31.5 57.9

23 Clay 25 and BX-6100 15.00 16.5 50 2.9 14.4 15.7

24 Clay 25 and BX-6100 15.00 16.5 75 2.9 14.4 22.1

25 Clay 25 and BX-6100 17.25 16.5 25 8.9 21.4 18.7

26 Clay 25 and BX-6100 17.25 16.5 50 8.9 21.4 28.5

27 Clay 25 and BX-6100 18.98 16.5 25 5.5 28.2 18.9

28 Clay 25 and BX-6100 18.98 16.5 50 5.5 28.2 32.3

29 Clay 25 and BX-6100 18.98 16.5 75 5.5 28.2 45.6

30 Clay 25 and BX-6100 16.86 20 50 7.1 10.6 16.5

31 Clay 25 and BX-6100 16.86 20 75 7.1 10.6 21.3

32 Clay 25 and geotextiles 16.01 11 25 16.5 19 25.1

33 Clay 25 and geotextiles 16.01 11 50 16.5 19 33.7

34 Clay 25 and geotextiles 15.00 16.5 25 11 8.9 14.9

35 Clay 25 and geotextiles 15.00 16.5 50 11 8.9 18.8

36 Clay 25 and geotextiles 17.25 16.5 75 12.2 17.5 42

37 Clay 25 and geotextiles 18.98 16.5 25 14 25.6 26

38 Clay 25 and geotextiles 18.98 16.5 50 14 25.6 38

39 Clay 25 and geotextiles 18.98 16.5 75 14 25.6 50

40 Clay 25 and geotextiles 16.86 20 25 9 17.3 16.8

41 Clay 25 and geotextiles 16.86 20 75 9 17.3 36.2

42 Clay 49 and BX-6100 13.05 24 25 12.9 24.5 24.3

43 Clay 49 and BX-6100 13.05 24 75 12.9 24.5 47.1
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interval within which 99% of Y values for a certain

X value will lie around the linear regression line. An

established equation (Verschuuren 2007) to obtain the

upper and lower bound prediction interval values is

used in the present study. Figure 2b shows that all the

testing data lie well within the 99% prediction interval

band, which confirms the validity of the proposed

ANN model. It is clear that ANN model with BR

learning algorithm with four hidden nodes gives the

most accurate predictions that fall within the 99%

prediction interval.

2.1.2 Levenberg–Marquardt (LM) Learning

Algorithm

The LM learning algorithm is usually considered as

the fastest method for training moderate-sized feed-

forward neural networks (Singh et al. 2005; Khandel-

wal and Singh 2010) and it is the best choice for

solving the problems of supervised learning, which is

the case in the present analysis. Comparison of

predicted peak shear stress, PSS (Y), with experimen-

tal peak shear stress, PSS (T), for training and testing

sets, using ANN with 4, 10 and 15 hidden neurons, is

given in Fig. 3. From Fig. 3a–f it is clear that the ANN

model with four hidden neurons has the highest

correlation coefficient R, and it is obtained as 0.99 for

the training set and 0.982 for testing set with a small

value of the standard error, SE = 2.33 for testing. It

means that the average distance of the data points from

the fitted line is 2.33 kPa. Figure 3b also shows that

the upper bound and the lower bound correspond to

99% prediction interval i.e. all the data points lie well

within the 99% prediction interval band, which

confirms the precision of the proposed model.

2.1.3 Scaled Conjugate Gradient (SCG) Learning

Algorithm

SCG learning algorithm belongs to the group of

conjugate gradient optimization methods which are

well suited to handle the large-scale problems in a

successful way (Fletcher 2000). This method repre-

sents one of the four most often used algorithms of this

group, besides Polak–Ribiére Update, Fletcher–

Reeves Update and Powell–Beale Restarts algorithm.

Table 1 continued

Sl. no. Soils and geosynthetics c (kN/m3) w (%) rn (kPa) ca (kPa) d (�) T (kPa)

44 Clay 49 and BX-6100 11.36 29.3 25 4.9 19.4 13.7

45 Clay 49 and BX-6100 11.36 29.3 75 4.9 19.4 31.3

46 Clay 49 and BX-6100 13.57 29.3 25 13.9 13.5 19.9

47 Clay 49 and BX-6100 13.57 29.3 50 13.9 13.5 25.9

48 Clay 49 and BX-6100 13.57 33 75 13.9 13.5 31.8

49 Clay 49 and BX-6100 14.58 33 25 16 17.7 24

50 Clay 49 and BX-6100 14.58 29.3 75 16 17.7 40.1

51 Clay 49 and BX-6100 13.14 33 25 5 14.1 11.3

52 Clay 49 and BX-6100 13.14 33 50 5 14.1 17.6

53 Clay 49 and geotextiles 13.05 24 25 21 19.8 30

54 Clay 49 and geotextiles 13.05 24 50 21 19.8 39

55 Clay 49 and geotextiles 13.05 24 75 21 19.8 56

56 Clay 49 and geotextiles 11.36 29.3 50 9.1 16.5 23.9

57 Clay 49 and geotextiles 13.57 29.3 25 8 21.8 18

58 Clay 49 and geotextiles 17.25 16.5 50 8 21.8 28

59 Clay 49 and geotextiles 14.58 29.3 25 19 13.5 25

60 Clay 49 and geotextiles 14.58 29.3 50 19 13.5 31

61 Clay 49 and geotextiles 14.58 29.3 75 19 13.5 42

62 Clay 49 and geotextiles 13.14 33 50 9.5 16.7 24.5

63 Clay 49 and geotextiles 13.14 33 75 9.5 16.7 35
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Table 2 Summary of

testing data for peak shear

stress of soil geosynthetics

interface (from Farsakh

et al. 2007)

Sl. no. Soils and geosynthetics c (kN/m3) w (%) rn (kPa) ca (kPa) d (�) T (kPa)

Testing data

1 Clay 6 and BX-6100 15.08 12.00 25.00 12.70 27.70 25.80

2 Clay 6 and BX-6100 15.08 12.00 75.00 12.70 27.70 52.10

3 Clay 6 and BX-6100 17.63 18.80 25.00 11.70 21.20 21.40

4 Clay 6 and BX-6100 17.63 18.80 50.00 11.70 21.20 31.10

5 Clay 6 and BX-6100 16.27 21.00 50.00 4.70 12.20 15.50

6 Clay 6 and geotextiles 15.08 12.00 50.00 13.50 22.80 34.50

7 Clay 6 and geotextiles 15.25 18.80 25.00 4.70 19.60 13.60

8 Clay 6 and geotextiles 16.70 18.80 75.00 3.70 25.50 37.50

9 Clay 6 and geotextiles 17.63 18.80 75.00 19.20 18.60 48.80

10 Clay 25 and BX-6100 16.01 11.00 25.00 12.00 31.50 27.30

11 Clay 25 and BX-6100 16.01 11.00 50.00 12.00 31.50 42.60

12 Clay 25 and BX-6100 15.00 16.50 25.00 2.90 14.40 9.30

13 Clay 25 and BX-6100 17.25 16.50 75.00 8.90 21.40 38.30

14 Clay 25 and BX-6100 16.86 20.00 25.00 7.10 10.60 11.80

15 Clay 25 and geotextiles 16.01 11.00 75.00 16.50 19.00 44.30

16 Clay 25 and geotextiles 15.00 16.5 75 11 8.9 29.2

17 Clay 25 and geotextiles 17.25 16.5 25 12.2 17.5 20.1

18 Clay 25 and geotextiles 17.25 16.5 50 12.2 17.5 28

19 Clay 25 and geotextiles 16.86 20 50 9 17.3 24.6

20 Clay 49 and BX-6098 13.05 24 50 12.9 24.5 35.7

21 Clay 49 and BX-6101 11.36 29.3 50 4.9 19.4 22.5

22 Clay 49 and BX-6107 14.58 29.3 50 16 17.7 32

23 Clay 49 and BX-6111 13.14 33 75 5 14.1 23.8

24 Clay 49 and geotextiles 11.36 29.3 25 9.1 16.5 16.5

25 Clay 49 and geotextiles 11.36 29.3 75 9.1 16.5 33.6

26 Clay 49 and geotextiles 13.57 33 75 8 21.8 39

27 Clay 49 and geotextiles 13.14 33 25 9.5 16.7 17

Table 3 Statistical parameters of training and testing data of ANN model

Model variable c %w rn ca d T

Standard deviation

Training data 1.97 6.33 20.58 5.57 5.36 11.33

Testing data 1.96 7.62 20.80 4.10 5.72 11.36

Mean

Training data 15.50 21.28 50.00 10.27 18.59 27.88

Testing data 15.10 20.86 50.00 10.11 19.75 28.74

Maximum

Training data 18.98 33.00 75.00 21.00 31.50 57.90

Testing data 17.63 33.00 75.00 19.20 31.50 52.10

Minimum

Training data 11.36 11.00 25.00 1.00 8.90 7.90

Testing data 11.36 11.00 25.00 2.90 8.90 9.30

Range

Training data 7.62 22 50 20 22.6 50

Testing data 6.27 22 50 16.3 22.6 42.8
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Each one of these conjugate gradient algorithms

requires a line search at every iteration step, which

is computationally expensive, since the network

reply to all training inputs has to be computed

several times for each search. The SCG algorithm

was designed to avoid this time-consuming process,

by combining the model-trust region approach (used

in LM algorithm) with the conjugate gradient

algorithm (Moller 1993). Comparison of predicted

peak shear stress, PSS (Y), with experimental peak

shear stress, PSS (T), for training and testing sets,

using ANN with 4, 10 and 15 hidden neurons, is

given in Fig. 4. From Fig. 4a–f it is clear that the

ANN model with four hidden neurons has the

highest correlation coefficient R, obtained as 0.994

for the training set and 0.988 for testing set with a

small value of the standard error, SE = 1.96 for

testing. It means that the average distance of the

data points from the fitted line is 1.96 kPa.

Figure 4b shows that the upper bound and the lower

bound correspond to 99% prediction interval i.e. all

the data points lie well within the 99% prediction

interval band, which confirms the precision of the

proposed model.

2.2 MVR Model Development

In the present study, a multi-variable regression

analysis (MVR) is also conducted to predict the peak

shear stress of the soil geosynthetic interface. Similar

to ANN model, 70% of the total data are used for

developing the MVR model. Rest 30% data are used to

evaluate the prediction efficacy of the model. The

generalized linear relationship between the dependent

variable and the independent variables takes the form

as shown in Eq. (1).

Y ¼ c0 þ c1X1 þ c2X2 þ c3X3 þ � � � þ cnXn � e ð1Þ

where Y is dependent variable, c0 is the Y intercept. c1,

c2, c3 and cn are the slopes associated with the

independent variables X1, X2, X3 and Xn and e is the

error. MVR model is developed with T as dependent

variable and c, %w, rn, ca and d as independent

variables.

3 Performance Evaluation of the Proposed ANN

Model

Performances of the developed prediction models can

be further evaluated using different standard statistical

criteria given in Table 5 (Monjezi et al. 2013).

Calculated statistical errors are shown in Table 6.

The ANN model with BR learning algorithm with four

hidden nodes has the highest value of coefficient of

determination R2 and lowest values of mean square

error (MSE), mean absolute percentage error (MAPE),

median absolute error (MEDAE) and variance abso-

lute relative error (VARE), in comparison with other

proposed ANN models. The optimum architecture of

ANN model was characterized by four neurons in

hidden layer with hyperbolic tangent sigmoid function

Table 4 Different

heuristics used for calculate

the number of nodes in

hidden layer (from Sonmez

et al. 2006)

Ni represents number of

input nodes, No represent

number of output nodes

Heuristic Calculated number of nodes for this study

B2 9 Ni ? 1 B11

3 9 Ni 15

2 þ No � Ni þ 0:5No � N2
o þ Ni

� �
� 3

Ni þ No

1

2Ni/3 4

2Ni 10

(Ni ? No)/2 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni þ Noð Þ

p
3

0
0.0002
0.0004
0.0006
0.0008
0.001

0.0012
0.0014
0.0016
0.0018

1 6 11 16

M
ea

n 
sq

ua
re

 e
rr

or
 (M

SE
)

Number of neurons

Fig. 1 Relationship between the number of neurons and MSE
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Fig. 2 Comparison of predicted and experimental values of

peak shear stress (kPa) for training and testing sets using

Bayesian regularization learning algorithm. a Comparison with

4 hidden nodes for training data, b comparison with 4 hidden

nodes for testing data, c comparison with 10 hidden nodes for

training data, d comparison with 10 hidden nodes for testing

data, e comparison with 15 hidden nodes for training data,

f comparison with 15 hidden nodes for testing data

452 Geotech Geol Eng (2017) 35:445–461

123



5 10 15 20 25 30 35 40 45 50 55 60
5

10

15

20

25

30

35

40

45

50

55

60

Experimental PSS, T (kPa)

P
re

di
ct

ed
 P

S
S

, Y
 (

kP
a)

training data
best fit 
upper bound, 99% prediction intervel 
lower bound, 99% prediction intervel 

Y=0.97*T+0.994
R=0.99
SE=1.58

5 10 15 20 25 30 35 40 45 50 55 60
5

10

15

20

25

30

35

40

45

50

55

60

Experimental PSS, T (kPa)

P
re

di
ct

ed
 P

S
S

, Y
 (

kP
a)

testing data
best fit 
upper bound, 99% prediction intervel 
lower bound, 99% prediction intervel 

Y=1.002*T +0.592
R=0.982
SE=2.33

5 10 15 20 25 30 35 40 45 50 55 60
5

10

15

20

25

30

35

40

45

50

55

60

Experimental PSS, T (kPa)

P
re

di
ct

ed
 P

S
S

, Y
 (

kP
a)

training data
best fit
upper bound, 99% prediction intervel 
lower bound, 99% prediction intervel 

Y=0.999*T - 0.018
R=0.988
SE=1.79

5 10 15 20 25 30 35 40 45 50 55 60
5

10

15

20

25

30

35

40

45

50

55

60

P
re

di
ct

ed
 P

S
S

, Y
 (

kP
a)

testing data
best fit 
upper bound, 99% prediction intervel
lower bound, 99% prediction intervel 

Y=1.099*T - 2.753
R=0.98
SE=2.60

5 10 15 20 25 30 35 40 45 50 55 60
5

10

15

20

25

30

35

40

45

50

55

60

Experimental PSS, T (kPa)

P
re

di
ct

ed
 P

S
S

, Y
 (

kP
a)

training data
best fit 
upper bound, 99% prediction intervel 
lower bound, 99% prediction intervel 

Y=1.02*T - 0.686
R=0.987
SE=1.86

5 10 15 20 25 30 35 40 45 50 55 60
5

10

15

20

25

30

35

40

45

50

55

60

Experimental PSS, T (kPa)

P
re

di
ct

ed
 P

S
S

, Y
 (

kP
a)

testing data
best fit 
upper bound, 99% prediction intervel 
lower bound, 99% prediction intervel 

Y=1.099*T - 3.11
R=0.933
SE=4.90

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Comparison of predicted and experimental values of

peak shear stress (kPa) for training and testing using Levenberg–

Marquardt learning algorithm. a comparison with 4 hidden

nodes for training data, b comparison with 4 hidden nodes for

testing data, c comparison with 10 hidden nodes for training

data, d comparison with 10 hidden nodes for testing data,

e comparison with 15 hidden nodes for training data,

f comparison with 15 hidden nodes for testing data
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as the transfer function and a pure linear transfer

function at the output layer. Out of three learning

algorithms Bayesian regularization back propagation

learning algorithm is used for its better generalization

for the training data and lowest statistical error.

4 Results and Discussions of ANN and MVR

Models

From Table 6 it is observed that out of three types of

ANN model, The Bayesian regularization (BR) model

with four hidden neurons is the best one showing

higher value of R2 and lesser values of statistical

errors. These results are compared with MVR model in

Table 7. R2, MSE, MAPE, VARE and MEDAE value

of the BR model for training and testing data are found

to be 0.991, 1.21, 2.43, 1.17 and 0.53 & 0.988, 1.48,

3.31, 1.27 and 0.60 respectively, while for MVR

model these values are found to be 0.956, 5.52, 8.04,

6.54 and 1.45 & 0.965, 4.73, 7.08, 5.58 and 0.93

respectively. The statistical values in Table 7 suggest

that the ANN model is superior to MVR model in

learning and predicting the experimental data. The

analysis of variance (ANOVA) and statistical infor-

mation of predictor variables of MVR model are

shown in Tables 8 and 9. Regression analysis data in

Tables 8 and 9 are made with the help of t test and

F-test at 95% confidence level. From Table 8, it is

observed that the P value (2.01E-37) is very small

which suggests that the confidence level i.e. (1 - P) is

almost 100% and at least one of the coefficients of

MVR model is important. However, to identify the

significant coefficients in the MVR model in addition

to F-test, t tests are conducted. The t-stat and

corresponding P values of individual coefficients are

given in Table 9. It is observed that P values of

coefficients of c and %w are very high with corre-

sponding low confidence levels [(1 - P)\ 0.95] and

hence these coefficients are insignificant for the MVR

model. On the other hand P values of rn, ca and d are

very low with high confidence level [(1 - P)[ 0.95]

and hence it is proposed that these coefficients are

significant in MVR model. Lower and upper limits of

95% confidence interval are also shown in Table 9.

Confidence intervals of c and %w include zero falls

and hence are not consistent with the significance of

t test. Confidence intervals of rn, ca and d do not

include zero and hence are consistent with the

significance of t tests. It is evident that MVR model

fails to generalize the cohesive soil–geosynthetic

interface mechanism as it rejects the significance of

c, and %w in PSS prediction.

5 Sensitivity Analysis

Sensitivity analysis is a major concern for selecting the

important input variables. Different methods have

been subjected to select the significant input variables.

However, methods such as Garson’s algorithm and

Connection weight approach have been successfully

used by some researchers for assessing the variable

contribution in geotechnical engineering problems

(Goh 1994; Das and Basudhar 2006, 2008; Das et al.

2011). In the present study, aforementioned two

methods have been used to identify significant input

variables in PSS prediction. Both the approaches use

optimized weight vector to identify the important

input variables, details of which are available in the

literature (Garson 1991; Olden and Jackson 2002).

Optimized weight vectors of the ANN model are

presented in Table 10. Based on the weights listed in

Table 10 the importance and relative ranking of

different input variables of ANN using Garson’s

algorithm and Connection weight approach are shown

in Table 11. It is observed from Table 11 that both the

approaches namely Garson’s algorithm and Connec-

tion weight approach rank normal stress (rn) as the

most important parameter. However, the Connection

weight approach ranks percentage water content (%w)

as the least important parameter whereas; Garson’s

algorithm ranks dry density (c) as the least important

parameter. However it is to be mentioned here that

researchers have shown an indirect effect of soil

moisture content and direct effect of dry density on

cohesive soil–geosynthetics interaction (Farsakh et al.

2007). The interface efficiency decreases with the

increase in moisture content and decreasing dry

density. The results of the present study showed that

out of five input parameters chosen, the dry density

and moisture content have the least effect on peak

shear stress at cohesive soil–geosynthetics interface.

Ranking given by connection weight approach

seems to be more realistic and acceptable due to

following reasons:
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Fig. 4 Comparison of predicted and experimental values of

peak shear stress (kPa) for training and testing sets using Scaled

conjugate gradient learning algorithm. a Comparison with 4

hidden nodes for training data, b comparison with 4 hidden

nodes for testing data, c comparison with 10 hidden nodes for

training data, d comparison with 10 hidden nodes for testing

data, e comparison with 15 hidden nodes for training data,

f comparison with 15 hidden nodes for testing data
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• With the increase in normal stress the confining

pressure at the cohesive soil–geosynthetic inter-

face is increased which causes an increase in the

interface efficiency resulting in higher value of

PSS. Farsakh et al. (2007) also showed that with

increase in normal stress and keeping the dry

Table 5 Statistical error

formulation used for

models’ evaluation (from

Monjezi et al. 2013)

Statistical parameter Equation

Mean square error (MSE)
MSE ¼ 1

n
�
Pn

i¼1

ti � xij j2
� �

Mean absolute percentage error (MAPE)
MAPE ¼ 1

n
�
Pn

i¼1

ti�xi
ti

���
���

� �
� 100

Variance absolute relative error (VARE)
VARE ¼ 1

n
�
Pn

i¼1

ti�xi
ti

���
���� mean ti�xi

ti

���
���
2

� 	� �

Median absolute error (MEDAE) MEDAE = median(ti - xi)

Table 6 Statistical errors

of different models for

predicting PSS

ANN model Statistical errors

Learning algorithms No. of hidden nodes R2 MSE MAPE VARE MEDAE

Bayesian regularization 4 0.988 1.48 3.31 1.27 0.60

10 0.986 2.21 3.81 1.81 0.602

15 0.984 2.45 3.82 2.35 0.606

Levenberg–Marquardt 4 0.964 5.46 7.31 5.52 1.42

10 0.96 7.48 8.00 6.21 1.73

15 0.871 23.52 11.72 10.72 2.34

Scaled conjugate gradient 4 0.977 6.47 3.88 2.09 0.64

10 0.954 7.73 8.21 6.42 1.49

15 0.973 3.58 6.18 5.18 1.31

Table 7 Performance of

ANN and MVR model
Model Dataset R2 Statistical parameter

MSE MAPE VARE MEDAE

ANN Training data 0.991 1.21 2.43 1.17 0.53

Testing data 0.988 1.48 3.31 1.27 0.60

MVR Training data 0.956 5.52 8.04 6.54 1.45

Testing data 0.965 4.73 7.08 5.58 0.93

Table 8 Analysis of variance (ANOVA) of MVR model

Source dfa SSb MSc F P

Regression 5.000 7616.879 1523.376 249.654 2.01E-37

Residual 57.000 347.811 6.102

Total 62.000 7964.691

a Degree of freedom
b Sum square
c Mean square
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density and moisture content constant, the PSS

increases. Therefore, ranking of the normal stress

as the most important parameter for PSS as per

connecting weight approach is confirmed.

• Using Mohr–Coulomb failure criteria following

equation is deduced (Farsakh et al. 2007):

ss�g ¼ ca þ rn tan d ð2Þ

where ss–g is the shear stress along the soil–

geosynthetic interface.

Equation (2) clearly shows that shear stress is

directly related to soil–geosynthetic interface

friction angle and adhesion. Hence, interface

friction angle and adhesion are the important

parameters for PSS next to normal stress.

• It is known that the normal stress and dry density

are correlated and thus the dry density parameter

should have come second in the ranking, but the

connecting weight approach shows the dry density

to be the fourth important parameter. In a direct

shear box the weight of soil sample becomes

insignificant in comparison to the applied normal

stress which is acting as a surcharge. For an

example Farsakh et al. (2007) used a large size

shear box consisting of an upper box and lower box

both having dimensions 300 mm long, 300 mm

wide and 65.4 mm deep. The normal stress due to

dry density acting on soil–geosynthetic interface

comes around 1 kPa where as the normal stresses

applied to the clay sample were 25, 50 and 75 kPa.

Table 9 Statistical information of predictor variable of MVR model

Predictor variable Coefficients Standard error t stat P value Lower 95% Upper 95%

Intercept -15.699 4.643 -3.381 0.001 -24.997 -6.401

c -0.187 0.214 -0.873 0.386 -0.617 0.242

%w -0.088 0.068 -1.285 0.204 -0.224 0.049

rn 0.381 0.015 24.929 0.000 0.350 0.411

ca 1.119 0.057 19.746 0.000 1.005 1.232

d 0.959 0.063 15.217 0.000 0.833 1.085

Table 10 Connection weights and biases for predicting PSS with Bayesian learning algorithm with four hidden nodes

Neuron Weights Biases

Input 1 Input 2 Input 3 Input 4 Input 5 Output Hidden layer Output layer

Hidden neuron 1 0.2241 -0.1281 0.5307 -0.1079 0.4599 0.7687 -0.611 -0.1726

Hidden neuron 2 0.0354 0.2943 1.0981 -0.4282 -0.0225 0.5707 0.0486

Hidden neuron 3 0.0175 0.3211 0.3505 -0.5339 -0.3239 -0.9582 -0.3116

Hidden neuron 4 -0.1136 -0.2624 -0.0649 -0.5137 -0.0691 -0.7049 -0.2448

Table 11 Sensitivity analysis results

Input Garson’s algorithm (%) Connection weight approach

Parameters Relative importance Ranking of inputs as per

relative importance

Relative importance Ranking of inputs as per

relative importance

c 7.3900 5 0.26 4

w 17.7200 3 -0.05 5

rn 31.0100 1 0.74 1

ca 28.7300 2 0.55 3

d 15.1500 4 0.70 2
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Hence, the ranking of dry density as fourth

important parameter is justified.

• The interface shear failure envelopes generally

decreases with the increase in molding moisture

contents as relevant in the sensitivity analysis with

negative sign as shown in Table 11. The increase

in water content develops excess pore water

pressure resulting in decrease of PSS. Thus

ranking water content to be the least important

parameter is justified.

Mozumder and Laskar (2015) also reported that

ranking given by Connection weight approach is

more realistic and acceptable than the Garson’s

algorithm.

6 Neural Interpretation Diagram (NID)

The neural interpretation diagram (NID) was pro-

posed by Ozesmi and Ozesmi (1999) for visual

interpretation of the connection weights among the

neurons. The lines joining the input-hidden and

hidden-output neurons in the NID represent the

magnitude of weights and their directions. The

positive and negative weights are represented by

black and gray lines respectively, and the thickness

of the lines is proportional to their relative magni-

tude. The input and output relationship is deter-

mined in two steps. The positive input hidden and

positive hidden-output weights or a negative input-

hidden and negative hidden-output weight depict the

positive effect of the input variables. The negative

effect of the input variables is depicted by positive

input-hidden and negative hidden-output or negative

input-hidden and positive hidden-output weights.

The input having a direct effect on the output is

represented by black circles and that having an

inverse effect with gray circles. For the present

example the weights are presented in Table 10 and

NID is presented in Fig. 5. It is seen from Fig. 5

that the inputs c, rn, ca and d have a positive

contribution to the Y values and %w has negative

effects on the Y value which justifies the physical

relationship of the soil–geosynthetic interaction

mechanism. It is also seen that with an increase

in the moisture content there is an appreciable

reduction in interface shear resistance as reported by

other researchers (Farrag and Griffin 1993; Farrag

1995; Farsakh et al. 2007). Therefore, it is inferred

that c, rn, ca and d are directly and %w is inversely

proportional to Y value. So it can be concluded that

NID is an effective method of indicating the

physical relationship between inputs with the

output.

7 ANN Model Equation for Predicting PSS Value

Based on Trained Neural Network

The mathematical equation as per the ANN relating

the input and the output variables suggested by Goh

et al. (2005) can be written as

Yn ¼ fsig b0 þ
Xh

k¼1

wk � fsig bhk þ
Xm

i¼1

wikXi

 !" #( )

ð3Þ

Input 

%w

σn 

γ

Output 
PSSp 

Nh1 

Nh2 

Nh3 

Nh4 

Nh- hidden neuron 

ca 

δ

Fig. 5 Neural

interpretation diagram of

ANN model
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where Yn is the normalized (in the range -1 to 1 in this

case) Y value; b0 is the bias at the output layer; wk is

the connection weight between kth neuron of hidden

layer and the single output neuron; bhk is the bias at the

kth neuron of hidden layer; h is the number of neurons

in the hidden layer; wik is the connection weight

between ith input variable and kth neuron of hidden

layer; Xi is the normalized input variable i in the range

[-1, 1] and fsig is the sigmoid transfer function.

In this study, an ANN model equation for peak

shear stress along soil geosynthetics was established

using the values of the weights and biases presented in

Table 10 the following expression can be written to

finally arrive at a correlation of Y with the input

parameters.

A1 ¼ �0:611 þ 0:2241q� 0:1281wþ 0:5307rn
� 0:1079ca þ 0:4599d ð4Þ

A2 ¼ 0:0486 þ 0:0354qþ 0:2943wþ 1:0981rn
� 0:4282ca � 0:0225d ð5Þ

A3 ¼ �0:3116 þ 0:0175qþ 0:3211wþ 0:3505rn
� 0:5339ca � 0:3239d ð6Þ

A4 ¼ �0:2448 � 0:1136q� 0:2624w� 0:0649rn
� 0:5137ca � 0:0691d ð7Þ

B1 ¼ 0:7687 � eA1 � e�A1

eA1 þ e�A1
ð8Þ

B2 ¼ 0:5707 � eA2 � e�A2

eA2 þ e�A2
ð9Þ

B3 ¼ �0:9582 � eA3 � e�A3

eA3 þ e�A3
ð10Þ

B4 ¼ �0:7049 � eA4 � e�A4

eA4 þ e�A4
ð11Þ

C1 ¼ �0:1726 þ B1 þ B2 þ B3 þ B4 ð12Þ

Yn ¼
eC1 � e�C1

eC1 þ e�C1
ð13Þ

The Yn value as obtained from Eq. (13) is in the

range [-1, 1] and this needs to be denormalized as

Y ¼ 0:5 Yn þ 1ð Þ Ymax � Yminð Þ þ Ymin ð14Þ

where Ymax and Ymin are the maximum and minimum

values of Y respectively in the data set.

8 Conclusions

The following are the conclusions from the above

studies:

• Out of four learning algorithms Bayesian regular-

ization back propagation learning algorithm is

used for its better generalization to the training and

testing data and lowest statistical error.

• ANN model with Bayesian regularization back

propagation training algorithm outperforms MVR

model in predicting the PSS.

• Based on sensitivity analysis both the algorithms,

namely Garson’s and connection weight

approaches rank rn as the most important param-

eter influencing PSS prediction followed by c, %w,

ca and d.

• MVR model shows that rn, ca and d are the

significant parameters for PSS prediction.

• According to Connection weight approach, out of

five input parameters moisture content (%w) is the

least important parameter influencing PSS

prediction.

• NID demonstrates the negative or inverse effect of

moisture content (%w) on the PSS prediction i.e.

with increase in moisture content PSS decreases.

• The superiority of ANN model over MVR model

in PSS prediction can be attributed to its flexibility

and adaptability in generalizing the data.

• Compared to Garson’s algorithm, Connection

weight approach is capable of identifying the true

importance of input variables in PSS prediction.

• A model equation is presented based on the trained

weights of the ANN.
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