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Abstract In order to estimate the strength parame-

ters of rock, as the direct method by conducting rock

mechanical tests is time-consuming and expensive, an

indirect method based on soft computing technique is

proposed. Least squares support vector machine (LS-

SVM) is utilized to develop rock uniaxial compressive

strength (UCS) and shear strength (SS) prediction

models by considering indirect parameters such as

rock density, point load strength, P-wave velocity and

slake durability index. The results show that according

to the rock physical and mechanical parameters of four

rock types, empirical relationships based on statistical

regression method are rock type specific, only linear

relations existed between point load strength and rock

strengths are acceptable with high determination

coefficients for whole rock types. The LS-SVM

models built for rock UCS and SS prediction have

greater determination coefficients than the regression

models. The prediction values based on LS-SVM

prediction models for rock UCS and SS are both

extremely close to the measured values, which indi-

cates the applicability of LS-SVM is supported for

estimation of strength parameters of rock.

Keywords Uniaxial compressive strength (UCS) �
Shear strength (SS) � Prediction model � Soft
computing technique � Least squares support vector
machine (LS-SVM)

1 Introduction

Strength parameters of rock are the most basic and

important mechanical parameters for engineering

geologists, geotechnical engineers and mining engi-

neers. These parameters have great importance in rock

engineering such as tunnel and dam design, rock

blasting and drilling, mechanical rock excavation and

slope stability (Ceryan et al. 2013a). There are two

methods for assessing the strength properties of rocks.

First is the direct method by conducting laboratory

tests on crafted specimens; the other, known as the

indirect method, uses the previously derived empirical

equations or models from literatures (Baykasoglu et al.

2008; Madhubabu et al. 2016). The direct method by

performing rock mechanical tests in the laboratory

should follow the testing procedures standardized by

the International Society for Rock Mechanics (ISRM)

(Ulusay and Hudson 2007). Although the method is

relatively simple, it is time-consuming and expensive;
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also, it requires well prepared and high-quality core

specimens (Heidari et al. 2012), and this cannot

always be extracted from weak, highly fractured,

weathered and thinly bedded rocks (Ceryan et al.

2013a). For these reasons, indirect methods from

empirical equations with parameters such as sonic

velocity (Sharma and Singh 2008; Kahraman 2001;

Moradian and Behnia 2009), Schmidt rebound number

(Sachpazis 1990; Yagiz 2009), point load strength

(Basu and Aydin 2006; Mishara and Basu 2012; Singh

et al. 2012) have been proposed for predicting rock

strengths (Fener et al. 2005). These indirect parame-

ters are all easy to obtain because of low requirements

for rock cores and simple testing equipment. And these

tests can be performed at the engineering field.

Compared to the traditional rock mechanical tests,

the indirect prediction method can make the acquisi-

tion of rock strength parameters much easier, faster

and more economical.

At present, there are two commonly used mathe-

matical methods for performing prediction problems

(Singh et al. 2016), which are statistics and soft

computing technique. Using the statistical method,

statistical regression models between rock strength

indices and indirect parameters (e.g. point load

strength, P-wave velocity, Schmidt rebound number)

could be built with linear (Sachpazis 1990; Basu and

Aydin 2006; Sharma and Singh 2008), power (Kahra-

man 2001; Yagiz 2009) and exponential (Moradian

and Behnia 2009) functions. Except that simple

prediction models with single one indirect parameter

have been proposed (Fattahi 2016), some studies have

dealt with models relating all determined indices

simultaneously with rock strength parameters (i.e.

multiple regression analysis) (Mishara and Basu

2013). As the complexity of rock types, these empir-

ical equations have limitations, notably being site and

type specific (Sarkar et al. 2010). The statistical

regression method will not be applicable when many

rock types exist in a rock data base for prediction,

hence new technologies should be proposed for the

estimation of rock strength parameters.

With the development of intelligent computing,

methods such as neural networks (Dehghan et al.

2010; Singh and Verma 2012; Torabi et al. 2014;

Mert 2014; Mohamad et al. 2015), genetic algorithm

(Beiki et al. 2013), fuzzy inference (Yilmaz and

Yuksek 2009; Rezaei et al. 2012), and support vector

machine (Ceryan et al. 2013b) have been put forward

and are widely used in rock mechanics and rock

engineering with great superiority. Least squares

support vector machine (LS-SVM) is a pattern

recognition and regression analysis structure based

on statistics theory and structure risk minimum

criterion. It integrates square error variable into

traditional support vector machine that substitutes

least square linear system for quadratic programming

to resolve function estimating problems, which

shows good generalization performance and calcu-

lation speed in dealing with multivariate nonlinear

problems by small samples (Tan et al. 2014; Xu et al.

2015).

The aim of this study is to build prediction models

for estimation of rock strength properties. For this

purpose, the relations between indirect parameters

(rock density, point load strength, P-wave velocity and

slake durability index) and rock strengths (uniaxial

compressive and shear strength) were analyzed with

rock physical and mechanical test results of four rock

types. The prediction models were built based on LS-

SVM, and statistical performances were tested.

2 Rock Physical and Mechanical Test Results

The physical and mechanical test results of four rock

types, which were limestone, slate, quartzite and

quartz mica schist, were used in this research with 10

data sets for each rock type. Rock samples were

collected from different locations in Luhri region,

Himachal Pradesh and rock parameters were deter-

mined according to the standard testing methods of

ISRM (1981) (Sarkar et al. 2010). The relations

between rock indirect parameters (rock density,

P-wave velocity, point load strength and slake dura-

bility index) and rock strengths (UCS and SS) were

shown in Figs. 1 and 2, respectively. With regard to a

specified rock type, statistical regression models can

be obtained after performing regression analysis to the

data points, and the relations and correlation coeffi-

cients (R) were listed in Table 1.

Seen from the Table 1, it shows that the relations

between indirect parameters and rock strengths all

have a high correlation coefficient, except one which

is less than 0.85. Although linear models with high

correlation coefficients exist for each rock type to

predict its rock UCS and SS based on the indirect

parameters, these models are rock type specific and
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Fig. 2 Relations of rock indirect parameters with rock shear strength
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with little applicability when the rock type of a

different investigation site is unknown and the

strengths need to be predicted. A model which

considers rock types as many as possible may have a

probability to predict an unknown rock type, that is to

say, a prediction model considering these four rock

types simultaneously will be a probable prediction

model in this research. While the scatter plots in

Figs. 1 and 2 show that there is no such a statistical

prediction model that could express the relations

between the indirect parameters (rock density, P-wave

velocity and slake durability index) and rock strengths

for these four rock types, that is to say, just given one

parameter, the rock strength parameters cannot be

predicted. Only the point load strength of these rocks

may have a linear relation with rock UCS and SS for

the whole data points, which can be expressed as

followed:

rc ¼ 21:9483Isð50Þ � 1:13531 R2 ¼ 0:98174 ð1Þ

s ¼ 4:13715Isð50Þ þ 0:19087 R2 ¼ 0:98623 ð2Þ

3 Prediction Model of Rock Strength Using Least

Squares Support Vector Machine

3.1 Foundation of LS-SVM Technique

LS-SVM is now widely used and can achieve accept-

able results. The two problem types for which LS-

SVM is used are regression and classification prob-

lems. Prediction belongs to the regression problem

(Xu et al. 2015).

For regression problems, suppose T is a training set

and n is a sample number. In this case:

T ¼ ðx1; y1Þ; ðx2; y2Þ; . . .; ðxn; ynÞf g ð3Þ

where xi 2 Rn is the input vector and yi 2 R is the

output variable that corresponds to xi.

The optimization problem of LS-SVM can be

described as follows:

min
w:b;e

Jðw; b; eÞ ¼ 1

2
wTwþ l

2

Xn

i¼1

e2i

s:t: yi ¼ wTuðxiÞ þ bþ ei i ¼ 1; 2; . . .; n

8
><

>:
ð4Þ

Table 1 Model of rock strength and indirect parameter

Rock type UCS prediction model SS prediction model

Relation R Relation R

Limestone rc ¼ 83:01771q� 140:52602 0.97239 s ¼ 18:4101q� 33:85443 0.96704

rc ¼ 0:01357vp � 32:43269 0.9427 s ¼ 0:0031vp þ 4:21616 0.96571

rc ¼ 15:94158Isð50Þ þ 21:70189 0.97124 s ¼ 3:53332Isð50Þ þ 2:12777 0.96537

rc ¼ 12:48476Id2 � 1139:10134 0.96203 s ¼ 2:82578Id2 � 260:8571 0.97648

Slate rc ¼ 132:25792q� 321:22048 0.97232 s ¼ 23:31731q� 55:21154 0.95614

rc ¼ 0:0183vp � 29:8372 0.98672 s ¼ 0:00315vp � 3:5499 0.94658

rc ¼ 21:69128Isð50Þ � 0:19307 0.99695 s ¼ 3:7598Isð50Þ þ 1:49798 0.96386

rc ¼ 25:17049Id2 � 2464:25764 0.99389 s ¼ 4:37172Id2 � 426:4848 0.96285

Quartzite rc ¼ 234:69697q� 524:90194 0.93522 s ¼ 57:77273q� 134:3344 0.9823

rc ¼ 0:0274vp � 6:09763 0.95752 s ¼ 0:00665vp � 6:25701 0.99143

rc ¼ 11:44086Isð50Þ þ 46:71827 0.88095 s ¼ 2:92085Isð50Þ þ 5:89341 0.95966

rc ¼ 15:57315Id2 � 1453:547 0.71684 s ¼ 4:3759Id2 � 417:01922 0.85947

Quartz mica schist rc ¼ 109:11015q� 265:40024 0.99273 s ¼ 34:74355q� 87:39663 0.9336

rc ¼ 0:02207vp � 26:14492 0.94067 s ¼ 0:00761vp � 12:5365 0.95796

rc ¼ 9:93096Isð50Þ þ 11:45668 0.93445 s ¼ 3:5272Isð50Þ þ 0:29846 0.9802

rc ¼ 8:86992Id2 � 832:95135 0.87724 s ¼ 3:2177Id2 � 306:11955 0.93871
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where w is the weight vector, l is the regularization

parameter (also called the penalty parameter), ei is the

error variance, u(�) denotes nonlinear mapping from

the input space to high-dimensional feature space, and

b is a partial vector.

The function Lagrange of the optimization problem

(4) is as follows:

Lðw; b; e; aÞ ¼ Jðw; b; eÞ

�
Xn

i¼1

a wuðxÞ þ bþ e� yf g ð5Þ

where ai is the Lagrange multiplier and sample

(ai = 0) is the support vector.

The following equations are obtained based on the

Karush–Kuhn–Tucker (KKT) condition, which is a

necessary and sufficient condition for the optimal

solution of the object function in a nonlinear opti-

mization problem:

oL

ow
¼ 0

oL

ob
¼ 0

oL

oei
¼ 0

oL

oai

¼ 0 )

w ¼
Xn

i¼1

aiuðxiÞ

Xn

i¼1

ai ¼ 0

ai ¼ lei i ¼ 1; 2; . . .; n

wTuðxiÞ þ bþ ei � yi ¼ 0 i ¼ 1; 2; . . .; n

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð6Þ

where a and b are obtained by solving the right part

of Eq. (6). The output value y(x) of the new input

vector x can be calculated through the following

formula:

yðxÞ ¼
Xn

i¼1

aiKðx; xiÞ þ b ð7Þ

where K(x,xi) = u(x)Tu(xi) is called the kernel func-

tion. The radial basis function (RBF) is one of the most

popular kernel functions for SVM. The RBF can be

described in the following way:

Kðx; xiÞ ¼ e
� xi�xk k2

2r2 ð8Þ

where r2 is the squared bandwidth, which is optimized

through an external optimization technique during the

training process (Cao et al. 2008; Xu et al. 2015).

3.2 Establishment of Prediction Model

and Results Analysis

Based on the above fundamental theory of LS-SVM,

an input matrix including rock density, point load

strength, P-wave velocity and slake durability index

and two output matrixes including rock UCS and SS

were separately built in the MATLAB environment.

The radial basis function (RBF) was used as the kernel

functions for LS-SVM. 80% (32 datasets) of the total

samples were used for training and the other 20% (8

datasets) samples were used for testing. The training

and testing data used in LS-SVM were listed in

Tables 2 and 3. The raw data of rock UCS show that

the values range from 20.32 to 112.25 MPa, which

means that the prediction models built with LS-SVM

are suitable for rocks with these similar strengths. The

prediction results based on LS-SVM were shown in

Figs. 3 and 4, and the determination coefficients (R2)

for training and testing results were calculated,

respectively. The results show that with regard to

rock UCS prediction, the R2 values for training and

testing results are 0.9997 and 0.9995, respectively.

And with regard to rock SS prediction, the R2 values

for training and testing results are 0.9990 and 0.9964,

respectively. It can be concluded that the accuracy of

rock strength prediction models based on LS-SVM is

extremely high and the models could be accepted for

prediction.

3.3 Performance Validation of LS-SVM

Prediction Models

In order to check the validation of prediction models

based LS-SVM, the relations of predicted values

versus measured values were plotted in Figs. 5 and 6.

The error in the predicted value is represented by the

distance that each data point plots from the 1:1

diagonal line (Kahraman et al. 2016). It can be seen

that the predicted values for both models are almost

lying on the diagonal line.

To verify the performance of the models, four

statistical criteria viz. squared correlation coefficient

(R2), variance account for (VAF), root mean squared

error (RMSE), and mean absolute percentage error

(MAPE) were chosen to be the measure of accuracy.

Let yi be the actual value and ŷi be the predicted value

of the ith observation, �y be the mean value of the
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observations and N be the number of observations,

then R2, VAF, RMSE and MAPE could be defined

below (Fattahi 2016), and the results were shown in

Table 4. The performance indices show that the rock

strength models based on LS-SVM are excellent

because the values are all extremely close to the best

condition at which the R2 is 1, VAF is 100, RMSE and

MAPE is 0 (Armaghani et al. 2016a, b). The prediction

models built based on LS-SVM are applicable for the

prediction of strength parameters of rock.

Table 2 Training data used in LS-SVM

Parameter Data

P-wave velocity (m/s) 3845.35 3656.2 3124.58 3106.42 3089.78 2845.98 2679.14 2549.63

Point load strength (MPa) 3.91 3.78 3.51 3.47 3.25 3.12 2.87 2.81

Density (gm/cm3) 2.7 2.68 2.63 2.6 2.58 2.54 2.51 2.5

Slake durability index (%) 97.98 97.97 97.35 97.21 97.14 96.98 96.72 96.65

UCS (MPa) 84.5 82.46 77.68 77.2 72.98 69.15 68.84 68.43

Shear strength (MPa) 16.56 15.48 14.35 13.89 13.56 12.96 12.54 12.49

P-wave velocity (m/s) 4260.12 4199.09 4026.97 3832.05 3502.15 3202.15 3172.76 3050.38

Point load strength (MPa) 2.28 2.11 1.98 1.86 1.74 1.34 1.27 1.18

Density (gm/cm3) 2.81 2.78 2.75 2.72 2.68 2.65 2.64 2.64

Slake durability index (%) 99.84 99.71 99.65 99.45 99.36 99.11 98.98 98.86

UCS (MPa) 49.25 46.13 43.18 40.35 37.19 30.05 27.54 24.46

Shear strength (MPa) 10.78 9.66 8.53 8.17 7.98 6.78 6.5 5.64

P-wave velocity (m/s) 4225.14 4119.56 3910.22 3841.06 3820.25 3650.12 3617.35 3521.13

Point load strength (MPa) 5.27 5.18 4.95 4.78 4.5 4.21 3.98 3.75

Density (gm/cm3) 2.7 2.69 2.68 2.65 2.65 2.64 2.63 2.63

Slake durability index (%) 99.98 99.97 99.95 99.89 99.87 99.48 99.29 99.14

UCS (MPa) 112.25 108.01 98.43 98.02 95.51 94.54 93.3 93.21

Shear strength (MPa) 21.57 21.46 19.86 19.12 18.99 18.06 17.55 17.42

P-wave velocity (m/s) 2489.25 2450.64 2300.23 2278.45 2265.13 2178.6 2145.56 2142.39

Point load strength (MPa) 1.78 1.65 1.26 1.19 1.14 1.08 1.05 1.03

Density (gm/cm3) 2.69 2.68 2.66 2.66 2.65 2.63 2.62 2.62

Slake durability index (%) 97.18 97.05 96.58 96.57 96.55 96.47 96.38 96.33

UCS (MPa) 28.45 27.1 24.78 24.36 23.18 22.1 20.58 20.32

Shear strength (MPa) 6.78 5.72 4.89 4.75 4.28 4.06 3.95 3.8

Table 3 Testing data used in LS-SVM

Parameter Data

P-wave velocity (m/s) 3548.13 3047.13 4104.56 3435.69 4102.37 3695.79 2302.68 2200.07

Point load strength (MPa) 3.62 3.19 2.1 1.5 5.05 4.37 1.42 1.1

Density (gm/cm3) 2.67 2.57 2.77 2.68 2.69 2.64 2.68 2.64

Slake durability index (%) 97.58 97.01 99.7 99.25 99.97 99.65 96.6 96.5

UCS (MPa) 80.25 70.05 44.38 32.1 105.69 94.96 27.02 22.8

Shear strength (MPa) 14.91 13.01 8.78 7.43 21.13 18.25 5.38 4.17
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R2 ¼ 1�
PN

i¼1 ðyi � y
_

iÞ
2

PN
i¼1 yi � �yð Þ2

ð9Þ

VAF ¼ 1� varðyi � y
_

iÞ
2

varðyiÞ

 !
� 100 ð10Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

yi � y
_

i

� �2
vuut ð11Þ

MAPE ¼ 1

N

XN

i¼1

yi � y
_

i

yi

�����

������ 100 ð12Þ

4 Discussion

ANN prediction models of rock strengths have been

developed by Sarkar et al. (2010) based on these raw

data. The results of ANN models show that the

predicted and determined values indicate a very good
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Table 4 Validation results of rock strength prediction models

Model Performance index

R2 VAF RMSE MAPE

UCS 0.9997 99.98 0.5276 0.916

SS 0.9985 99.98 0.2234 1.754
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correlation (R = 0.99) and confirm the applicability of

ANN for estimation of rock strength parameters

(Sarkar et al. 2010; Singh and Verma 2012; Mert

2014; Mohamad et al. 2015). By comparing the

models built using LS-SVM and ANN, it shows that

these two soft computing techniques can both used for

prediction and have an equivalent prediction perfor-

mances. All these support the applicability of soft

computing techniques for the estimation of strength

parameters of rock.

5 Conclusion

Aimed at estimation of strength parameters of rock, a

soft computing technique, which is least squares

support vector machine (LS-SVM), is used for the

establishment of rock strength prediction models. The

prediction results based on LS-SVM prediction mod-

els of rock UCS and SS are both extremely close to the

measured values, and the squared correlation coeffi-

cients (R2) of rock UCS and SS prediction models are

0.9997 and 0.9985, respectively, which indicates the

prediction models based on LS-SVM could be

accepted for prediction. By introducing the prediction

results based on another soft computing technique (i.e.

ANN), a conclusion that the applicability of soft

computing techniques for estimation of strength

parameters of rock is further supported.
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