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Abstract This article focuses on the application of

extreme learning machine (ELM) for prediction of

liquefaction susceptibility of soil based on cone pene-

tration test data. The determination of liquefaction

susceptibility of soil has been taken as a classification

problem.ELMpredicts liquefaction susceptibility of soil

based on earthquake magnitude (M), cone resistance

(qc), mean grain size (D50), total vertical stress (r0),

effective vertical stress (r0
0), normalizedpeakhorizontal

acceleration at ground surface (a/g), cyclic stress ratio

s
r0
0

� �
. Six models have been developed. The results of

ELM have been compared with the artificial neural

network models. This study shows that the developed

ELM is a potential robust method for solving different

problems in geotechnical engineering.

Keywords Extreme learning machine �
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1 Introduction

In view of the rising number of earthquakes in the

recent past, the determination of liquefaction suscep-

tibility of soil is an important task in geotechnical

earthquake engineering. Liquefaction causes severe

loss to life and property due to sinking/overturning of

buildings, ground cracking and sand blows. Geotech-

nical engineers use several in situ {Standard Penetra-

tion Test (SPT), cone penetration test (CPT) and Shear

wave velocity} based techniques for determination of

liquefaction susceptibility of soil (Seed and Idriss

1967, 1971; Seed et al. 1983, 1984; Robertson and

Campanella 1985; Seed and De Alba 1986; Stark and

Olson 1995; Olsen 1997; Robertson and Wride 1998;

Dobry et al. 1981; Seed et al. 1983; Stokoe et al.

1988a; Tokimatsu and Uchida 1990; Andrus et al.

1999 and Andrus and Stokoe 2000). Every method has

limitations. Geotechnical engineers successfully use

artificial neural network (ANN) for determination of

liquefaction susceptibility of soil (Goh 1994b, 1996;

Agrawal et al. 1997; Najjar and Ali 1998; Ural and

Saka 1998; Juang and Chen, 1999; Goh 2002; Javadi

et al. 2006; Young and Byung Tak 2006; Goh and Goh

2007). However, ANN suffers from different draw-

backs such as black box approach, arriving at local

minima, low generalization capability, overtraining

problem, etc. (Park and Rilett 1999; Kecman 2001).

This article examines the capability of extreme

learning machine (ELM) for determination of lique-

faction susceptibility of soil based on cone penetration
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test (CPT) data. This article adopts the database collect

from the work of Goh (1996). The dataset contains

information about earthquake magnitude (M), cone

resistance (qc), mean grain size (D50), total vertical

stress (r0), effective vertical stress (r0
0), normalized

peak horizontal acceleration at ground surface (a/g),

cyclic stress ratio s
r0
0

� �
and status of soil during

earthquake. ELM is sophisticated learning algorithm

for single-hidden-layer feedforward neural network

(SLFN; Huang et al. 2004a). It chooses input weights

and hidden biases randomly. It adopts Moore–Penrose

(MP) generalized inverse for calculating output

weights. There are lots of applications of ELM in the

literatures (Bharathi and Natarajan 2011; Balbay et al.

2012; Gao et al. 2013; Yang et al. 2014). The

developed ELM has been compared with the ANN

model developed by Goh (1996).

2 Details of ELM

This section will serve the methodology of ELM for

prediction of liquefaction susceptibility of soil. ELM

is developed by Huang et al. (2004b). Let us consider

the following datasets (D):

D ¼ xi; yið Þf gNi¼1 ð1Þ

where x is input, y is output and N is the number of

datasets. Table 1 shows the different inputs for

determination of liquefaction susceptibility of soil.In

SLFN, the relation between x and y is given below:

y ¼
XL
i¼1

bi:g wix
T
j þ bi

� �
ð2Þ

where bi is the output weights from the hidden unit to

the output units, wi is the hidden unit weights, L is the

number of hidden nodes and g is the non-linear

activation function. The above equation can be written

in the following way.

Hb ¼ y ð3Þ

where H ¼
g w1x

T
1 þ b1

� �
� � � g wmx

T
1 þ bm

� �

..

. . .
. ..

.

g w1x
T
n þ b1

� �
� � � g wmx

T
n þ bm

� �

0
B@

1
CA,

b ¼ b1; . . .; bmð ÞT and y ¼ y1; . . .; ynð ÞT .
The value of b is determined by solving the

following equation.

b ¼ H�1y ð4Þ

where H-1 is the Moore–Penrose inverse of H (Rao

and Mitra 1971).

In ELM, the datasets have been divided into the

following two groups:

Training Dataset: This is used to develop the ELM.

This article uses the same training datasets as used by

Goh (1994b).

Testing Dataset: This is used to verify the devel-

oped ELM. This article adopts the same testing dataset

as used by Goh (1994b).

The datasets are normalized between 0 and 1. The

program of ELM has been developed by using

MATLAB.

3 Results and Discussion

For developing the ELM, radial basis function has

been adopted as activation function. Different number

of hidden neurons have been tried to get best

performance. The performance of ELM has been

determined by using the following equation.

Performance ¼ 1� No of misclassified datasets

No of total datasets

ð5Þ

For a good model, the value of performance should

be close to one. Table 2 shows the performance of

different models and number of hidden neurons. From

Table 2, it is clear that

MODEL I,III and V give best testing performance.

MODEL IV gives the best training performance.

However, the performance of testing dataset of

MODEL IV is not good. A comparative study has been

Table 1 Input variables for the different models

Model Input variables

I M, qc, D50,
s�
r00

II M, qc,
s�
r00
, a, r00

III M,qc,
s�
r00
, a, D50, r00

IV M, qc,
s�
r00
, a, D50, r00, a

V M, qc, D50, a, r00
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carried out between the developed ELM and ANN

models. Comparison has been carried out for testing

dataset. The performance of MODEL II and IV is not

good. Table 3 shows the comparison. It is clear from

Table 3 that the developedELMoutperforms theANN.

ELM has minimum human intervention compare to the

ANN. The developed ELM is very fast. The major

advantage of ELM is that all parameters of ELM are

determined analytically. ELM uses only one tuning

parameter. However, ANN uses many tuning

parameters.

4 Conclusions

This article describes ELM for prediction of liquefac-

tion susceptibility of soil based on CPT data. Five

models have been developed. The developed ELM

shows excellent performance. The results show that

the developed ELM successfully captured the rela-

tionship between soil parameters and earthquake

parameters for determination of liquefaction suscep-

tibility of soil. It gives better performance than the

ANN model. The developed ELM can be used as a

quick tool for determination of liquefaction suscepti-

bility of soil. Our experimental results show that the

developed ELM is a robust model for prediction of

liquefaction susceptibility of soil.
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