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Abstract The paper presents a computational pro-

cedure for reliability analysis of earth slopes consid-

ering spatial variability of soils under the framework

of the Limit Equilibrium Method. In the reliability

analysis of earth slopes, the effect of spatial variability

of soil properties is generally included indirectly by

assuming that the probabilistic critical slip surface is

the same as that determined without considering

spatial variability. In contrast to this indirect approach,

in the direct approach, the effect of spatial variability

is included in the process of determination of the

probabilistic critical surface itself. While the indirect

approach requires much less computational effort, the

direct approach is definitely more rigorous. In this

context this paper attempts to investigate, with the

help of numerical examples, how far away are the

results obtained from the indirect approach from that

obtained from the direct approach. In both the

approaches, it is required to use a model of discretiza-

tion of random fields into finite random variables. A

few such models are available in the literature for one-

dimensional (1D) as well as two-dimensional (2D)

spatial variability. The developed computational

scheme is based on the First Order Reliability Method

(FORM) coupled with the Spencer Method of Slices

valid for limit equilibrium analysis of general slip

surfaces. The study includes bringing out the compu-

tational advantages and disadvantages of the three

commonly used discretization models. The sensitivity

of the reliability index to the magnitudes of the scales

of fluctuation has also been studied.

Keywords Slope stability � Slip surface � Random
variable � Spatial variability � Reliability analysis

1 Introduction

In geotechnical engineering, slope stability analysis is

perhaps the area which is most dominated by uncer-

tainty (El-Ramly et al. 2002). As in other areas of

geotechnical engineering, the uncertainties associated

with earth slopes can be broadly categorized as the

aleatory uncertainty and the epistemic uncertainty.

The sources of aleatory uncertainty are the inherent

spatial variability of soil caused by variations in

mineral composition, environmental conditions dur-

ing deposition, stress history and variation in moisture

content. The sources of epistemic uncertainty, on the

other hand, are the limited availability of information

due to limited site investigation effort as well as

imperfect information due to measurement errors, test
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imperfection, soil sample disturbance etc. (Bourdeau

and Amundaray 2005; Ang and Tang 2007). It is now

more than four decades ago that Vanmarcke (1977a, b)

published his pioneering work on the modeling of

spatial variability of engineering soil properties.

However, in the vast majority of probabilistic slope

stability analyses (reliability analyses) reported in the

literature, only the epistemic uncertainty (statistical

uncertainty and measurement errors) was considered;

in other words, the aleatory uncertainty due to spatial

variability was not taken into account.

In most of the early works reliability analysis on

earth slopes were conducted on the deterministic

critical slip surface (the surface of minimum factor of

safety) and the reliability index associated with this

surface was taken as the reliability index for the slope

(Tobutt and Richards 1979; Chowdhury et al. 1987;

Chowdhury and Xu 1992). However, the deterministic

critical slip surface may not be the same as the

probabilistic critical slip surface (surface of minimum

reliability index or the maximum probability of

failure), especially for non-homogeneous slopes.

Subsequently, Hassan and Wolff (1999) proposed a

procedure for the determination of the probabilistic

critical slip surface and the associated minimum

reliability index. The method has been developed

based on their observation that the critical probabilis-

tic surface was found generally to coincide with that

obtained by setting one dominant parameter (random

variable) to a low value. However, as pointed out by

Crum (2001) and others, even though the proposed

method provides a practical and efficient tool to locate

the critical probabilistic surface, it does not have a

mathematical basis and, therefore, cannot be proven to

yield a lower bound for the reliability index. Further,

Li and Cheung (2001) have cautioned that the critical

probabilistic surface does not always coincide with

that obtained by setting one dominant parameter to a

low value. More recently, Zhang et al. (2013) have

found that for slopes with complex geometry, the

Hassan and Wolff method is less accurate in locating

the most critical slip surface. Bhattacharya et al.

(2003) proposed a procedure which is similar to the

procedure for the determination of the deterministic

critical slip surface. Subsequently quite a few research

work were reported based on the Hassan and Wolff

approach (El-Ramly et al. 2002, 2003a; Zhang et al.

2013) and the Bhattacharya et al. approach (Khaje-

hzadeh et al. 2010; Liang and Xue-song 2012; Metya

and Bhattacharya 2014). However, all these studies

considered only one kind of uncertainty, namely, the

epistemic uncertainty.

Studies on reliability analysis of earth slopes

considering spatial variability were conducted under

the framework of both Limit Equilibrium Method

(LEM) and the Finite Element Method (FEM). Those

based on the LEM include Li and Lumb (1987), El-

Ramly et al. (2002), Low (2003), Babu and Mukesh

(2004), Cho (2007), Hong and Roh (2008), Wang et al.

(2011), Ji et al. (2012) and Li et al. (2013). El-Ramly

et al. (2002) modeled the spatial variability of each

input variable along the slip surface by a 1D stationary

random field describing an elaborate spatial variability

discretization model. A few others (e.g., Hong and

Roh 2008; Wang et al. 2011; Li et al. 2013) also

modeled the spatial variability of soil properties by a

1D random field; but they considered spatial variation

along the vertical direction. It was, however, argued

that if only the vertical autocorrelation distance is

considered, it might result in some of the variables

having no effect on the critical slip surface (Li et al.

2013). Low (2003), Cho (2007) and Ji et al. (2012)

adopted the slicewise discretization of the 2D random

field. Cho (2007), however, proposed a local averag-

ing method combined with numerical integration to

discretize random fields of soil properties in two-

dimensional space; while Low (2003); Ji et al. (2012)

used the midpoint discretization of random field

known as the method of autocorrelated slices. Ji

et al. (2012), however, proposed another method

known as the method of interpolated autocorrelations.

The authors, however, have concluded that the method

of autocorrelated slices is more accurate and it should

be used as the benchmark for the development of the

method of interpolated autocorrelations. However,

with the exception of Ji et al. (2012), most of these

studies were made to determine the probability of

failure (or reliability index) of a predetermined slip

surface.

On the other hand, some researchers studied the

influence of spatial variation on the slope reliability

based on the Random Finite Element Method (RFEM)

(Griffiths and Fenton 2004; Griffiths et al. 2009; Hicks

and Spencer 2010) as well as the Stochastic Finite

Element Method (SFEM) (Faraha et al. 2011; Jiang

et al. 2014). In spite of their key advantage in assuming

no failure mechanism, both the RFEM and the SFEM

suffer from excessive computational efforts since the
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strength reduction method calculates the factor of

safety by progressively reducing or increasing the

shear strength of the material in order to bring the

slope to a state of limiting equilibrium (Cho 2010).

Moreover, as pointed out by Ji et al. (2012), the

number of spatially correlated random variables

assigned to elements is commonly very large in the

advanced RFEM so that only Monte Carlo simulation

can be employed.

Studies contained in this paper, concerning relia-

bility analysis of earth slopes considering spatial

variability of soil properties, are based on the LEM.

As stated before, all the above mentioned LEM based

studies considered spatial variability but the reliability

analyses were conducted on predetermined slip sur-

faces, specifically, the probabilistic critical slip sur-

faces determined without considering spatial

variability. It may be stated that these studies are

based on an indirect approach for taking the effect of

spatial variability into account. Only one or two

researchers (e.g., Ji et al. 2012) have addressed the

problem of direct determination of the probabilistic

critical slip surface considering spatial variability

during the process of determination itself. It may be

stated, therefore, that such a study is based on a direct

approach for taking the effect of spatial variability

into account. While the direct approach is a more

logical of the two approaches, the indirect approach is

computationally simpler. It is therefore necessary to

investigate to what extent the results obtained based

on the two approaches differ, as well as which

approach leads to a more conservative estimate of the

safety of a slope. Further, whichever approach is used,

the results would vary depending on the spatial

variability discretization model used as well as the

magnitudes of the scale of fluctuation in the horizontal

and the vertical direction in a 2D spatial variability

situation.

To this end, the purpose of the paper is to draw a

comparison between the results of reliability analysis

of earth slope obtained from both the indirect and the

direct approaches for considering spatial variability of

soil properties. Three different spatial variability

discretization models, namely, the 1Dmodel proposed

by El-Ramly et al. (2002); the 2D model proposed by

Cho (2007) and the 2D model of autocorrelated slices

proposed by Ji et al. (2012) have been selected for the

study. The magnitudes of the scale of fluctuation in the

horizontal and the vertical direction have been varied

from within the guidelines of their ranges as available

from the literature.

2 Adopted Methodologies

2.1 Evaluation of Factor of Safety

Out of the numerous LEMs of slices currently

available for slope stability analysis, the Spencer

method valid for general slip surfaces (Spencer 1973)

is regarded as one of the rigorous methods as it does

not make any a priori assumption regarding the shape

of the slip surface and satisfies both the force and the

moment equilibrium conditions (Duncan and Wright

1980). In this study, therefore, this method is chosen

for calculation of the factor of safety (FS) and hence

for evaluation of the performance function for the

reliability analysis. The method of solution for FS of a

given slip surface is cast as a mathematical program-

ming problem and solved using the well-known

Sequential Quadratic Programming (SQP) (Rao

2009) technique in the MATLAB environment. The

adoption of the Sequential Quadratic Programming

(SQP) technique is based on Hong and Roh (2008)

who reported that ‘an extensive comparative study of

nonlinear programming codes presented by Schit-

tkowski (1980) ranked the performance of the SQP

method to be the highest’.

2.2 Deterministic Critical Slip Surface

The problem of determination of the critical slip

surface and the associated minimum factor of safety

(FSmin) is, as usual, cast as a mathematical program-

ming problem, and, once again, the Sequential

Quadratic Programming (SQP) technique in the

MATLAB environment is employed to solve this

problem.

2.3 Probabilistic Analysis

The First Order ReliabilityMethod (FORM), being the

most versatile among the FOSMmethods of reliability

analyses (Haldar and Mahadevan 2000), has been

adopted in this study. In this method, the reliability

index b is defined as the minimum distance from the

origin to the failure surface in the standard normal

space, using a linearization of the performance
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function around the design point as originally pro-

posed by Hasofer and Lind (1974). The limit state

function for the slope stability is usually defined as

g(X) = FS-1.0, X being a vector of basic state (or

design) variables of the system consisting of the

uncertain geotechnical parameters (i.e. geometry and

soil properties). The determination of the reliability

index b is, thus, a problem of optimization, and as

indicated by Wang et al. (2011), the successful

application of FORM relies on the selection of a

robust optimization algorithm for multi-dimensional

minimization, the Sequential Quadratic Programming

(SQP) in the MATLAB environment is employed

again to solve this problem. The solution yields the

design point on the failure surface and the corre-

sponding reliability index b. Then the failure proba-

bility can be expressed as pF = U(-b), where U (.)

denotes the standard normal cumulative distribution

function.

2.4 Search Algorithm for the Probabilistic Critical

Slip Surface

In deterministic slope stability analysis, it is conven-

tional to use an optimization based algorithm to search

for the deterministic critical slip surface (surface with

the minimum factor of safety) based on some

suitable slope stability model. In most algorithms,

the problem of locating the deterministic critical slip

surface associated with the minimum factor of safety,

FSmin, is formulated as an optimization problem as

follows [Eq. (1)]:

FSmin ¼ min
X

FS P;Xð Þ ð1Þ

where, P = set of input geotechnical parameters: c1,

/1, c2, /2, etc. X = set of co-ordinates defining the

shape and location of the slip surface: x1, y1, x2, y2, etc.

FS = factor of safety for a given set of geotechnical

parameters P and a given geometry of the slip surface

defined by the location parameters X.

Bhattacharya et al. (2003) proposed a computa-

tional procedure for locating the probabilistic critical

slip surface (surface of the minimum reliability index,

bmin) for earth slopes, which is conceptually no

different from that of the deterministic critical slip

surface. The problem of locating the probabilistic

critical slip surface associated with the minimum

reliability index, bmin, had been formulated in exactly

the same way as for the deterministic critical slip

surface, viz.,

bmin ¼ min
X

b P;Xð Þ ð2Þ

where b = reliability index for a given set of

geotechnical parameters (including the statistical

properties) and a given geometry of the slip surface

defined by its location parameters.

It is, thus, evident that the proposed computational

procedure for the determination of the probabilistic

critical slip surface involves a 3-tier analysis: (i) Eval-

uation of performance function requires the evaluation

of Spencer’s factor of safety involves the first tier of

analysis; (ii) Evaluation of the reliability index, b
based on FORM involves the second tier of analysis,

and (iii) Search for the probabilistic critical slip

surface and the associated minimum reliability index

bmin involves the third tier of analysis. As mentioned

before, for the first two tiers, the optimization problem

has been solved using the Sequential Quadratic

Programming (SQP) in the MATLAB environment.

The third tier of analysis has also been solved using the

SQP technique when the slip surfaces are assumed to

be of circular shape. However, for the slip surface of

general shape, an efficient random search technique

(Greco 1996) has been employed. The reason for such

choice is based on experience. For slip surfaces of

general shape, the random search technique of Greco

(1996) has been found to yield a lower minimum

compared to the SQP technique.

3 Modeling of Spatial Variability

It is well known that even within nominally homoge-

neous soil layers, engineering properties of soils may

exhibit considerable variation from one point to

another (Vanmarcke 1977a; Lacasse and Nadim

1996; Elkateb et al. 2003) and this phenomenon is

known as the spatial variability of soil. The statistical

parameters such as the mean and variance are one-

point statistical parameters and cannot capture the

features of the spatial variability of the soil properties.

Themost commonway to deal with spatial variation of

soil properties is the random field theory (Vanmarcke

1983). For a field of interest, the soil parameters at a

particular location are random variables due to the

spatial variation, but are correlated with those at
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adjacent locations. The set of random variables at all

locations in the field is referred to as a random field (Ji

et al. 2012). It may not be out of place to mention that

the cross correlation coefficients, commonly called

correlation coefficients, are used to describe the

interrelationship between two different random

parameters. On the other hand, the spatial correlation

coefficients involved in the discretization models of

spatial variability are used to describe the interrela-

tionship between the values of the same random

parameter at different spatial locations.

The point to point variation of a random field is

very difficult to obtain in practice and is often of no

practical significance. Local averages over a spatial

local domain (e.g., the average soil properties over

the area of the slip surface) are of much greater value

to geotechnical engineers. The variance of the

strength, spatially averaged over some domain, is

less than the variance at the point. As the size of the

domain over which the soil property is being

averaged increases, the variance decreases (El-Ramly

et al. 2002). Vanmarcke (1977a) introduced a

dimensionless variance function, C2(L), as the ratio

between point variance to the variance of the spatial

average of any parameter over a domain of length L,

in order to measure the reduction in the point

variance under local averaging.

As already indicated, the in situ soil property values

at neighboring point are correlated to each other and

an autocorrelation function is needed to describe this

(Babu and Mukesh 2004). Quite a few autocorrelation

functions are available in the literature (Vanmarcke

1977a). In general, any of these autocorrelation

functions (based on statistical data) could be used

and the development of such a model should be based

on statistical data. This is not an easy task since

acquisition of large quantity of statistical data needs

much effort. This particular aspect, however, is

beyond the scope of this study. Moreover, results of

slope reliability analyses are generally found to be

rather less sensitive to the form of autocorrelation

function (Li and Lumb 1987). An autocorrelation

function decays over the separation distance between

spatial quantities and the distance up to which this

correlation exists is termed as the autocorrelation

distance, ro (Babu and Mukesh 2004). For most

commonly used autocorrelation functions, Vanmarcke

(1977a), showed that the variance function C2(L) can

be approximated by

C2 Lð Þ ¼ 1 for L� d
C2 Lð Þ ¼ d=L for L� d

ð3Þ

where d is the scale of fluctuation. In concept, the scale
of fluctuation has the same meaning as the autocor-

relation distance but differs in numeric value (El-

Ramly et al. 2002). For the common exponential and

Gaussian autocorrelation functions, the scale of fluc-

tuation is equal to 2 and p times the autocorrelation

distance, ro, respectively (Vanmarcke 1977a). A large

autocorrelation distance implies a very uniform mate-

rial, and a small autocorrelation distance implies a

material whose properties change over short distances

(Christian et al. 1994). DeGroot (1996) and Lacasse

and Nadim (1996) illustrated the estimation of ro. But

these techniques require not only substantial amount

of data, but also data at very close spacing. According

to El-Ramly et al. (2003b), the autocorrelation

distance varies from 10 to 40 m in the horizontal

direction, while in the vertical direction it ranges from

1 to 3 m. In the absence of adequate data to estimate a

site or formation-specific autocorrelation distance, El-

Ramly et al. (2003b) suggested that estimates of

autocorrelation distance could be inferred from within

these ranges. As per Mostyn and Li (1993), the ranges

of distances are 2–30 m and 0.1–5 m respectively.

Recently Salgado and Kim (2014) regrouped the

values of scale of fluctuation already reported in the

literature. Babu and Mukesh (2004) and Cho (2007)

have shown that assumption of isotropic random field

is always conservative. Therefore, apart from choos-

ing or assuming autocorrelation distances in two

directions and furthermore noting the significant

difference in the values of the vertical and horizontal

autocorrelation distances, El-Ramly et al. (2003a)

suggested to identify the direction in which the

variability of properties has a dominant impact on

the analysis. For example, the earth pressure on a

retaining structure is controlled by the variability of

the coefficient of earth pressure with depth. In such

cases, spatial variability in the vertical direction is

likely to be more important to the analysis. In contrast,

the stability of slopes in pre-sheared or jointed

formations with shallow dip angles is controlled by

the variability of strength parameters along near-

horizontal rupture surfaces. Autocorrelation distances

in horizontal directions are thus more relevant.

Quite a few models of discretization of random

fields into finite random variables are available in the
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literature for one-dimensional (1D) as well as two-

dimensional (2D) spatial variability. Three such

models have been made use of in this study. For the

sake of ready reference, brief outlines of these models

are presented in the following.

3.1 Discretization Model I (El-Ramly et al. 2002)

In this model, proposed by El-Ramly et al. (2002), the

spatial variability of each input variable along the slip

surface is approximated by a 1D stationary random

field. The point to point variability of each input

variable along the slip surface is resembled by the

variability of its local averages over segments of the

slip surface. For the arbitrary positions of intermediate

slip surfaces within the search domain, entire length of

the slip surface is at first divided into strips within the

various layers present in the soil profile. The portion of

each strip length within the subject layer is divided

into segments of length L not exceeding the scale of

fluctuation d. The local average, m(L), of each input

variable over the length, L, of any of these segments, is

considered a segment variable. The CDF of this

segment variable m(L) is the same as the CDF of the

original input variable, with no variance reduction.

This is because, as per Vanmarcke (1977a), the

variance function C2(L), [Eq. (3)], equals unity for

L B d.
In studying the uni-dimensional situation depicted

in Fig. 1, local averages X(Dz) and X0(Dz0), of the

variable x over the intervals Dz and Dz0, are spatially

correlated. The correlation coefficient, q (XDz, X
0
Dz0),

between X(Dz) and X0(Dz0) is given by Eq. (4)

(Vanmarcke 1983; El-Ramly et al. 2002). It is a

function of the lengths of the two intervals Dz and Dz0,

the separation, Zo, between them (Fig. 1), and the

variance function of the variable x being averaged.

qðXDz;X
0

Dz0 Þ ¼
Z2
oCðZoÞ � Z2

1CðZ1Þ þ Z2
2CðZ2Þ � Z2

3CðZ3Þ
2DzDz0 CðDzÞCðDz0Þ½ �0:5

ð4Þ

where, Z1 is the distance from the beginning of the first

interval to the beginning of the second interval, Z2 is

the distance from the beginning of the first interval to

the end of the second interval, and Z3 is the distance

from the end of the first interval to the end of the

second interval. Choosing the length of segments

equal to d eliminates the correlation coefficients

between most of the segment variables and greatly

simplifies this process. Figure 2 is a schematic illus-

tration of this model based on the solution of an

example problem solved by El-Ramly et al. (2002),

where the discretization of random soil properties e.g.,

the shear strength of the Layer 4 (S) and the unit

weight of the Layer 1 (c) are clearly described.

3.2 Discretization Model II (Cho 2007)

Cho (2007) proposed a local averaging method

combined with numerical integration to discretize

both isotropic and anisotropic random fields of soil

properties in two-dimensional space. Two most com-

monly used auto-correlation functions were taken to

describe isotropic [Eq. (5)] and anisotropic [Eq. (6)]

random field respectively.

qðzÞ ¼ exp � 2

dX
zj j

� �
ð5Þ

qðx; yÞ ¼ exp � 2

dXðxÞ
xj j þ 2

dXðyÞ
yj j

� �� �
ð6Þ

Fig. 1 A realization of a 1D

random field of a variable

x with a mean E[x], variance

r2, and cumulative

probability distribution

function F(x), showing local

averages over intervals

Dz and Dz0 (After El-Ramly

et al. 2002)
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where, dX(x) is the horizontal scale of fluctuation, and
dX(y) is the vertical scale of fluctuation. Using this

model of discretization, the length of the slip surface is

first divided into several segments by grouping slices

(Fig. 3).

The field within each segment is described in terms

of the spatial average of the field over the segment

base. The variance of the average strength parameters

are reduced by multiplying variance function for each

segment with the point variance of the random field.

The variance function for the isotropic [Eq. (7)] and

anisotropic [Eq. (8)] random field are as follows:

cðLÞ ¼ d2X
2L2

2L

dX
� 1þ exp � 2L

dX

� �� �
ð7Þ

cðLÞ ¼
2L cos a

dXðxÞ
þ sin a

dXðyÞ

� 	
� 1þ exp �2L cos a

dXðxÞ
þ sin a

dXðyÞ

� 	n oh i

2L2 cos a
dXðxÞ

þ sin a
dXðyÞ

� 	2

ð8Þ

The correlation coefficients between these seg-

ments are estimated using Eq. (9).

qðLi; LjÞ ¼
1

LiLj

Z Li

0

Z Lj

0

qðzÞdjdi ð9Þ

where z is the distance between the two arbitrarily

situated points, one on segment i and another on

segment j.

3.3 Discretization Model III (Ji et al. 2012)

Ji et al. (2012) proposed two models namely the

method of autocorrelated slices and the method of

interpolated autocorrelations for the probabilistic

slope analysis involving 2-D spatial variation. In the

method of autocorrelated slices, the strength param-

eter at the midpoint along the base of each slice is

taken as a random variable and spatial variation

between these random variables is modeled based on

the random fields theory.

Fig. 2 Modeling the spatial

variability of the input

parameters along the failure

surface (After El-Ramly

et al. 2002)

Fig. 3 Discretization of the

random fields over the slip

surface (After Cho 2007)
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The correlation between spatial quantities is

described by negative exponential autocorrelation

function (as suggested by Li and Lumb 1987) as given

in Eq. (10).

qij ¼ qðx; yÞ ¼ exp �
xi � xj


 



dx
�

yi � yj


 



dy

� �
ð10Þ

where (xi, yi) denotes the position of a random variable

(Fig. 4); dx and dy are the horizontal and vertical

autocorrelation distances respectively.

4 Developed Computer Programs

In order to carry out the computations involved in

solving the numerical examples included in the paper,

the following computer programs have been devel-

oped in the MATLAB environment:

1. Computer Program I: Computer Program to

search for the deterministic critical slip surface.

2. Computer Program II: Computer Program based

on FORM to search for the probabilistic critical

slip surfacewithout considering spatial variability.

3. Computer Program III: Computer Program based

onMCS to calculate the probability of failure for a

given slip surface considering spatial variability

based on the discretization model II (Cho 2007).

4. Computer Program IV: Computer Program to

search for the probabilistic critical slip surface

incorporating spatial variability based on the

discretization model I (El-Ramly et al. 2002).

5. Computer Program V: Computer Program to

search for the probabilistic critical slip surface

incorporating spatial variability based on the

discretization model II (Cho 2007).

6. Computer Program VI: Computer Program to

search for the probabilistic critical slip surface

incorporating spatial variability based on the

discretization model III (Ji et al. 2012).

5 Illustrative Examples

For the purpose of numerical demonstration of the

results of the investigations proposed in this paper two

example problems (Example 1 and Example 2) on

layered soil slopes have been selected from the

literature (Cho 2007; Ji et al. 2012) and are described

in the following subsections.

5.1 Example 1: (Cho 2007)

5.1.1 Description

Example 1 (Fig. 5) is of a layered slope in clay

bounded by a hard stratum below and the layer

boundaries are parallel to the ground surface. The

strength parameters, namely, the cohesion c, the angle

of shearing resistance / and the unit weight c for each
of the two layers are treated as random variables and

their statistical properties are as in Table 1. No water

table or external water is considered. This example

was previously analysed by Cho (2007).

5.1.2 Results of Deterministic Analysis

Before searching for the deterministic critical slip

surface using the developed computer program I, in

order to validate the subroutine for the evaluation of

the factor of safety, the deterministic critical slip

surface reported by Cho (2007) has been scaled down

from his paper and re-evaluated using the mean values

of the input parameters in Table 1. Following Cho

(2007) the total number of slices is taken as 12. The

factor of safety FS is obtained as 1.592 which is

identical with that reported by Cho (2007). This

observation has served to validate the subroutine for

the evaluation of factor of safety of a given slip surface

in the computer program I.

Next, using the computer program I and assuming

the soil properties to be deterministic with values

equal to their mean values in Table 1, the determin-

istic critical slip surface has been determined using

Spencer method (Spencer 1973) coupled with the

Sequential Quadratic Programming (SQP) available in
Fig. 4 Discretization of the 2-D random fields over the slip

surface according to slices (After Ji et al. 2012)
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the MATLAB environment and is as shown in Fig. 5.

The associated minimum factor of safety is obtained as

FSmin = 1.582 which is slightly lower than 1.592

reported by Cho (2007).

5.1.3 Results of Probabilistic Analysis

The results of probabilistic analyses are presented

under the following sub-headings:

I. Determination of probabilistic critical slip

surface without considering spatial variability

II. Re-analysis of the above surface considering

spatial variability

III. Determination of probabilistic critical slip

surface considering spatial variability.

5.1.3.1 Determination of Probabilistic Critical Slip

Surface Without Considering Spatial Variability Before

searching for the probabilistic critical slip surface

using the developed computer program II, in order to

validate the subroutine for the evaluation of the

reliability index b, the probabilistic critical slip

surface reported by Cho (2007) has been scaled

down from his paper and re-evaluated. Following Cho

(2007) all the geomechanical parameters in Table 1

(except /1) are treated as random variables having

lognormal distribution. The total number of slices is

again taken as 12. The reliability index b is obtained as
2.602 for COV case 1 and 1.227 for COV case 2,

which are very close to 2.604 and 1.227 reported by

Cho (2007). This observation has served to validate

the subroutine for the evaluation of reliability index of

a given slip surface.

Next, using the computer program II, the proba-

bilistic critical slip surfaces have been determined for

both the COV cases 1 and 2 and shown in Fig. 5. The

two surfaces are almost coincident. The associated

minimum reliability indexes (bmin) are obtained as

2.449 and 1.146 for COV case 1 and COV case 2

respectively, which are significantly lower than 2.604

and 1.227 reported by Cho (2007). From Fig. 5 it can

be observed that the two types of critical slip surfaces

are markedly different in shape and location. While

the deterministic critical slip surface extends well into

the lower c-/ layer, the probabilistic critical slip

surfaces are confined within the upper clay layer.

Table 2 presents a summary of the results for the

deterministic analysis and the initial probabilistic

analysis without considering spatial variability for

Example 1.

Fig. 5 Slope section and

critical slip surfaces in

Example 1

Table 1 Statistical properties of soil parameters for Example 1

Parameter (1) Mean (2) Coefficient of variation (COV)

Case 1 (3) Case 2 (4)

c1 38.31 kN/m2 0.20 0.40

/1 0.00 – –

c1 18.00 kN/m3 0.05 0.05

c2 23.94 kN/m2 0.2 0.2

/2 12� 0.1 0.1

c2 18.00 kN/m3 0.05 0.05
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5.1.3.2 Re-Analysis of the Above Probabilistic Slip

Surface Considering Spatial Variability The

determination of the probabilistic critical slip

surface(s) together with the associated minimum

reliability index, as presented in the preceding

section, was done without considering spatial

variability of the soil properties. Now, to investigate

the effect of consideration of spatial variability, this

surface is re-analysed using the spatial variability

discretization models I, II and III. But before doing

this, it is desirable to validate the computer programs

developed for the discretization models I, II and III.

Validation of Sub-Programs Developed for the Dis-

cretization Models I, II and III For the Sake of

Convenience, the Validation of Discretization Model

II (Cho 2007) is taken up first. Now, noting that Cho

(2007) carried out his analysis using the Monte-Carlo

Simulation method (MCS), in order to reproduce his

results, a computer program (computer program III),

has been developed based on the discretization model

II coupled with theMCS exclusively for the purpose of

this validation. The probabilistic critical slip surface

reported by Cho (2007) (for COV case 2) has been

scaled down from his paper and re-analysed using

computer program III. Table 3 presents the results

obtained by using the Program III, which agree well

with those available from Cho’s paper. The small

disagreement at some places could be attributed to the

error in scaling down of numerical values from

graphical presentation of results in Cho’s paper.

Table 3 thus serves to validate the sub-program for

the discretization model II.The computer program

developed for analysis of a given slip surface using

discretization model III (Ji et al. 2012) has been

validated with respect to Ji et al.’s results and this

validation is detailed at a later section (Example 2).

The computer program developed for analysis of a

given slip surface using discretization Model I (El-

Ramly et al. 2002) has also been validated with respect

to El-Ramly et al’s results. However, details of this

validation is not presented here for the sake of brevity

and to save space.

Re-Analysis of the Probabilistic Critical Slip Sur-

face Using the validated computer programs the re-

analysis of the probabilistic critical slip surface

determined for COV case 2 is now taken up to study

the effect of spatial variability for a given slip surface.

The reason for the choice of this particular surface is

based on the fact that the COV case 2 has higher

uncertainty level. During the re-analysis, the follow-

ing studies have been conducted: Study 1: Comparison

of reliability index with and without consideration of

spatial variability, Study 2: Variation in reliability

index with variation in the scale of fluctuation. As

mentioned before, in each study all the three dis-

cretization models have been used.

Study 1: Comparison of Reliability Index With and

Without Consideration of Spatial Variability For

this study, the values of scale of fluctuation in the

horizontal and the vertical direction (dx and dy) are
taken as 20 m (assumed range 10–50 m) and 2 m

(assumed range 1–5 m) respectively. Results are

Table 2 Summary of Results for Example 1 without consid-

ering spatial variability

Studies FSmin bmin

COV Case 1 COV Case 2

Cho (2007) 1.592 2.604 1.227

Present study 1.582 (1.592) 2.449 (2.602) 1.146 (1.227)

Figures in the parentheses indicate those obtained by re-

evaluating the critical slip surfaces reported by Cho (2007)

Table 3 Validation of sub-program for discretization model II

Value of

horizontal

scale of

fluctuation

(dx)

Probability of failure (pF)

Cho (2007) Present study

Isotropic

random

field

Anisotropic random field Isotropic

random

field

Anisotropic random field

dx/dy = 1.0 dx/dy = 0.6 dx/dy = 0.2 dx/dy = 1.0 dx/dy = 0.6 dx/dy = 0.2

dX = 10 7.0 9 10-3 3.2 9 10-3 1.8 9 10-3 1.2 9 10-4 6.0 9 10-3 3.0 9 10-3 1.6 9 10-3 1.8 9 10-4

dX = 15 1.7 9 10-2 1.0 9 10-2 7.5 9 10-3 1.4 9 10-3 1.7 9 10-2 1.0 9 10-2 7.1 9 10-3 1.3 9 10-3
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presented in Table 4. From Table 4 it is observed that

for a given slip surface consideration of spatial

variability increases the reliability index significantly.

Further, for the particular combination of scale of

fluctuations selected for this study, b value obtained

from discretization model III is more conservative

than that from model II. b value obtained from

discretization model I is not directly comparable with

the values from the other two models as it considers

1D spatial variability along the slip surface. However

the b value obtained using d = dx (=20 m) is

furnished in the table merely for the sake of com-

pleteness and having a rough idea about its magnitude.

Study 2: Variation in Reliability Index With Variation

in the Scale of Fluctuation This is a parametric study

in which the scale of fluctuation in the horizontal

direction has been varied within a range of 10–50 m

and that in the vertical direction from 1 to 5 m.

However, a combination of exceptionally high value

of 1000 m in both the horizontal and the vertical

direction has also been considered and it is of

academic interest only. The reliability indexes are

calculated using all the three discretization models.

The results are presented graphically in Fig. 6.

Results presented in Fig. 6 also indicate that the

observations from Study 1 (Table 4) for an arbitrarily

chosen combination of the horizontal and the vertical

scale of fluctuation are found to be valid for other

combinations also. Further, decrease in the value of

scale of fluctuation in any direction results in an

increase in the value of reliability index, and vice

versa. As expected, assumptions of very high values of

scale of fluctuations (dx = 1000; dy = 1000), results

in a value of reliability index which is the same as that

obtained without considering spatial variability. A

close examination of Fig. 6 (together with the detailed

program output) also reveals that the reliability index

is more sensitive to the scale of fluctuation in the

vertical direction (dy) as compared to that in the

horizontal direction (dx). For example, for Model III,

keeping dy constant at 2 m, if dx is increased by 100 %

(from 20 to 40 m), the b value decreases by 5 %. But,

keeping dx constant at 20 m, if dy is increased by

100 % (from 2 to 4 m), the b value decreases by

13 %.In case of the discretization model I (El-Ramly

et al. 2002), however, the scale of fluctuation (d) is
considered along the slip surface. Therefore, any value

of d in excess of the length of the slip surface

(30.025 m), there is virtually no effect of spatial

variability as the soil properties behave like a single

random variable. Therefore, as seen from Fig. 6a, the

values of reliability index considering spatial vari-

ability with d greater than approximately 30.0 m

merges with that obtained without considering spatial

variability.

5.1.3.3 Search for Probabilistic Critical Slip Surface

Considering Spatial Variability Using the

developed computer programs IV, V and VI, the

probabilistic critical slip surfaces corresponding to the

discretization models I, II and III have been

determined for the COV case 2.

For the particular case of dx = 20 m and and

dy = 2 m, the three critical slip surfaces correspond-

ing to the discretization models I, II and III are plotted

in Fig. 5 which shows that these surfaces are very

close to one another but substantially different from

the probabilistic critical slip surface determined

without considering spatial variability. Table 5 pre-

sents the values of bmin associated with these surfaces.

It is interesting to note that these values are markedly

different though the surfaces are close to one another.

A comparison between Tables 5 and 4 indicates

that the observations made from Table 4 for b values

are also valid for bmin values in Table 5. Further,

values of bmin in Table 5 are lower than the

Table 4 Comparison between values of reliability index with and without consideration of spatial variability for Example 1

Reliability index Difference (%)

Without considering spatial variability 1.146

Considering spatial variability Using discretization model Ia (d = 20 m) 1.402 22.34

Using discretization model II (dx = 20 m; dy = 2 m) 2.711 136.56

Using discretization model III (dx = 20 m; dy = 2 m) 1.992 73.82

a Not directly comparable with the values from the other two models
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corresponding values of b in Table 4 but only by a

small degree. The largest difference is nearly 3 %

corresponding to the discretization model III.

Using programs IV, V and VI, for the sake of a

parametric study, a series of other probabilistic critical

slip surfaces and the associated minimum reliability

indexes have been obtained (for the COV case 2) by

varying the values of dx within a range of 10–50 m and

dy within a range of 1–5 m. The determined critical

slip surfaces are found to lie within a narrow band

around the probabilistic slip surface shown in Fig. 3

for the particular values of dx = 20 m and dy = 2 m.

These surfaces are, however, not shown in Fig. 3 for

the sake of clarity. Figure 7 presents the results of this

Fig. 6 Results of parametric studies for re-analysed surface (Example 1). a b versus d for model I, b b versus dx for model II, c b versus
dy for model II, d b versus dx for model III, e b versus dy for model III
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parametric study. As pointed out before, a combina-

tion of exceptionally high value of 1000 m in both the

horizontal and the vertical direction has been consid-

ered and it is of academic interest only.

Results presented in Fig. 7 also indicate that the

observations from Fig. 6 for an arbitrarily chosen

combination of the horizontal and the vertical scale of

fluctuation (dx = 20 m; dy = 2 m) are found to be

valid for other combinations also. Further, decrease in

the value of scale of fluctuation in any direction results

in an increase in the value of minimum reliability

index, and vice versa. As expected, assumptions of

very high values of scale of fluctuations (dx = 1000;

dy = 1000), results in a value of minimum reliability

index which is the same as that obtained without

considering spatial variability. A close examination of

Fig. 7 also reveals that the minimum reliability index

is more sensitive to the scale of fluctuation in the

vertical direction (dy) as compared to that in the

horizontal direction (dx). For example, for Model III,

keeping dy constant at 2 m, if dx is increased by 100 %

(from 20 to 40 m), the bmin value decreases by 3 %.

But, keeping dx constant at 20 m, if dy is increased by
100 % (from 2 to 4 m), the bmin value decreases by

11 %. This observation, again, is in agreement with

those reported earlier (Ji et al. 2012).

5.2 Example 2: (Ji et al. 2012)

5.2.1 Description

Figure 8 shows an embankment underlain by soft clay

foundation, taken from Ji et al. (2012). The undrained

shear strength of the soft clay c2 is assumed to be

normally distributed random variable with a mean

value of 25 kN/m2 and a coefficient of variation equal

to 0.25. All the other strength parameters of the

problem are assumed to have deterministic values as

given in Fig. 8.

It may be pointed out that previously Ji et al. (2012)

analysed this problem assuming slip surfaces to be of

circular shape.

5.2.2 Results of Deterministic Analysis

Taking the value of cohesion of the foundation

material as 25 kPa (equal to its mean value), the

deterministic critical slip surface having minimum

factor of safety of 1.47 has been located (Fig. 8) using

the computer program-I. The number of slices is taken

as 24 for the stability analysis of this slope (as used by

Ji et al. 2012). In order to compare the results with that

of Ji et al. (2012), slip surfaces were assumed as

circular and the Spencer method (Spencer 1967) has

been used. A minimum factor of safety of 1.462 has

been reported by Ji et al. (2012) using Spencer method

which is close to that obtained in the present analysis.

5.2.3 Results of Probabilistic Analysis

As was done in case of Example 1, the results of

probabilistic analyses are presented under the follow-

ing sub-headings:

I. Determination of probabilistic critical slip

surface without considering spatial variability

II. Re-analysis of the above surface considering

spatial variability

III. Determination of probabilistic critical slip

surface considering spatial variability

5.2.3.1 Determination of Probabilistic Critical Slip

Surface Without Considering Spatial

Variability Using the computer program-II, the

probabilistic critical slip surface has been

determined using the FORM method. Figure 8

shows the probabilistic critical slip surface alongside

the deterministic critical slip surface. The two critical

Table 5 Comparison between values of minimum reliability index with and without consideration of spatial variability for example 1

Minimum reliability index Difference (%)

Without considering spatial variability 1.146

Considering spatial variability Using discretization model Ia (d = 20 m) 1.370 19.46

Using discretization model II (dx = 20 m; dy = 2 m) 2.659 131.82

Using discretization model III (dx = 20 m; dy = 2 m) 1.938 68.992

a Not directly comparable with the values from the other two models, as noted in Table 4
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slip surfaces are very similar in shape and very close to

each other. This resemblance could be attributed to the

fact that in this analysis only a single random variable

has been considered. The associated minimum

reliability index bmin equals 1.36 which is close to

the value of 1.32 reported by Ji et al. (2012).

5.2.3.2 Re-Analysis of the Above Slip Surface

Considering Spatial Variability As has been done

in case of Example-1, to investigate the effect of

consideration of spatial variability, the probabilistic

critical slip surface determined as above is re-analysed

using the discretization models I, II and III. Model II

has been validated earlier in connection with Example

1. Now for the validation of model III (used as a

subprogram in computer program VI), the critical slip

surface reported by Ji et al. (2012) has been scaled

down and re-analysed. Table 6 presents the results

Fig. 7 Results of parametric studies for critical slip surface (Example 1). a bmin versus d for model I, b bmin versus dx for model II,

c bmin versus dy for model II, d bmin versus dx for model III, e bmin versus dy for model III,
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obtained by using the Program VI, which agree well

with those available from Ji et al.’s paper. The small

disagreement could be attributed to the differences in

the LEM of slices used for computation of the factor of

safety of a slip surface. More specifically, both the

authors’ analysis and the Ji et al., analysis have used

the Spencer method. However, there is a difference in

the consideration of the interslice force function: while

in the authors’ analysis, interslice forces are assumed

to be parallel, Ji et al. considered interslice forces with

varying inclinations. Table 6 thus serves to validate

the sub-program for discretization Model III in

Program VI.

Using the validated computer programs the re-

analysis of the probabilistic critical slip surface is now

taken up to study the effect of spatial variability for a

given slip surface. As in case of Example-1, the

following studies have been conducted: Study 1:

Comparison of reliability index with and without

consideration of spatial variability, Study 2: Variation

in reliability index with variation in the scale of

fluctuation. In each study all the three discretization

models have been used.

Study 1: Comparison of Reliability Index With and

Without Consideration of Spatial Variability For

this particular study, the values of scale of fluctuation

in the horizontal and the vertical direction (dx and dy)
are again taken as 20 and 2 m respectively. Results are

presented in Table 7. From Table 7 it is observed that

for a given slip surface consideration of spatial

variability increases the reliability index significantly.

Further, for the particular combination of scale of

fluctuations selected for this study, b value obtained

from discretization model III is more conservative

than that from model II. As discussed before, b value

obtained from discretization model I is not directly

comparable with the values from the other two models

as it considers 1D spatial variability along the slip

surface. However the b value obtained using d = dx
(=20 m) is furnished in the table merely for the sake of

completeness and having a rough idea about its

magnitude.

Study 2: Variation in Reliability Index With Variation

in the Scale of Fluctuation As has been done in case

of Example-1, this is a parametric study in which the

scale of fluctuation in the horizontal direction has been

varied within a range of 10–50 m and that in the

vertical direction from 1 m to 5 m. However, a

combination of exceptionally high value of 1000 m

in both the horizontal and the vertical direction has

also been considered and it is of academic interest

only. The reliability indexes are calculated using all

the three discretization models. The results are

presented in Fig. 9.

Results presented in Fig. 9 also indicate that the

observations from Study 1 (Table 7) for an arbitrarily

chosen combination of the horizontal and the vertical

Fig. 8 Slope section and critical slip surfaces in Example 2

Table 6 Validation of sub-program for discretization model

III

Scale of fluctuation (m) Reliability index

dx dy Ji et al. (2012) Present study

20 2 2.256 2.264

1000 2 1.997 1.986

20 1000 1.711 1.698

1000 1000 1.487 1.412
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Table 7 Comparison between values of reliability index with and without consideration of spatial variability for Example 2

Reliability index Difference (%)

Without considering spatial variability 1.36

Considering spatial variability Using discretization model Ia (d = 20) 1.575 15.81

Using discretization model II (dx = 20; dy = 2) 3.109 128.60

Using discretization model III (dx = 20; dy = 2) 2.320 70.61

a Not directly comparable with the values from the other two models, as noted in Table 4

Fig. 9 Results of parametric studies for re-analysed surface (Example 2). a b versus d for model I, b b versus dx for model II, c b versus
dy for model II, d b versus dx for model III, e b versus dy for model III,
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scale of fluctuation are found to be valid for other

combinations also. Further, decrease in the value of

scale of fluctuation in any direction results in an

increase in the value of reliability index, and vice

versa. As expected, assumptions of very high values of

scale of fluctuations (dx = 1000; dy = 1000), results

in a value of reliability index which is the same as that

obtained without considering spatial variability. A

close examination of Fig. 6 also reveals that the

reliability index is more sensitive to the scale of

fluctuation in the vertical direction (dy) as compared to

that in the horizontal direction (dx). For example, for

Model III, keeping dy constant at 2 m, if dx is

increased by 100 % (from 20 to 40 m), the b value

decreases by 7 %. But, keeping dx constant at 20 m, if

dy is increased by 100 % (from 2 to 4 m), the b value

decreases by 14 %. This observation is in agreement

with those reported earlier (Ji et al. 2012).In case of the

discretization model I (El-Ramly et al. 2002), how-

ever, the scale of fluctuation (d) is considered along

the slip surface. Therefore, any value of d in excess of
the length of the slip surface within the soft clay layer

(26.5 m out of total length 31.92 m), there is virtually

no effect of spatial variability as the soil properties

behave like a single random variable. Therefore, the

values of reliability index considering spatial vari-

ability with d greater than approximately 30.0 m

merges with that obtained without considering spatial

variability.

5.2.3.3 Search for Probabilistic Critical Slip Surface

Considering Spatial Variability Using the devel-

oped computer programs IV, V and VI, the

probabilistic critical slip surfaces corresponding to

the discretization models I, II and III have been

determined. For the particular case of dx = 20 m and

dy = 2 m, the three critical slip surfaces corresponding

to the discretization models I, II and III are plotted in

Fig. 8 which shows that these surfaces are very close to

one another but substantially different from the

probabilistic critical slip surface determined without

considering spatial variability. Table 8 presents the

values of bmin associated with these surfaces. It is

interesting to note that these values are markedly

different though the surfaces are close to one another.

A comparison between Tables 8 and 7 indicates

that the observations made from Table 7 for b values

are also valid for bmin values in Table 8. Further,

values of bmin in Table 8 are lower than the corre-

sponding values of b in Table 7 but only by a small

degree. The largest difference is nearly 5 % corre-

sponding to the discretization model I.

Using programs IV, V and VI, for the sake of a

parametric study, a series of other probabilistic critical

slip surfaces and the associated minimum reliability

indexes have been obtained by varying the values of dx
within a range of 10–50 m and dy within a range of

1–5 m. The determined critical slip surfaces are found

to lie within a narrow band around the probabilistic

slip surface shown in Fig. 8 for the particular values of

dx = 20 m and dy = 2 m. These surfaces are, how-

ever, not shown in Fig. 8 for the sake of clarity of the

figure. Figure 10 presents the results of this parametric

study. As pointed out before, a combination of

exceptionally high value of 1000 m in both the

horizontal and the vertical direction has been consid-

ered and it is of academic interest only.

Results presented in Fig. 10 also indicate that the

observations from Table 8 for an arbitrarily chosen

combination of the horizontal and the vertical scale of

fluctuation are found to be valid for other combina-

tions also. Further, decrease in the value of scale of

fluctuation in any direction results in an increase in the

value of minimum reliability index, and vice versa. As

expected, assumptions of very high values of scale of

fluctuations (dx = 1000; dy = 1000), results in a

Table 8 Comparison between values of minimum reliability index with and without consideration of spatial variability for example 2

Minimum reliability index Difference (%)

Without considering spatial variability 1.36

Considering spatial variability Using discretization model Ia (d = 20) 1.502 10.43

Using discretization model II (dx = 20; dy = 2) 3.021 122.15

Using discretization model III (dx = 20; dy = 2) 2.264 66.46

a Not directly comparable with the values from the other two models, as noted in Table 4
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value of minimum reliability index which is the same

as that obtained without considering spatial variabil-

ity. A close examination of Fig. 9 also reveals that the

minimum reliability index is more sensitive to the

scale of fluctuation in the vertical direction (dy) as

compared to that in the horizontal direction (dx). For

example, for Model III, keeping dy constant at 2 m, if

dx is increased by 100 % (from 20 to 40 m), the bmin

value decreases by 5 %. But, keeping dx constant at

20 m, if dy is increased by 100 % (from 2 to 4 m), the

bmin value decreases by 12 %. This observation is in

agreement with those reported earlier (Ji et al. 2012).

Fig. 10 Results of Parametric studies for critical slip surface (Example 2). a bmin versus d for model I, b bmin versus dx for model II,

c bmin versus dy for model II, d bmin versus dx for model III, e bmin versus dy for model III
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6 Discretization Models: Computational

Advantages and Disadvantages

Based on the experience gained during this study in

respect of using the three discretization models, the

following computational advantages and disadvan-

tages can be enumerated.

(1) An advantage with the slicewise discretization

model proposed by Cho (2007) (Model II) as

well as by Ji et al. (2012) (Model III) is that the

discretization is the same as used for the

conventional limit equilibrium analysis using

method of slices. On the other hand, as per the

El-Ramly’s Model (Model I), based on the scale

of fluctuation and segmental length within each

layer, the conventional slicewise discretization

has to be modified.

(2) In both the models proposed by Cho (2007) and

by Ji et al. (2012), the size of the correlation

matrix and the number of random variables

essentially depend on the total number of slices.

Before the search process of the reliability

analysis, fixing the number of random variables

as well as the size of the correlation matrix may

not be the ideal choice. Therefore, it is required

to carry out a sensitivity analysis to study the

influence of the number of slices on the

reliability index, b. [For example, in the case

of example problem 2, Ji et al. (2012) studied

the influence of the number of slices and found

out the optimum number of slices as 24 and for

the case of example problem 1, though there is

no explicit mention in the paper, it is believed

that the 12 number of slices used in the analysis

was arrived at based on such a sensitivity

analysis.] On the other hand, as per the model

proposed by El-Ramly et al. (2002), the number

of random variables as well as the size of the

correlation matrix need not be fixed initially; it

can be varied depending on the locations of the

trial intermediate slip surfaces, and hence, no

sensitivity analysis is necessary. Ji et al. (2012),

however, proposed another model known as the

method of interpolated autocorrelations which

is free from this shortcoming.

(3) In the model II (Cho 2007) or model III (Ji et al.

2012), in cases of layered slopes, by assuming

slice to slice correlation, inter-layer correlation

of soil properties are implicitly considered

which may not really exist. This does not arise

in model I proposed by El-Ramly et al. (2002).

(4) Using the modeling proposed by El-Ramly et al.

(2002), unlike Cho’s model and Ji et al.’s

model, the information on the horizontal and the

vertical scales of fluctuation cannot be taken

into account directly.

(5) In a layered slope, if the values of the scale of

the fluctuation are different from layer to layer,

Cho (2007)’s model and Ji et al. (2012)’s model

cannot be used. However, the model proposed

by El-Ramly et al. (2002) can automatically

handle this situation.

7 Conclusions

Based on the studies undertaken in this paper, the

following concluding remarks can be made:

(1) In slope reliability analysis, with the exception

of Ji et al. (2012), published works on this topic

have adopted an indirect approach to take

spatial variability of soil properties into

account. In this approach, initially the proba-

bilistic critical slip surface is determined with-

out considering spatial variability and then the

reliability index associated with this predeter-

mined slip surface is modified to consider

spatial variability. In contrast, the direct

approach (e.g., as adopted by Ji et al. 2012), is

to directly search out the probabilistic critical

slip surface and the associated minimum relia-

bility index (bmin) by minimizing the reliability

index computed considering spatial variability.

(2) The studies undertaken in this paper have

revealed that the two approaches might yield

reliability results which are significantly differ-

ent. Specifically, the probabilistic critical slip

surfaces obtained from the direct approach

(surface searched considering spatial variabil-

ity) are found to be widely different from those

from indirect approach (surface searched with-

out considering spatial variability). Further,

values of the minimum reliability indices

(bmin) associated with the probabilistic critical

slip surfaces obtained from the direct approach

are found to be lower than those from the
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indirect approach. In other words, adoption of

indirect approach might lead to an overestima-

tion in the bmin value (underestimation in the

probability of failure, pF of a slope). For the two

example problems this overestimation in the

bmin value is found to be rather small (\5 %). It

is also noteworthy that while using the direct

approach, the different discretization models

yield critical slip surfaces which are rather close

to one another. Both the above observations

could be attributed to the small number of

random variables as well as to the simple

geometry of the slopes and layer boundaries in

the example problems, and that no pore water

pressures are considered. However, in the case

of complex slope situations such as zoned dams

and levees with complex layering and pore

pressure conditions, the underestimation in the

probability of failure are likely to be substantial.

Such types of research are in progress and

expected to be reported in the near future.

(3) Irrespective of whether the direct or the indirect

approach is adopted, it is known that consider-

ation of spatial variability results in substantial

increase in the reliability index (or a decrease in

the probability of failure). However, the amount

of increase depends not only on the magnitude

of the scale of fluctuation in the horizontal

direction (dx) and in the vertical direction (dy) in
a general 2D spatial variability situation, but

also on the spatial variability discretization

model used in the analysis.

(4) Parametric studies conducted in this paper for

the two layered slope examples reveal that:

(i) Between the two 2D discretization models,

Ji et al.’s Model (Model III) is hugely more

conservative than Cho’s model (Model II).

El Ramly et al.’s model (Model I) being a 1D

model cannot be directly compared with the

other two models; however, for this model if

the value of the scale of fluctuation is taken

equal to the value of dx, it appears to be the

most conservative of the three models.

(ii) Effect of variation of the vertical scale of

fluctuation dy on the reliability results is much

more than that of the horizontal scale of

fluctuation dx. This observation is in agreement
with those reported earlier (Ji et al. 2012).

(5) For the two slope example problems considered

here, observations from studies on different

spatial variability discretization models as also

the magnitudes of the scale of fluctuation in the

horizontal and the vertical directions based on

the indirect approach of analysis are found to be

similar to that based on the direct approach of

analysis.

(6) There are computational advantages and disad-

vantages associated with each model; but in

applying the Cho’s model (Model II) or the Ji

et al.’s model (Model III) to case of layered

slopes, by assuming slice to slice correlation,

inter-layer correlation of soil properties are

implicitly considered which may not really

exist. This deficiency is not there in the El-

Ramly et al.’s model (Model I). Further, in a

layered slope, if the values of the scale of the

fluctuation are different from layer to layer, Cho

(2007)’s model and Ji et al. (2012)’s model

cannot be used. However, the model proposed

by El-Ramly et al. (2002) can easily handle this

situation. In view of the above, it appears that it

will be computationally handy if it is possible to

extend the El-Ramly et al.’s model from a 1D to

a 2D spatial variability model.
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