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Abstract The aim of present study is prediction of

blast-induced flyrock distance in opencast limestone

mines using artificial intelligence techniques such as

artificial neural network (ANN) and adaptive neuro

fuzzy inference system (ANFIS). Blast design and

geotechnical variables such as linear charge concen-

tration, burden, stemming length, specific charge,

unconfined compressive strength, and rock quality

designation have been selected as independent vari-

ables and flyrock distance has been used as dependent

variable. Blasts required for the study purpose have

been conducted in four limestone mines in India. Out

of one hundred and twenty-five (125) blasts, dataset of

one hundred blasts have been used for training, testing

and validation of the ANN and ANFIS based predic-

tion model. Twenty-five (25) data have been used for

evaluation of the trained ANN and ANFIS models. In

order to know the relationship among the independent

and dependent variables, multi-variable regression

analysis (MVRA) has also been performed. The

performance indices such as root mean square error

(RMSE), mean absolute error (MAE) and coefficient

of determination (R2) have been evaluated for ANN,

ANFIS and MVRA. RMSE as well as MAE have been

found lower and R2 has been found higher in case of

ANFIS in comparison of ANN and MVRA. ANFIS

has been found a superior predictive technique in

comparison to ANN and MVRA. Sensitivity analysis

has also been performed using ANFIS to assess the

impact of independent variables on flyrock distance.

Keywords Artificial neural network � Adaptive
neuro fuzzy inference system � Blasting � Opencast
mining � Flyrock distance

1 Introduction

In surface mining, rock blasting results the fragmen-

tation of overburden and exposure of ore benches

(Bajpayee et al. 2004). In blasting, whenever an

explosive charge detonates, massive amount of energy

releases in the form of gas, heat, pressure and stress

waves. This explosive energy doesn’t fully convert

into mechanical energy to break the rock mass. Only a

fraction of 20–30 % of this explosive energy is used

for the desired rock breakage and the rest of it goes

waste in untoward generation of ground vibration,

flyrock, noise and air blast (Wiss and Linehan 1978;

Hagan 1979; Singh et al. 1994; Bhandari 1997;

Bajpayee et al. 2004; Raina et al. 2011; Trivedi et al.
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2014). It has also been considered that flyrock is

generated as explosive energy takes the least resistance

path to travel (Little and Blair 2009; Trivedi et al.

2014). These unplanned blasting events cause threat to

the safety of people and constructions of surrounding

villages (Persson et al. 1984; Raina et al. 2011).

Major reasons which generate flyrock are insuffi-

cient burden, over charging of the blast holes,

inadequate stemming, anomaly in geology of the rock

structure, inaccuracy in design of blasthole pattern,

faulty drilling, backbreak, and carelessness (Persson

et al. 1984; Fletcher and D’Andrea 1986; Workman

and Calder 1994; Adhikari 1999; Rehak et al. 2001).

As per Bajpayee et al. (2000, 2004) imbalance in the

geo-mechanical strength of the surrounding rockmass

also leads explosive energy to the path of least

resistance, which propels the flyrock beyond the

protected blast area. Richards and Moore (2004) have

identified cratering, rifling and face burst as the basic

mechanisms of its occurrence in bench blasting. This

unwanted propelling of fragments is one of the major

causes of fatal accidents in Indian open cast mines

(Rehak et al. 2001; Bajpayee et al. 2004). As per

Verakis and Lobb (2003), flyrock and lack of blast area

security accounted for 68 % of the injuries in the

opencast mines. According to Kecojevic and Radom-

sky (2005) inappropriate blasting shelter, failure to

evacuate blast area from human and inadequate

guarding of the access roads has caused 45.64 % of

the fatal and non-fatal accidents in surface coal mining

in last 3 decades. Focusing on Indian opencast mines,

Figs. 1 and 2 clearly illustrate the number of accidents

and deaths that had taken place in Indian mines. As

shown in Fig. 3, these cumulative accidents have been

classified further into cause wise scenarios. As eluci-

dated in Fig. 3, different reasons of accidents in mines

are flyrock projectiles, misfires, blown out shots,

delayed ignitions etc. Among these accidents, flyrock

holds 31.29 % share of deaths and injuries in Indian

mines during 2008–2013 (CSIR-CIMFR 2014).

To solve this threatening problem of flyrock several

empirical models have been proposed in the past by

Lundborg (1974), Roth (1979), Workman and Calder

(1994) and Richards and Moore (2004) but their

biggest shortcoming is that they don’t include all

variables that might affect the flyrock launch velocity

or throw. That’s why these models have not been

proved reliable enough to completely eliminate this

problem from the opencast mines.

Now talking about more sophisticated and advanced

artificial intelligence (AI) tools like fuzzy logic, devel-

oped by Zadeh (1965), exhibit its’ importance while

making decisions with uncertainty that elucidate human

reasoning and insight in developing mathematical

schema. Due to its stochastic characteristic it has got

wide application in information technology, decision

making, data analysis and prediction models generation

based on previous trend (Nauck and Kruse 1999; Pena-

Reyes and Siper 1999). Adaptive neuro fuzzy inference

system (ANFIS) is a sugeno fuzzy model framed in

adaptive systems to ease learning and adaptation (Iphar

et al. 2008). It can also be looked as assimilation of

neural network and fuzzy logic for better and relevant

output. It is a fuzzy technique that uses a given input–

Fig. 1 Number of fatal and

serious accidents due to

blasting in Indian mines

(CSIR-CIMFR 2014)

876 Geotech Geol Eng (2015) 33:875–891

123



output dataset that creates membership functions and

describes system behaviour. This method is also

popular for natural grouping of given dataset while

dealing large number of dataset for concise represen-

tation (Bezdek 1974; Dunn 1974; Bezdek et al. 1987).

For example in subtractive clustering method, the

dataset containing large numbers of data can be

classified in clusters and respective centres using one

pass algorithm (Chiu 1994).

From the past decades till now, AI techniques have

been successfully applied in solving complex mining

problems. Mostafa (2011) predicted ground and air

vibrations using fuzzy logic.Monjezi et al. (2010a, b) and

Esmaeili et al. (2014) predicted back break in open pit

blasting using fuzzy set theory. Azimi et al. (2010)

predicted blastability of rock masses using fuzzy sets.

Alipour and Ashtiani (2011) predicted maximum charge

per delay in surface mining using fuzzy modeling. This

technique has also been widely applied in predicting

uniaxial compressive strength and the modulus of

elasticity (Grima and Babuska 1999; Gokceoglu and

Zorlu2004;Sobhani et al. 2010;Yesiloglu-Gultekin et al.

2012; Singh et al. 2013), performance prediction of a

rock-cutting trencher (Den Hartog et al. 1997), perfor-

mance of tunnel boring machine (Acaroglu et al. 2008),

evaluating shear strength of the soil samples (Chuang

1995), roof categories in longwall mining (Jiang et al.

1997). Cabalar et al. (2012) have also discussed some

geotechnical applications of ANFIS technique. Another

AI technique i.e. artificial neural network (ANN)has also

been used in predicting flyrock distance (Monjezi et al.

2010a, b; Trivedi et al. 2014). It has been implemented

successfully in prediction of blasting problems (Khan-

delwal and Monjezi 2013; Remennikov and Mendis

2006; Singh and Singh 2005; Tawadrous and Katsabanis

2005; Trivedi et al. 2014).

In present paper, attempts have been made to

predict the blast-induced flyrock distance using ad-

vanced AI techniques i.e. ANFIS and ANN. Blast

design and geotechnical variables such as linear

charge concentration, burden, stemming length, speci-

fic charge, unconfined compressive strength (UCS)

and rock quality designation (RQD) have been select-

ed as independent variables and flyrock distance as

dependent variable. Out of one hundred and twenty-

five (125) blasts, dataset of one hundred blasts have

been used for training, testing and validation of the

ANN and ANFIS models while dataset of twenty-five

(25) blasts have been used for model evaluation.

Multi-variable regression analysis (MVRA) has also

been performed to know the relationship among the

independent and dependent variables. The accuracy of

these models have been compared quantitatively

Fig. 2 Number of deaths

and injuries due to blasting

in Indian mines (CSIR-

CIMFR 2014)

Fig. 3 Cause wise deaths and injuries due to blasting from 2008

to 2013 in surface mines in India (CSIR-CIMFR 2014)

Geotech Geol Eng (2015) 33:875–891 877

123



based on performance indices such as root mean

square error (RMSE), mean absolute error (MAE) and

coefficient of determination (R2). Sensitivity analysis

has also been performed using ANFIS method to

assess the impact of each of the independent variables

on flyrock distance.

2 Materials and Methods

2.1 Field Study at Opencast Limestone Mines

Blasting sites location have been comprehensively

described in Table 1. As shown in Fig. 4, mine-1 is

located at Kymore village, district Katni, Madhya

Pradesh, mine-2 is near to the Beawar district Ajmer,

Rajasthan, mine 3 is located near to the Shanbhupura

village, district Chittorgarh, Rajasthan and mine 4 is

located at the Mohapura Jodhapura near Kotputli

Town, district Jaipur, Rajasthan.

iscussing about the similarity between chosen case

study sites, all 4 mines are limestone mines where

mining is being done by fully mechanized methods.

The working pit has been developed with benches of

9.0–10 m height. Haul roads have been developed to

approach the working faces. Shovel-dumper combina-

tion is the main workhorse of limestone production in

the mines. The limestone is transported to in-pit

crushers where it is crushed up to (-) 90 mm size.

2.2 Methodology Used in Data Generation

The problem of blast-induced flyrock is prominent at

case study sites as these mines are surrounded by the

villages and their mine management is quite pro-active

in controlling blasting operations with due care and

safety. Below Table 2 is showing all those parameters

that have been collected from the field during blasting

with their standard symbols and units.

Rock samples of every blasting operation, collected

from the mines and further tested in CSIR-CIMFR

Dhanbad, have been used to estimate the blast design

variables like linear charge concentration, burden,

spacing, stemming, average depth of blast holes,

blasthole diameter, charge per hole, specific charge

and flyrock distance from the blasting face. But due to

the floating nature of these variable values, mean value

has been considered appropriate for the analysis.

Geotechnical variables such as volumetric joint count,

joint spacing, dip and strike of major joint set and joint

condition have been generated at face before blasting

operation took place. Whereas variable like RQD has

been estimated using volumetric joint count (Jv)

method (Raina et al. 2011) and UCS through testing

of 1 inch cube rock sample in the laboratory of CSIR-

CIMFR, Dhanbad, India. Discussing about estimation

of flyrock distance, only the fragments having sizemore

than 10 cmhave been selected to identify themaximum

throw of blast-induced flyrock. For this purpose, hand-

held global positioning system (GPS) was used in order

to precisely measure the distance of flyrock.

Rest of the parameters like flyrock launch velocity

and launch angle have been calculated by analyzing the

videos of blasting events using ‘ProAnalyst 1.5.6.7’

software of XCITEX, USA as shown in Fig. 5. High

resolution video camera of 24 g frames per second has

been used to take the videos from safe distance. For

performing this analysis, the calibration of the instru-

ment was made using three red flags separated horizon-

tally and vertically to known distance. For the

verification of calibrated instrument, other known

variables like bench height, cut length were also being

calculated and compared. Hence, calculatedmean value

of all blast design and geotechnical variables through

above mentioned methods have been shown in Table 3.

Table 1 Brief description of the study sites

Study sites Latitudes Longitudes Annual production General strike General true dip

Mine 1 N23�480 to N24�80 E80�290 to E80�570 6 million tons NE–SW 10�–20�, NW–W

Mine 2 N26�010 to N26�50 E74�220 to E740 260 2.0 million tons N30�E 45�–60�, W–NW

Mine 3 N24�430 to 24�450 E74� 350 and 74� 370 6.6 million tons N�–S� 0�–20�, W or E, folding

Mine 4 N27�390 to N27�420 E76�060 to E76�090 6 million tons NE–SW 38Q–80Q E
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2.3 ANN Approach to Predict Blast-Induced

Flyrock

Back propagation neural network (BPNN) method has

been attempted to predict the blast induced flyrock

distance in ANN technique. It primarily constitutes

three layers i.e. independent layer, hidden layer and

dependent layer. In this technique, neurons are the

basic processing unit that actually computes the results

by connecting the different layers of data with

appropriate weights (w) and biases (b). Output of

neurons in independent layer serve as input for hidden

1

3

4

2

1. Mine 1
2. Mine 2
3. Mine 3
4. Mine 4

Fig. 4 Index map showing location of limestone mines
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layer and output of hidden layer serve as an input for

output layer that finally gives desired output. That’s

why the process of computing output is a linear

process discretize into two steps. In present case, 125

data has been classified such that 100 data have been

used to train, test and validate the BPNN model and

separate 25 data have been used for evaluation of

flyrock distance. Out of 100 data used for developing a

robust ANN structure, proportion of training, testing

and validating data is taken as 80, 10 and 10 %

respectively. During training of model, means gener-

ating the BPNN model using training data, first neural

network is established and then during continuous

training of the BPNN model, results are attuned

according to any change detected in the model.

To attain the best possible ANN predictive model

iterations have been made based on different values of

number of hidden layers, number of neurons and

transfer function, as shown in Table 4. According to

Table 4, BPNN model with log sigmoid transfer

function, 2 hidden layers and 10 neurons in each

hidden layer has been identified as the best possible

predictive combination with least RMSE and MAE

value and better R2. The model structure of the best

possible predictive model has been shown in Fig. 6

which reflects the way through which input and output

data are connected through hidden layers. Figure 6

describes the mechanism of calculating output values

based on independent variables that have different

weights and biases, being determined by neurons in

hidden layers. Figure 7 stands for trend of RMSE

value of training, testing and validation data with

respect to each other for number of iterations. In this

figure, the small circle signifies that particular iteration

where the difference in the output of training and

validation data was minimum. Figure 8 is highlighting

the regression analysis of 80 training, 10 testing and 10

validation data whose respective values are clearly

been highlighted in the figure itself. It is being

assumed that better the regression more is the accuracy

of the predictive model.

Fig. 5 Motion analysis of blast-induced flyrock projectile using ‘ProAnalyst’ software

Table 2 Symbols used for blast design and geotechnical data

Parameters used Unit Symbol

Charge per hole kg Q

Linear charge concentration kg/m ql

Depth of holes m lb

Burden m B

Spacing m Sb

Stemming m ls

Specific charge kg/ton q

Blast hole diameter mm d

Unconfined compressive strength MPa o0c

Rock quality designation % RQD

Maximum distance or throw of flyrock m Rf

Launching velocity m/s v0

Launching angle degree ho
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2.4 ANFIS Approach to Predict Blast-Induced

Flyrock

ANFIS maps independent and associated variables

through membership function to generate required

output through output membership functions as shown

in the Fig. 9. Figure 9 is demonstrating the structure of

the generated ANFIS model and the way in which

input and output functions are linked through mem-

bership function layers. According to the structure,

there are five layers in which computation of ANFIS

model takes place i.e. input layer, input membership

Table 3 Blast design and geotechnical variables at limestone mines

Blast no. Study site d Q qj lb B Sb ls q o0c RQD v0 ho Rf

b1 Mine-1 115 49.37 8.7 9 3 5.5 3.2 0.13 63 63 26 67 45

b2 Mine-1 115 47.21 8.5 9.1 3.4 6 3.6 0.11 66 69 23 69 30

b3 Mine-1 115 19.51 8.5 5.7 3.3 4.5 3.5 0.1 67 70 23 70 29

b4 Mine-1n 115 16.68 8.6 5 3 4.5 3.4 0.1 65 66 22 73 33

b5 Mine-1 115 16.62 8.5 5 3.1 4.6 3.5 0.09 64 62 22 75 30

b6 Mine-2 165 84.15 16.7 8.4 4 6 2.8 0.17 60 58 27 64 54

b7 Mine-2 165 82.31 16.5 9.3 4.1 6.2 3.3 0.14 63 62 25 68 42

b8 Mine-2 165 74.97 16.5 9.5 4.2 6 3.4 0.13 66 65 25 67 40

b9 Mine-2 165 101.6 16.6 10 4 6.3 3.2 0.16 60 62 28 69 48

b10 Mine-2 165 89.00 16.5 9.5 4.2 6.1 3.3 0.14 65 64 28 71 43

b11 Mine-2 165 81.94 16.4 9.3 4.5 6.1 3.6 0.13 64 66 24 65 35

b12 Mine-2 165 97.00 16.5 9.8 4.2 6.3 3.3 0.15 63 65 26 65 45

b13 Mine-2 165 96.33 16.6 9.7 4.1 6 3.2 0.16 61 60 28 68 48

b14 Mine-2 165 91.94 16.5 9.5 4.3 6.4 3.3 0.14 64 62 28 70 43

b15 Mine-2 165 89.32 16.7 9.1 4 6 3 0.16 60 58 27 65 51

b16 Mine-3 115 56.14 8.5 10.3 4.5 6.5 3.7 0.07 63 67 21 71 24

b17 Mine-3 115 32.75 8.5 7 4.5 6.3 3.5 0.07 63 67 24 77 22

b18 Mine-3 115 51.81 8.6 9.3 4.1 6.3 3.2 0.09 57 63 24 70 31

b19 Mine-3 115 53 8.6 9.7 4.1 6.4 3.2 0.09 59 62 24 70 31

b20 Mine-3 115 31 8.5 6.9 4.2 5.8 3.3 0.08 60 65 27 77 27

b21 Mine-4 115 50.25 8.9 9.5 3 4.1 3.2 0.17 62 63 26 65 47

b22 Mine-4 115 55.35 8.8 10 3.2 4.6 3.3 0.15 64 67 26 70 39

b23 Mine-4 115 52.94 9 10 3 4.1 3 0.17 62 64 27 65 50

b24 Mine-4 115 50.27 8.9 9.6 3.1 4 3.2 0.17 63 67 26 67 44

b25 Mine-4 115 50.35 8.8 10 3.2 4.2 3.4 0.15 64 67 24 67 38

Table 4 Performance

indices for various

combinations of BPNN

Bold values indicate best

possible predictive model

for ANN techniques

S. no. Transfer function ANN structure RMSE (m) MAE (m) R2 (%)

1 Logsig 6-8-1 3.53 3.25 82.5

2 Logsig 6-10-1 3.07 2.89 88.6

3 Pureline 6-10-1 2.80 2.67 77.4

4 Tansig 6-10-1 3.27 2.78 85.5

5 Logsig 6-8-8-1 2.67 2.03 89.8

6 Logsig 6-10-10-1 2.14 1.96 95

7 Tansig 6-10-10-1 2.59 2.11 91.1

8 Logsig 6-12-12-1 2.73 2.21 90.2
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function layer, rule layer, output membership function

layer and output layer. As elucidated in the Fig. 9, six

input variables are used with nine rules to generate

required ANFIS model.

Before performing the ANFIS operation on the

dataset, 125 blasting data have been classified into

training and checking dataset such that range of the

input and output data in training dataset encompass the

range of input and output data of checking dataset.

This is performed because only then selected samples

for checking purpose can represent complete popula-

tion and generate generalized ANFIS flyrock model to

predict the precise flyrock distance generated in the

mines. After classifying the dataset into two classes

named training and checking dataset in the above

presented manner, model generation process began. In

present case, 125 data are divided into 100 training and

25 checking data. Training dataset is used to generate

the required ANFIS model while the checking dataset

is used as an input to test the validity of the generated

ANFIS model and to calculate the error in flyrock

distance prediction.

As highlighted in Fig. 10 after loading training

dataset, ANFIS model is generated using subtractive

clustering method. While using this method, value

of range of influence (ROI) and squash factor (SF)

needs to be defined as these values affect the

number of rules required for generating model and

that ultimately affects the RMSE of the model.

Number of iterations has been made in selecting the

appropriate values of these variables to get the best

possible predictive ANFIS model with least com-

plicacy in terms of rules and RMSE value, as

defined in Table 5. Table 5 is comprehensively

highlighting the changes made in the value of ROI

and SF to get the best possible model. The model so

generated needs to be tuned further to reduce the

error using hybrid algorithm. During tuning process,

hybrid algorithm i.e. combination of least square

and back propagation technique, tunes the ANFIS

model in forward and backward pass by minimizing

the errors involved in the calculation of weights of

individual independent variables to get final output

value. The graph drawn between the epochs and

Fig. 6 Structure of back propagation neural network in the case under study

Fig. 7 Performance of

neural network during

training
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error in Fig. 10 also indicate the limit up to which

tuning can be performed and that is defined by the

overfitting property. Over-fitting is identified by the

unusual increase in the error for continuous number

of iterations.

The final stage of this model is its validation using

checking dataset. In Fig. 11, the plot is depicting the

graphical difference between the value of the flyrock

distance generated by the ANFIS model and the actual

value collected in the field. Red* stands for the ANFIS

output of the model while blue ? stands for the value

of the flyrock distance observed in the mine and

provided by the user to the model. The numerical

value of the error is root mean square error (RMSE)

i.e. 1.17 m that implies the degree of precision of the

ANFIS flyrock model.

Fig. 8 Regression plots of ANN during training, testing and validation
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2.5 Prediction of Flyrock by Multiple Regression

The relation between the variables, independent or

dependent, can be calculated by using multi variable

regression analysis (MVRA), which performs least

squares fit, to solve the data set. Regression matrix

solves the simultaneous equations thus created.

MVRA has been performed by the same dataset and

the same independent variables which were used in

ANN and ANFIS techniques. The equation for

prediction of flyrock by MVRA is as follows

Rfc ¼ 105:1 ql0:51 q0:14

B0:93 ls0:64 o0c0:75 RQD0:93

3 Results and Discussion

3.1 Performance of ANN and ANFIS

To compare the performance of this technique, Figs. 12,

13 and 14 have been used in which graphs are drawn

between observed and predicted flyrock distance value

by ANN, ANFIS and MVRA model respectively.

Figure 15 is demonstrating the blast wise comparison

in observed and predicted values. These models have

also been compared quantitatively using performance

indices like mean absolute error (MAE), root mean

square error (RMSE) and coefficient of determination

(R2) as summarized in Table 6. According to Table 6,

high value of R2 reflects excellent correlation between

observed and predicted values of flyrock distance by

ANN and ANFIS model. High value of R2 i.e. 0.95 in

case of ANN and 0.98 in case of ANFIS indicates that

these predictive models can be successfully applied in

solving complex flyrock distance problems of opencast

mines. It is also evident from Table 6 that ANFIS is

better than ANN andMVRAmodel as it has least value

of errors namely RMSE andMAE. Thus on the basis of

present analysis ANFIS seems to be a better predictive

model in comparison of ANN and MVRA.

3.2 Sensitivity Analysis in ANFIS

Sensitivity analysis is used to identify the impact of an

individual independent variable on flyrock distance

Fig. 9 Structure of the ANFIS flyrock model
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keeping all other independent variables constant. In

present study it is performed for independent variables

namely linear charge concentration, burden, stemming

length, specific charge, UCS, RQD using ANFIS-Edit

tool box of Matlab software. As blasting data are

collected for two different blasthole diameters i.e. 115

and165 mm, separate sensitivity analysis has beenmade

for two different blasthole diameters. The results of

sensitivity analysis of independent variables are depicted

in Figs. 16, 17, 18, 19, 20 and 21 and enlisted in Table 7.

While performing sensitivity analysis of an inde-

pendent variable, all other independent variables are

set at its mean values as specified in Table 3. Value of

the gradient of the graph drawn between independent

variable and observed flyrock distance has been taken

as the evaluating parameter to determine the impact of

unit change in independent variable on flyrock

distance value keeping all other constant for two

different blasthole diameters. According to the ob-

tained results, linear charge concentration and specific

charge show positive correlation with the flyrock

distance for both blasthole diameter cases while

variables like burden, stemming, UCS and RQD have

negative correlation with the flyrock distance. Table 7

Fig. 10 Generated ANFIS model using hybrid algorithm

Table 5 Performance

indices for various

combinations of ANFIS

Bold values indicate best

possible predictive model

for ANFIS techniques

S. no Range of influence Squash factor RMSE (m) MAE (m) R2 (%)

1 0.5 1.25 3.35 3.01 84

2 0.5 1.50 2.41 1.98 95

3 0.43 1.14 3.11 2.78 89

4 0.39 1.45 2.05 1.63 97

5 0.32 1.43 1.43 1.18 98

6 0.32 1.25 2.89 2.43 91

7 0.3 1.25 1.17 1.03 98

8 0.25 1.75 1.67 1.29 95

Geotech Geol Eng (2015) 33:875–891 885

123



summarizes the degree of change in flyrock distance

with unit change in value of independent variable. For

example, for 115 mm blasthole diameter if linear

charge concentration is changed by 0.1 kg/m then the

flyrock distance shall change by 1.54 m in same

manner.

Fig. 11 Validation of the generated ANFIS model using checking dataset

Fig. 12 Relation between

flyrock distance predicted

by ANN and observed

values
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4 Conclusion

With the performed study, ANFIS has been found as a

superior predictive tool in comparison to ANN and

MVRA in case of complex flyrock distance prediction

problems of opencast mines. Values of RMSE and

MAE are lowest in case of ANFIS in comparison to

ANN and MVRA and excellent correlation has also

been noted between observed and predicted values by

ANN and ANFIS model. Thus, ANFIS model can

successfully eliminate the complexity in designing

safety zone for flyrock hazards in opencast mines.

Results of the sensitivity analysis are also significant

as they not only identify the potential parameters that

Fig. 13 Relation between

flyrock distance predicted

by ANFIS and observed

values

Fig. 14 Relation between

flyrock distance predicted

by MVRA and observed

values

Fig. 15 Comparison between flyrock distance observed and

predicted by ANN, ANFIS and MVRA

Table 6 Comparison of performance indices of ANN, ANFIS

and MVRA

S. no Performance index ANN ANFIS MVRA

1 MAE 1.96 m 1.03 m 3.71 m

2 RMSE 2.14 m 1.17 m 4.52 m

3 R2 0.95 0.98 0.72
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affect flyrock generation but also give quantitative

idea about the degree of impact of individual inde-

pendent variables on the flyrock distance. It will also

help in making change in the values of these variables

while using this predictive model so that flyrock

distance can be controlled effectively.

Fig. 16 Effect of linear

charge concentration on

maximum throw of flyrock

Fig. 17 Effect of burden on

maximum throw of flyrock

Fig. 18 Effect of stemming

length on maximum throw

of flyrock

888 Geotech Geol Eng (2015) 33:875–891

123



Fig. 19 Effect of specific charge on maximum throw of flyrock

Fig. 20 Effect of unconfined compressive strength on maximum throw of flyrock

Fig. 21 Effect of RQD on

maximum throw of flyrock
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