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Abstract Seismic active soil thrust, soil pressure

distribution and overturning moment are obtained in

closed form using a new pseudo-dynamic approach

based on standing shear and primary waves propagat-

ing on a visco-elastic backfill overlying rigid bedrock

subjected to both harmonic horizontal and vertical

acceleration. Seismic waves respect the zero stress

boundary condition at the soil surface, backfill is

modeled as a Kelvin–Voigt medium and a planar

failure surface is assumed in the analysis. Effects of a

wide range of parameters such as amplitude of base

accelerations, soil shear resistance angle, soil wall

friction angle, damping ratio are discussed. Results of

the parametric study indicate that amplitude of the

horizontal base acceleration and soil shear resistance

angle are the factors most influencing active pressure

distribution whereas the presence of the vertical

acceleration always results in a quite small increase

in seismic active thrust. Damping ratio is important

mainly close to the fundamental frequency of shear

wave where seismic active thrust is maximum. Unlike

the original pseudo-dynamic approach the effect of a

different frequency for S-wave and P-wave is consid-

ered in the analysis. Seismic active thrust is found to

increase when the frequency of P-wave is greater than

that of S-wave. The results obtained by the proposed

approach are found to be in agreement with previous

studies, provided that the seismic input is adapted to

include amplification effects.

Keywords Retaining walls � Pseudo-dynamic

analysis � Active earth pressure � Earthquakes

List of symbols

ah(z,t), av (z,t) Horizontal and vertical

acceleration in the backfill at

depth z and time t

ah0, av0 Amplitude of horizontal and

vertical acceleration at the base

of the wall

ah,max, av,max Maximum amplitude of

horizontal and vertical

acceleration at the ground

surface

ah,avg, av,avg Weighted average horizontal

and vertical acceleration within

soil wedge

ah,avg,max, av,avg,max Maximum values of ah,avg and

av,avg
Ah, Bh, Av, Bv Numerical coefficients for

horizontal and vertical inertia

force

Amh, Bmh Amv, Bmv Numerical coefficients for

overturning moment

Aph, Bpz Apv, Bpv Numerical coefficients for

seismic active pressure
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Ds Damping ratio for S-wave

Dp Damping ratio for P-wave

D Generic damping ratio

Ec Constrained modulus of

soil =k ? 2G

fah, fav Ratio between amplitude of

horizontal (vertical)

acceleration at the ground

surface and at the base of the

layer

g Acceleration due to gravity

G Shear modulus of the soil

H Height of wall and soil layer

hP Distance of the point of

application of PAE,max from the

wall base

KAE Active earth pressure

coefficient in the pseudo-

dynamic approach

M Overturning moment with

respect to the base of the wall

pae(z, a, t) Total seismic active pressure

PAE(a, t) Generic value for active thrust

in the pseudo-dynamic

approach

PAE,max Maximum value of PAE

Qh Horizontal inertia force of the

soil wedge

Qv Vertical inertia force of the soil

wedge

Qh,max Maximum value of Qh

Qv,max Maximum value of Qv

R Resultant of soil force acting on

the failure plane

Ts Period of the harmonic base

horizontal acceleration and

horizontal inertia force Qh

Tp Period of the harmonic vertical

acceleration and vertical inertia

force Qv

Tsp Period of PAE

t Time

tm Time at which PAE is maximum

uh, uv Horizontal and vertical soil

displacement

VS, VP Velocity of P-waves and S-

waves in the soil

W Weight of the soil wedge

ys1, ys2 Adimensional factors governing

horizontal acceleration

yp1, yp2 Adimensional factors governing

vertical acceleration

z Depth from the top of the

backfill

zn z/H

a Inclination of the soil wedge

with respect to the horizontal

plane

am Value of a which maximizes

PAE

d Friction angle between backfill

and wall

u Shear resistance angle of the

backfill

eij Generic strain

c Unit weight of soil

gs; g1; gp Viscosities of the soil

k First Lamé constant

q Soil density

rij Generic stress

xs Angular frequency of motion

for S-wave

xp Angular frequency of motion

for P-wave

1 Introduction

Design of retaining walls under seismic conditions is a

very important topic in geotechnical engineering.

Among various approaches available the finite

element methods coupled with advanced constitutive

models allow to well describe the complex dynamic

behavior of geo-structures. However the use of such

sophisticated methods requires both a proper selection

of several parameters and a specific knowledge of

earthquake geotechnical engineering that is not so

commonly diffused in technical community.

In current practice simplified methods are still used

in which seismic analysis of retaining walls is obtained

as a function of few parameters relatively easy to

estimate. The most popular simplified method is the

pseudo-static method or Mononobe–Okabe method,

developed in the 1920s as an extension of the static

Coulomb theory (Okabe 1926; Mononobe and Matsuo
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1929). It is widely recognized that a pseudo-static

analysis considers the dynamic nature of earthquakes

in a very approximate manner and does not account for

the effects of time.

To overcome this drawback Steedman and Zeng

(1990) proposed a simple pseudo-dynamic analysis of

seismic active earth thrust that incorporates phase

difference and amplification effects in a dry elastic

backfill behind a vertical retaining wall subjected only

to horizontal acceleration that varies along the face of

the wall. Further improvements of the original pseudo-

dynamic method were proposed in the literature in

order to consider vertical acceleration, non vertical

walls, inclined or submerged backfill (Choudhury and

Nimbalkar 2006; Ghosh 2008, 2010; Kolathayar and

Ghosh 2009; Bellezza et al. 2012).

The pioneering pseudo-dynamic method was also

extended to passive case (Choudhury and Nimbalkar

2005; Ghosh 2007; Ghosh and Kolathayar 2011). The

same framework was utilized to estimate seismic

displacements (Choudhury and Nimbalkar 2007,

2008) and to design retaining structures also with

reinforced backfill (Nimbalkar et al. 2006; Nimbalkar

and Choudhury 2007; Choudhury and Ahmad 2008;

Ahmad and Choudhury 2008a, b, 2009).

Despite its various applications, a careful review of

the original pseudo-dynamic method highlighted some

critical aspects; in particular it considers only incident

waves travelling upward throughout a linear elastic

backfill, resulting in a violation of the free-surface

boundary condition (Bellezza et al. 2012, 2014;

Choudhury et al. 2014a, b).

Recently in the literature various approaches have

been presented to overcome this shortcoming. Some

studies considered Rayleigh waves to calculate both

active and passive earth pressure on retaining walls

(Choudhury and Katdare 2013; Choudhury et al.

2014a).

Bellezza (2014) proposed a new pseudo-dynamic

approach based on a standing shear wave in a visco-

elastic backfill overlying a rigid base subject to

harmonic shaking. Maintaining other hypotheses of

the existing pseudo-dynamic method—including ab-

sence of water, homogeneous backfill and planar

failure surface—closed form expressions for the

horizontal inertia force, seismic active thrust, active

pressure distribution and overturning moment were

derived in dimensionless form as a function of the

normalized frequency of shear wave and damping

ratio.

In this paper a more complete study is presented in

which the seismic active thrust is obtained including

also the vertical acceleration. Unlike the pioneering

pseudo-dynamic approach a different angular frequen-

cy for S-wave and P-wave is accounted for.

2 Wave Equation for a Visco-Elastic Soil

For the purposes of viscoelastic wave propagation,

soils are usually modeled as Kelvin–Voigt materials

represented by a purely elastic spring and a purely

viscous dashpot connected in parallel (Kramer

1996). The same model is also used by ASTM

D4015 (2007) to analyze resonant column test

results.

The constitutive equation of the Kelvin–Voigt

visco-elastic medium is given by:

rij ¼ 2Geij þ 2g
oeij
ot

ð1Þ

where rij is a stress eij is a strainG is the shear modulus

and g is a viscosity.

The motion equation of the Kelvin–Voigt visco-

elastic medium can be written in vectorial form as (see

for example Yuan et al. 2006):

q
o2u

ot2
¼ kþ Gð Þ þ g1 þ gsð Þ o

ot

� �
grad hð Þ

þ Gþ gs
o

ot

� �
r2u ð2Þ

where q is the density of the material, k and G are the

Lamè constant, g1 and gs are viscosities, u is the

displacement vector of components ux, uy and uz and

h ¼ div uð Þ.
If the plane wave solution of a wave propagating

along the z-axis in a Kelvin–Voigt homogeneous

medium is considered, then (2) can be simplified as:

q
o2uh

ot2
¼ G

o2uh

oz2
þ gs

o3uh

otoz2
ð3Þ

q
o2uv

ot2
¼ kþ 2Gð Þ o

2uv

oz2
þ g1 þ 2gsð Þ o

3uv

otoz2
ð4Þ

where uh = ux and uv = uz.
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2.1 Horizontal Displacement and Acceleration

For a harmonic horizontal base shaking of angular

frequency xs and period Ts (=2p/xs) the solution of

(3) is obtained by Bellezza (2014) as a function of

damping ratio Ds (=gsxs/2G) and normalized

frequency of S-wave (xsH/Vs). Assuming a base

displacement ubh = uh0 cos(xst) the horizontal

displacement within a layer of thickness H is given

by:

uh z; tð Þ ¼ uh0

C2
S þ S2S

CSCsz þ SSSszð Þcos xstð Þ½

þ SSCsz � CSSszð Þsin xstð Þ�
ð5Þ

Defining ah0 = -xs
2uh0, the horizontal acceleration is

easily obtained as:

ah z; tð Þ ¼ ah0

C2
S þ S2S

CSCsz þ SSSszð Þcos xstð Þ½

þ SSCsz � CSSszð Þsin xstð Þ�
ð6Þ

where:

Csz ¼ cos yS1z=Hð Þcosh yS2z=Hð Þ ð7aÞ

Ssz ¼ �sin yS1z=Hð Þsinh yS2z=Hð Þ ð7bÞ

CS ¼ cos yS1ð Þcosh yS2ð Þ ð7cÞ

SS ¼ �sin yS1ð Þsinh yS2ð Þ ð7dÞ

yS1 ¼ ks1H ¼ xsH

Vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D2

s

p
þ 1

2 1þ 4D2
s

� �
s

¼ xsHffiffiffiffiffiffiffiffiffi
G=q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4D2
s

p
þ 1

2 1þ 4D2
s

� �
s

ð8aÞ

yS2 ¼ ks2H ¼ �xsH

Vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D2

s

p
� 1

2 1þ 4D2
s

� �
s

¼ � xsHffiffiffiffiffiffiffiffiffi
G=q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4D2
s

p
� 1

2 1þ 4D2
s

� �
s

ð8bÞ

where ks1 and ks2 are the real and imaginary part of the

complex wave number ks
*, defined as a function of the

complex shear modulus G*; in particular k�s ¼
xs

ffiffiffiffiffiffiffiffiffiffiffi
q=G�

p
¼ ks1 þ iks2 and G* = G(1 ? 2iDs). Fur-

ther details about the complex wave number and

complex shear modulus appear in many text books

(e.g. Kolsky 1963; Kramer 1996).

2.2 Vertical Displacement and Acceleration

Equation (4) can be written in a form similar to Eq. (3)

provided that uh, G and gs are replaced by uv, Ec

(=k ? 2G) and gp = (g1 ? 2gs), respectively.
Considering a harmonic vertical shaking of the base

uvb = uv0 cos(xpt)and by imposing that at the free

surface (z = 0) the normal stress is null (rzz = 0) and

that at z = H the displacement coincides with that of

the rigid base, the solution of (4) can be expressed as a

function of damping ratio Dp (=gpxp/2Ec) and nor-

malized frequency of P-wave (xpH/Vp). Then, the

vertical displacement within a layer of thicknessH can

be calculated as:

uv z; tð Þ ¼ uv0

C2
P þ S2P

CPCpz þ SPSpz
� �

cos xpt
� �	

þ SPCpz � CPSpz
� �

sin xpt
� �
 ð9Þ

Defining av0 = -xp
2uv0, the vertical acceleration is

given by:

av z; tð Þ ¼ av0

C2
P þ S2P

CPCpz þ SPSpz
� �

cos xpt
� �	

þ SPCpz � CPSpz
� �

sin xpt
� �
 ð10Þ

where:

Cpz ¼ cos yp1z=H
� �

cosh yp2z=H
� �

ð11aÞ

Spz ¼ �sin yp1z=H
� �

sinh yp2z=H
� �

ð11bÞ

CP ¼ cos yp1
� �

cosh yp2
� �

ð11cÞ

SP ¼ �sin yp1
� �

sinh yp2
� �

ð11dÞ

yp1 ¼
xpH

Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D2

p

q
þ 1

2 1þ 4D2
p

� �
vuuut

¼ xpHffiffiffiffiffiffiffiffiffiffi
Ec=q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4D2
p

q
þ 1

2 1þ 4D2
p

� �
vuuut ð12aÞ

yp2 ¼ �xpH

Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D2

p

q
� 1

2 1þ 4D2
p

� �
vuuut

¼ � xpHffiffiffiffiffiffiffiffiffiffi
Ec=q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4D2
p

q
� 1

2 1þ 4D2
p

� �
vuuut ð12bÞ
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It is worthy to note that soil accelerations described by

(6) and (10) automatically incorporate amplification

effects within the soil layer without introducing an

amplification factor as needed in the original pseudo-

dynamic approach (Steedman and Zeng 1990; Choud-

hury and Nimbalkar 2007, 2008; Nimbalkar and

Choudhury 2007).

The ratio between the amplitude of horizontal and

vertical acceleration at the ground surface and at the

base of the layer can be calculated as:

fah ¼
max ah z ¼ 0; tð Þf g
max ah z ¼ H; tð Þf g ¼

ah0

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
S þ S2S

p
ah0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ys1 þ senh2ys2

p ð13Þ

fav ¼
max av z ¼ 0; tð Þf g
max av z ¼ H; tð Þf g ¼

av0

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
P þ S2P

p
av0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2yp1 þ senh2yp2

q ð14Þ

3 Pseudo-Dynamic Inertial Forces

Considering a planar surface inclined at an angle a
with respect to the horizontal plane (Fig. 1), the mass

of a thin element of the wedge at depth z is given by

given by:

m zð Þ ¼ c H � zð Þ
gtana

dz ð15Þ

where c is the unit weight of soil.

The horizontal inertial force of the wedge Qh,

which is assumed to be positive if directed towards the

wall, can be calculated as:

Qh t; að Þ ¼
Zz¼H

z¼0

ah z; tð Þm zð Þ

¼
Zz¼H

z¼0

ah z; tð Þ c H � zð Þ
gtana

dz ð16Þ

Considering (6), (7) and (8) Bellezza (2014) devel-

oped Eq. (16) obtaining:

Qh t; að Þ ¼ ah;avg tð Þ
g

W að Þ� ð17Þ

where W is the weight of soil wedge (W = 0.5cH2/

tana) and ah,avg is the weighted average horizontal

acceleration within the wedge:

ah;avg ¼
1

0:5H2=tana

ZH

0

ah H � zð Þ
tana

dz

¼ 2ah0 Ahcos xstð Þ þ Bhsin xstð Þ½ � ð18Þ

with

Similarly, the vertical inertial force of the wedge Qv,

which is assumed to be positive if directed upward,

can be calculated as:

Ah ¼
2ys1ys2sinðys1Þsinhðys2Þ þ y2s1 � y2s2

� �
cosðys1Þcoshðys2Þ � cos2ðys1Þ � sinh2ðys2Þ


 �
cos2 ys1ð Þ þ sinh2 ys2ð Þ
� �

y2s1 þ y2s2
� �2 ð19aÞ

Bh ¼
2ys1ys2 cos ys1ð Þcosh ys2ð Þ � cos2ðys1Þ � sinh2ðys2Þ


 �
� y2s1 � y2s2
� �

sinðys1Þsinhðys2Þ
cos2 ys1ð Þ þ sinh2 ys2ð Þ
� �

y2s1 þ y2s2
� �2 ð19bÞ

α

H

z

ϕδ RPAE
W

Qh

abh= ah0cos(ωst)
abv= av0cos(ωpt)

DRY BACKFILL

dz
WALL

z = 0

Qv

Fig. 1 Scheme of forces acting on soil wedge
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Qv t;að Þ ¼
Zz¼H

z¼0

av z; tð Þm zð Þ ¼
Zz¼H

z¼0

av z; tð Þ c H � zð Þ
gtana

dz

ð20Þ

After substituting (10) into (20) and solving the

integral, Qv can be written in a form similar to (17):

Qv t; að Þ ¼ av;avgðtÞ
g

WðaÞ ð21Þ

where av,avg is the weighted average vertical accel-

eration within the wedge:

av;avg ¼
1

0:5H2=tana

ZH

0

av H � zð Þ
tana

dz

¼ 2av0 Avcos xpt
� �

þ Bvsin xpt
� �	 


ð22Þ

and Av and Bv are dimensionless coefficients depen-

dent on yp1 and yp2:

It is easy to demonstrate that the maximum values of

ah,avg and av,avg are given by:

ah;avg;max ¼ 2 ah0j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
h þ B2

h

q
ð24Þ

av;avg;max ¼ 2 av0j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
v þ B2

v

q
ð25Þ

Equations (24) and (25) indicate that ah,avg,max and

av,avg,max depend on the normalized frequency (xsH/Vs

and xpH/Vp) and damping ratio (Ds and Dp) as well as

the amplitudes of base accelerations ah0 and av0.

In Fig. 2 values of the ratios ah,avg,max/ah0 and

av,avg,max/av0 are plotted against the normalized fre-

quency of the S-wave (xsH/Vs) for

D = Ds = Dp = 10 % assuming Vp/Vs = 1.87. This

latter hypothesis is generally accepted in the literature

for dry soils (Das 1993; Kramer 1996) and it occurs

when Poisson’s ratio is equal to 0.3.

It is evident that all curves of Fig. 2 show a similar

trend with the samemaximum value which depends on

damping ratio; the curves are shifted as the maximum

average horizontal acceleration peaks when the

S-wave reaches its fundamental frequency (xsH/

Vs = p/2) whereas the P-wave peaks for xpH/

Vp = p/2, at which corresponds xsH/Vs = p/2(Vp/

Vs)(xs/xp). It can be observed that for xp/xs[1 the

curve of the vertical acceleration tends to move left-

hand with a complete superimposition to the curve

relevant to horizontal acceleration for xp = 1.87 xs.

For a rigid soil (i.e. for Vs ? ? Vp ? ?) the

ratios ah,avg,max/ah0 and av,avg,max/av0 tend to the unit

(i.e. Ah = Av = 0.5 Bv = Bh = 0).

Av ¼
2yp1yp2sinðyp1Þsinhðyp2Þ þ y2p1 � y2p2

� �
cosðyp1Þcoshðyp2Þ � cos2ðyp1Þ � sinh2ðyp2Þ


 �

cos2 yp1
� �

þ sinh2 yp2
� �� �

y2p1 þ y2p2

� �2
ð23aÞ

Bv ¼
2yp1yp2 cos yp1

� �
cosh yp2

� �
� cos2ðyp1Þ � sinh2ðyp2Þ


 �
� y2p1 � y2p2

� �
sinðyp1Þsinhðyp2Þ

cos2 yp1
� �

þ sinh2 yp2
� �� �

y2p1 þ y2p2

� �2
ð23bÞ

0

1

2

3

4

5

6

7

ω sH/Vs

a h
,a

vg
,m

ax
/a

h0
; a

v,
av

g,
m

ax
/a

v0

π0.5 π 1.5 π 

D = Ds = Dp = 10% 
Vp  = 1.87Vs 

horizontal vertical 
ω p / ω s =1

vertical 
ωp / ω s =1.2

vertical 
ωp / ω s = 1.87

Fig. 2 Influence of normalized frequency of S-wave on

maximum weighted average accelerations within the soil wedge

for D = 10 %
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For values of normalized frequencies (xsH/Vs and

xpH/Vp) less than the fundamental frequencies the

ratios ah,avg,max/ah0 and av,avg,max/av0 are always

greater than the unit. In this range soil accelerations

are in phase at all depth of soil layer and this results in

a significant increase in ah,avg and av,avg.

After the peak for increasing values of normalized

frequencies part of the wedge can be subjected to an

acceleration in one direction while the other one part

can accelerate in the opposite direction and this results

in a reduction of the average acceleration of the soil

wedge with values of the ratios ah,avg,max/ah0 and

av,avg,max/av0 even less than the unity.

Equations (18) and (22) indicate that ah,avg and av,avg
follow a harmonic trend of period Ts and Tp, respec-

tively. Consequently, for an assigned angle a, also the

inertial forces Qh and Qv calculated by (17) and (21)

follow the same trend versus time. Considering (18),

(22), (24) and (25) the following expressions hold:

Qh tð Þ
Qh;max

¼ ah;avg tð Þ
ah;avg;max

¼ ah0 Ahcos xstð Þ þ Bhsin xstð Þ½ �
ah0j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
h þ B2

h

p
ð26Þ

Qv tð Þ
Qv;max

¼ av;avg tð Þ
av;avg;max

¼
av0 Avcos xpt

� �
þ Bvsin xpt

� �
 �
av0j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
v þ B2

v

p
ð27Þ

Figure 3 shows an example of the trend versus time

of the ratios Qh/Qh,max and Qv/Qv,max obtained for

ah0[ 0; xsH/Vs = 2; D = Ds = Dp = 10 %; xp/

xs = 1. The ratio Qv/Qv,max is calculated by assuming

both positive and negative value of av0. It is clear that

Qh and Qv peak at a different times; the time at which

the inertia forces reach their maximum depends on the

values of normalized frequency (xsH/Vs and xpH/Vp)

and damping ratio (DS and Dp). Complete expressions

to calculate the time at which Qh is maximum are

provided by Bellezza (2014). Similar expressions can

be derived for the vertical inertial force Qv.

4 Pseudo-Dynamic Active Thrust

By assuming that the dry cohesionless soil is in the

limit condition along the planar failure plane (Fig. 1)

and imposing the vertical and horizontal equilibrium

of the wedge, the total (static ? dynamic) active

thrust PAE can be obtained as:

PAE a; tð Þ

¼ Wsinða� uÞ þ Qhcosða� uÞ � Qvsinða� uÞ
cos uþ d� að Þ

ð28Þ

where W = weight of the wedge, u = backfill shear

resistance angle; d = friction angle between the wall

and backfill.

The active thrust is taken as the maximum value of

PAE with respect to a and t.

Substituting (17) and (21) into (28) gives:

Similarly to Steedman and Zeng (1990) and Choud-

hury and Nimbalkar (2006), it is possible to define a

pseudo-dynamic coefficient of active thrust:

PAE;max

cH2
¼ max

sinða� uÞ
2tanacos uþ d� að Þ þ

cosða� uÞ
tanacos uþ d� að Þ

ah0

g
Ahcos xstð Þ þ Bhsin xstð Þ½ �

� sinða� uÞ
tanacos uþ d� að Þ

av0

g
Avcos xpt

� �
þ Bvsin xpt

� �	 


8>><
>>:

9>>=
>>;

ð29Þ
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Fig. 3 Example of trend of normalized inertia forces in the

period of shaking for D = 10 %; xsH/Vs = 2; xp/xs = 1
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KAE ¼ 2PAE;max

cH2
¼ sinðam � uÞ

tanamcos uþ d� amð Þ

þ 2cosðam � uÞ
tanamcos uþ d� amð Þ

ah0

g
Ahcos xstmð Þ½

þBhsin xstmð Þ�

� 2sinðam � uÞ
tanamcos uþ d� amð Þ

av0

g
Avcos xptm

� �	

þBvsin xptm
� �


ð30Þ

where am and tm are the values of a and t that maximize

KAE. In this study the values of KAE are obtained by an

optimization procedure in which the magnitudes of the

variables a and t/Ts have been varied independently at
an interval of 0.1� and 0.01, respectively.

The value of tm depends on various factors includ-

ing am, u, xs, xp, aho and av0. Moreover it can be

observed that the maximum active thrust is generally

achieved for a time at which Qh and Qv do not reach

their maximum values (i.e. ah,avg,tm\ ah,avg,max and

av,avg,tm\ av,avg,max).

From amathematical point of view the time tm is the

solution of the following equation:

o

ot

2PAE;max

cH2

� �
¼ 2cosðam � uÞ

tanamcos uþ d� amð Þ
� ah0

g
�xsAhsin xstmð Þ þ xsBhcos xstmð Þ½ �

� 2sinðam � uÞ
tanamcos uþ d� amð Þ

av0

g
�xpAvsin xptm

� �	

þxpBvcos xptm
� �


¼ 0 ð31Þ

A closed form expression for the time tm is derived

only for xp = xs = x, i.e. when S-wave and P-wave

have the same period T = Ts = Tp. In this case

Eq. (31) can be written in a simplified form:

Ah � bAvð Þtan xtmð Þ ¼ Bh � bBv ð32Þ

where b = tan(am - u)av0/ah0.
For ah0[ 0 the solution of (32) that maximizes KAE

is given by:

tm

T

� �
¼ 1

2p
arctan

Bh � bBv

Ah � bAv

for Ah�bAv [ 0 and Bh�bBv [ 0

ð33aÞ

tm

T

� �
¼ 1þ 1

2p
arctan

Bh � bBv

Ah � bAv

for Ah�bAv [ 0 and Bh�bBv\ 0

ð33bÞ

tm

T

� �
¼ 1

2p
arctan

Bh � bBv

Ah � bAv

þ 1

2
for Ah�bAv\ 0

ð33cÞ

5 Soil Active Pressure Distribution

It is well known that Coulomb approach does not

directly provide the distribution of soil active pres-

sures. However, the seismic active earth pressure

distribution can be obtained by writing PAE for a

generic z instead of H and then differentiating PAE

with respect to z (e.g. Steedman and Zeng 1990;

Choudhury and Nimbalkar 2006; Ghosh 2010; Bellez-

za et al. 2012; Bellezza 2014):

where:

W a; zð Þ ¼ cz2

2tana
ð35Þ

Qh a; t; zð Þ ¼
Zf¼z

f¼0

ah f; tð Þ c z� fð Þ
gtana

df

¼ c
gtana

Zf¼z

f¼0

ah f; tð Þ z� fð Þdf

ð36Þ

QV a; t; zð Þ ¼
Zf¼z

f¼0

av f; tð Þ c z� fð Þ
gtana

df

¼ c
gtana

Zf¼z

f¼0

av f; tð Þ z� fð Þdf ð37Þ

pae a; t; zð Þ ¼ oPAE

oz
¼ o

oz

W a; zð Þsinða� uÞ þ Qh a; t; zð Þcosða� uÞ � Qv a; t; zð Þsinða� uÞ
cos uþ d� að Þ

� �
ð34Þ
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Developing (34) taking into account of (35)–(37) the

seismic active soil pressure can be expressed in a

normalized form as a function of the normalized depth

zn (zn = z/H):

pae

cH
¼ sinða� /Þ

tanacos /þ d� að Þ zn

þ cosða� /Þ
tanacos /þ d� að Þ

ah0

g
Aphcos xstð Þ
	

þBphsin xstð Þ



� sinða� /Þ
tanacos /þ d� að Þ

av0

g
Apvcos xpt

� �	

þBpvsin xpt
� �


ð38Þ

where:

The distribution of active soil pressure described by

(38)–(40) is clearly non-linear.

The total seismic pressure pae can be viewed as the

sum of three components, the first one is independent of

seismic accelerations, the second and third dependent on

the horizontal and vertical acceleration, respectively.

The first component, although independent of aho
and av0, does not represent the active pressure in static

conditions (i.e. for ah0 = av0 = 0) because the value

of am in static conditions is greater than am in seismic

conditions.

The point of application (hp) of total seismic active

thrust can be calculated on the basis of the overturning

moment respect to the wall base:

hP ¼ M

PAEcosd
¼

Rz¼H

z¼0

paecosd H � zð Þdz

0:5KAEcH2cosd
ð41Þ

After substituting (38) into (41) and solving the

integral the normalized point of application is given

by:

hP

H
¼

M
�
cH3

0:5KAEcosd
ð42Þ

where

M

cH3
¼ cosd

tana cos /þ d� að Þ

1

6
sin a� /ð Þ þ cos a� /ð Þ ah0

g
Amhcos xstð Þ þ Bmhsin xstð Þf g

�sin a� /ð Þ av0
g

Amvcos xpt
� �

þ Bmvsin xpt
� �
 �

8>><
>>:

9>>=
>>;

ð43Þ

Aph ¼
CSys2 þ SSys1ð Þcos ys1znð Þsinh ys2znð Þ þ CSys1 � SSys2ð Þsin ys1znð Þcosh ys2znð Þ

C2
S þ S2S

� �
y2s1 þ y2s2
� � ð39aÞ

Bph ¼
SSys2 � CSys1ð Þcos ys1znð Þsinh ys2znð Þ þ SSys1 þ CSys2ð Þsin ys1znð Þcosh ys2znð Þ

C2
S þ S2S

� �
y2s1 þ y2s2
� � ð39bÞ

Apv ¼
Cpyp2 þ Spyp1
� �

cos yp1zn
� �

sinh yp2zn
� �

þ Cpyp1 � Spyp2
� �

sin yp1zn
� �

cosh yp2zn
� �

C2
p þ S2p

� �
y2p1 þ y2p2

� � ð40aÞ

Bpv ¼
Spyp2 � Cpyp1
� �

cos yp1zn
� �

sinh yp2zn
� �

þ Spyp1 þ Cpyp2
� �

sin yp1zn
� �

cosh yp2zn
� �

C2
p þ S2p

� �
y2p1 þ y2p2

� � ð40bÞ

Geotech Geol Eng (2015) 33:795–812 803

123



The angle a in (43) is the same one (am) that maximizes

the active thrust PAE, as the uniqueness of the planar

failure surface in seismic conditions is assumed (i.e. the

failure surface, once formed, does not change thereafter).

As noted by Bellezza (2014) the maximum over-

turning moment is reached at a slightly different time

to when the active thrust is maximum; in other words,

the soil pressure distribution which gives the max-

imum soil thrust does not exactly coincide with that

producing the maximum moment. However, the

difference between the maximum overturning mo-

ment and the moment produced by PAE is found to be

very small and negligible for practical purposes.

6 Results and Discussion

6.1 Applicability of the Pseudo-Dynamic Method

It is well established (e.g. Okabe 1926; Mononobe and

Matsuo 1929; Kramer 1996) that using the traditional

pseudo-static approach, for a vertical wall retaining a

horizontal backfill (Fig. 1), the coefficient KAE is

given by:

KAE ¼ cos2 u� wð Þ

coswcos dþ wð Þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin uþdð Þsin u�wð Þ

cos dþwð Þ

qh i2
ð46Þ

where w = arctan(kh/(1 - kv)); kh = horizontal seis-

mic coefficient. kv = vertical seismic coefficient.

The inclination of the planar slip surface that

maximizes the active thrust can be calculated by a

0.1
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VALUES of av0 /ah0 

Fig. 4 Influence of the vertical acceleration and normalized

frequency of S-wave on seismic active soil coefficient KAE for

u = 40�; d = 20�; ah0/g = 0.1; D = 10 %; xp/xs = 1

Amh ¼
Z1

0

Aph 1� znð Þdzn ¼

y3s2 � 3y2s1ys2
� �

sinh ys2ð Þcosh ys2ð Þ þ 3ys1y
2
s2 � y3s1

� �
sin ys1ð Þcos ys1ð Þ

þ2ys1ys2 y2s1 þ y2s2
� �

sin ys1ð Þsinh ys2ð Þ þ y4s1 � y4s2
� �

cos ys1ð Þcosh ys2ð Þ

" #

cos2 ys1ð Þ þ sinh2 ys2ð Þ
� �

y2s1 þ y2s2
� �3 ð44aÞ

Bmh ¼
Z1

0

Bph 1� znð Þdzn ¼

y3s1 � 3ys1y
2
s2

� �
sinh ys2ð Þcosh ys2ð Þ þ y3s2 � 3y2s1ys2

� �
sin ys1ð Þcos ys1ð Þ

� y4s1 � y4s2
� �

sin ys1ð Þsinh ys2ð Þ þ 2ys1ys2 y2s1 þ y2s2
� �

cos ys1ð Þcosh ys2ð Þ

" #

cos2 ys1ð Þ þ sinh2 ys2ð Þ
� �

y2s1 þ y2s2
� �3 ð44bÞ

Amv ¼
Z1

0

Apv 1� znð Þdzn ¼

y3p2 � 3y2p1yp2

� �
sinh yp2

� �
cosh yp2

� �
þ 3yp1y

2
p2 � y3p1

� �
sin yp1

� �
cos yp1

� �
þ2yp1yp2 y2p1 þ y2p2

� �
sin yp1

� �
sinh yp2

� �
þ y4p1 � y4p2

� �
cos yp1

� �
cosh yp2

� �
2
64

3
75

cos2 yp1
� �

þ sinh2 yp2
� �� �

y2p1 þ y2p2

� �3
ð45aÞ

Bmv ¼
Z1

0

Bpv 1� znð Þdzn ¼

y3p1 � 3yp1y
2
p2

� �
sinh yp2

� �
cosh yp2

� �
þ y3p2 � 3y2p1yp2

� �
sin yp1

� �
cos yp1

� �
� y4p1 � y4p2

� �
sin yp1

� �
sinh yp2

� �
þ 2yp1yp2 y2p1 þ y2p2

� �
cos yp1

� �
cosh yp2

� �
2
64

3
75

cos2 yp1
� �

þ sinh2 yp2
� �� �

y2p1 þ y2p2

� �3
ð45bÞ
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rather complex expression as a function of u, d and w
(e.g. Kramer 1996).

It can be demonstrated that the values of KAE

obtained by the pseudo-dynamic method are linked to

those obtained by the pseudo-static method. In

particular:

KAE ¼ KAE;ps 1� av;avg;tm
�
g

� �
ð47Þ

where KAE,ps is the active coefficient calculated by

(46) provided tanw ¼ ah;avg:tm=g
1�av;avg:tm=gð Þ

The form of (46) indicates that the maximization

procedure only yields results if u[w, i.e. when:

ah;avg;tm
�
g

1� av;avg;tm
�
g
� tanu ð48Þ

6.2 Effect of Vertical Acceleration

Figure 4 shows the combined effect on KAE of the

normalized frequencyxsH/Vs and vertical acceleration

assuming D = DS = Dp = 10 %; ah0 = 0.1 g;

u = 40�; d = 20�; xp/xs = 1.

In particular the curve relevant to absence of

vertical acceleration (av0 = 0) is compared with those

obtained for av0 = 0.5ah0 and av 0 = -0.5ah0.

The trend ofKAE versusxsH/Vs is not monotonic and

two main parts of the curves can be distinguished. For

low values ofxH/Vs,KAE sharply increases withxH/Vs

reaching a local maximum, while in the second part the

KAE trend is generally a downwards one, even if a

second local maximum ofKAE occurs in the presence of

the vertical acceleration. The first local maximum of

KAE occurs when xsH/Vs is close to p/2 i.e. when the

backfill is subjected to the fundamental frequency of S-

wave and the average weighted horizontal acceleration

ismaximum (see Fig. 2). The second localmaximum of

KAE occurs when the average weighted vertical accel-

eration is maximum; this occurs for xpH/Vp = p/2 at

which corresponds xsH/Vs = 2.93 in the hypothesis

that Vp = 1.87 Vs and xp/xs = 1, as shown in Fig. 2.

For the overall range of xsH/Vs, except close to the

fundamental frequency, the effect of the vertical

acceleration is appreciable; in other words the curves

relevant to av0 = 0 are different to that obtained for

av0 = 0 and the values of KAE obtained for av0[ 0

differ from those obtained for av0\ 0.

This difference can be explained with the phase

difference between Qh and Qv. Provided that the

maximum active thrust is achieved whenQh is close to

its maximum, the different sign of av0 implies that

when Qh is close to its positive peak, Qv can be

directed upward or downward (see Fig. 3) and this

results in different values of KAE. As explained later,

the effect of phase difference between Qh and Qv is

magnified in the hypothesis that S-wave and P-wave

have the same period.

It can be observed that also for a rigid soil (xsH/

Vs ? 0) the values of KAE are found to be slightly

dependent on both value and sign of av0. As noted

previously, the values of KAE obtained by the pseudo-

dynamic approach are correlated with those obtained

with the pseudo-static method according to (47).

For a rigid soil (47) becomes

KAE ¼ KAE;ps 1� av0=gð Þ: ð49Þ

Considering that most technical codes (e.g. Euro-

code 8 (2005)) recommend to assume vertical inertia

force both upward and downward, in the followings of

the paper the value of KAE is assumed as the maximum

KAE obtained for av0[ 0 and av0\ 0. Similarly to the

pseudo-static approach (Fang and Chen 1995), it is not

assured a priori if the maximum KAE is reached for

av0[ 0 or for av0\ 0. This is evident also in Fig. 4

where for the same input parameters the maximum

KAE is obtained for av0[ 0 in certain ranges ofxsH/Vs

and for av0\ 0 in other ones.

Figure 5 shows normalized distribution of active

seismic pressure for three different value of av0 with

ah0/g = 0.1; xsH/Vs = 2; xp/xs = 1; D = 10 %;

u = 40�; d = 20�.
It can be noted that as av0 increases active earth

pressure also increases. When av0 changes from 0 to

0.0
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0.9
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ϕ = 40° δ = 20° ah0 = 0.1g

values of | av0 |/ah0

Fig. 5 Normalized seismic active earth pressure distribution

for different values of vertical acceleration for u = 40�;
d = 20�; ah0/g = 0.1; D = 10 %; xsH/Vs = 2; xp/xs = 1
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0.5ah0 seismic active earth thrust increases by about

4.6 %. Similarly when avo changes from 0.5ah0 to ah0
seismic active earth thrust increases by about 4.7 %.

6.3 Effect of Horizontal Acceleration

Figure 6 shows the typical normalized pressure

distribution for different values of ah0with |avo| = 0.5-

ah0; u = 40�; d = 20�; xsH/Vs = 2; xp/xs = 1. As

expected, it is evident that as ah0 increases, seismic

active earth pressure also increases. This results in a

significant increase in active soil thrust. As an example

KAE increases by about 45 % when ah0 changes from

0.1 g to 0.2 g.

From Fig. 6 it is also clear that degree of non-

linearity of the curves increases with ah0. The point of

application of PAE calculated by (42) is found to

slightly increase from 0.343H for ah0 = 0.05 g to

0.367H for ah0 = 0.20 g.

6.4 Effect of Soil Shear Resistance Angle

and Soil-Wall Friction Angle

Figure 7 shows the normalized pressure distribution

for different values of soil shear resistance angle u
with ah0 = 0.1 g; |av0| = 0.5aho, xsH/Vs = 2;

D = 10 %; d = u/2. As expected, seismic active

earth pressure shows significant decrease with the

increase in the value of u. When u changes from 30�
to 35� seismic active earth pressure decreases by about

16 % at mid-height and by about 17 % at the bottom of

the wall. Similarly when u changes from 35� to 40�
seismic active earth pressure decreases by about

16.3 % at mid-height and by about 17.3 % at the

bottom of the wall. Finally when u changes from 40�
to 45� seismic active earth pressure decreases by about

16.7 % at mid-height and by about 17.9 % at the

bottom of the wall.

Figure 8 shows the normalized pressure distribu-

tion for different values of soil-wall friction angle d
with ah0/g = 0.1, |av0| = 0.5ah0, xsH/Vs = 2;

D = 10 %;u = 40�. The effect of d is quite marginal.

For the same input parameters Fig. 9 shows the

combined effect on KAE of u and d/u for four different

values of u. It is clear that the effect of d on KAE is

generally small if compared with that of u. In the

investigated ranges of u (u = 30�–45�) the trend of

KAE versus d/u is not monotonic with a minimum

value of KAE for d/u in the range 0.25–0.50. The

maximum value of KAE is reached in most cases for

d = u, except the case of u = 30� when the

0.0
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Fig. 6 Normalized seismic active earth pressure distribution

for different values of amplitude of base horizontal acceleration

for u = 40�; d = 20�; |av0|/ah0 = 0.5;D = 10 %;xsH/Vs = 2;

xp/xs = 1
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Fig. 7 Normalized seismic active earth pressure distribution

for different values of soil shear resistance angle for d/u = 0.5;

ah0/g = 0.1; |av0|/ah0 = 0.5; D = 10 %; xsH/Vs = 2; xp/

xs = 1
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Fig. 8 Normalized seismic active earth pressure distribution

for different values of soil wall friction angle for u = 40�; ah0/
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maximum is obtained for d = 0. The range of

variability of KAE is found to increase at increasing

u; the percent difference between the maximum value

of KAE and the value obtained for d = u/2 varies from
about 6 % for u = 30� to about 19 % for u = 45�.

6.5 Effect of Damping Ratio

The analysis presented in the previous sections allows

to consider a different damping ratio for S-wave and P-

wave. However, for a sake of simplicity it is here

assumed that D = Ds = Dp.

Figure 10 shows the values of KAE at varying xsH/

Vs obtained for D = 5, 10 and 15 %, all other input

parameters being equal (u = 40�; d = 20�;
ah0 = 0.1 g; |av0| = 0.5ah0). The trend of the three

curves is similar with a maximum ofKAEwhenxsH/Vs

is close to p/2. For the lower damping ratio (D = 5 %)

the first peak does not exist as the condition expressed

by (46) is not satisfied; a second local maximum is

found when P-wave reaches its fundamental frequency

(i.e. for xsH/Vs = 2.93) and a third local maximum is

visible when xsH/Vs is close to 1.5p. For D = 10 %

and D = 15 % the second and the third local maxima

are not appreciable. In the analyzed case the effect on

KAE of soil damping varying in the range 5–15 % is

found to be negligible for xsH/Vs ranging between 0

and 1 and very small in the range 3.5–5 in which the

values of KAE differ\3.5 %.

On the contrary, the damping ratio is found to have

a great effect on the first peak ofKAE. ForxsH/Vs = p/
2 KAE decreases of about 50 % when D varies from

10–15 %.

Figure 11 shows that a lower damping ratio implies

a greater non-linearity of active pressure distribution

and a slight rise of the application point of the active

thrust (hp/H = 0.357 forD = 15 % and hp/H = 0.373

for D = 10 %).

6.6 Effect of Frequency Ratio

Previous studies based on the original pseudo-dynam-

ic method assumed that angular frequency of S-wave

coincide with angular frequency of P-wave (Choud-

hury and Nimbalkar 2006, 2007, 2008; Nimbalkar and

Choudhury 2007, Choudhury and Ahmad 2008;

Nimbalkar et al. 2006; Ghosh 2007, 2010; Bellezza

et al. 2012). In this study a different frequency for S-

and P-wave is considered by the ratio xp/xs.
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Fig. 9 Effect of wall-backfill friction angle for different values

of soil shear resistance angle for ah0/g = 0.1; |av0|/ah0 = 0.5;

D = 10 %; xsH/Vs = 2; xp/xs = 1
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A value of xp/xs (=Ts/Tp) different from the unit

implies that Qh and Qv have the same pair of values

after a period Tsp generally greater than Ts and/or Tp.

As an example for xp/xs = 0.8 Tsp = 5Ts = 4Tp
whereas for xp/xs = 1.5 Tsp = 2Ts = 3Tp, as shown

in Fig. 12. Consequently, for xp/xs = 1 the seismic

active thrust follows no longer a sinusoidal trend but a

cyclic trend of period Tsp (Fig. 13).

Figure 14 shows the values of KAE as a function of

xp/xs for two different values xsH/Vs, all other

parameters being equal. In the same figure the open

symbols represents the maximum values of KAE

obtained for ah,avg = ah,avg,max and av,avg = a,v,avg,max
(i.e. assuming that horizontal and vertical inertia

forces peak at the same instant). Generally the

difference between the calculated KAE and KAEmax

are found to be very small (\1 %). Greatest differ-

ences are found for xsH/Vs = 2 and xp/xs = 1 and

1.5, i.e. at the lowest values of the overall period Tsp
when it is more likely that Qh and Qv do not peak

simultaneously.

Moreover it can be observed that in the investigated

range of xp/xs (0.6–2) the trend of KAE versus xp/xs

depends on the value of the normalized frequency of S-

wave; in particular for xsH/Vs = 1 the trend is

monotonically increasing (Fig. 14a), whereas for

xsH/Vs = 2 the trend shows a peak for xp/

xs = 1.45 (Fig. 14b). This different trend is due to

the different amplification of vertical acceleration

within the soil wedge, plotted as dashed curve in

Fig. 14. Indeed, in the hypothesis that Vp = 1.87Vs,

for xsH/Vs = 1 the normalized frequency of P-wave

xpH/Vp ranges between 0.32 and 1.07, far from its

fundamental frequency. On the contrary for xsH/
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vs = 2 xpH/vp varies between 0.64 and 2.14, i.e. in a

range containing the fundamental frequency of P-

wave.

6.7 Comparison of Results

It has been previously noted that the new pseudo-

dynamic method automatically includes amplification

effects within the soil and that the average seismic

accelerations through the soil wedge (ah,avg and av,avg)

are generally greater than amplitude of accelerations at

the base of the wall (ah0, av0), as shown in Fig. 2.

Consequently, it is obvious that the values of KAE

obtained by the present method can be much higher

than those obtained with the pseudo-static approach

using kh = ah0/g and kv = av0/g, especially close to

the fundamental frequency of S-wave.

Similarly, the present method overestimates the

values of KAE in comparison with the values obtained

using other pseudo-dynamic methods which neglect

amplification effect. The recent procedure based on

Rayleigh waves (Choudhury et al. 2014a, b) belongs to

this category.

A meaningful comparison can be made only with

the existing pseudo-dynamic method, provided that

amplification factors are included in the analysis for

both S-wave and P-wave, by assuming that amplitudes

of seismic accelerations vary linearly from the base of

the layer to the ground surface (Steedman and Zeng

1990; Choudhury and Nimbalkar 2007, 2008; Nim-

balkar and Choudhury 2007; Kolathayar and Ghosh

2009). To make the seismic input uniform, two

different amplification factors are considered for

S-wave and P-wave (i.e. fah = fav), according to

Eqs. (13)–(14).

In Tables 1 and 2 a comparison of active earth

pressure coefficients is presented for two different

values of xsH/Vs varying the base horizontal accel-

eration (ah0 = 0.05–0.25 g) and soil shear resistance

angle (u = 30; u = 40�), assuming the same damp-

ing ratio (D = 10 %) and the same frequency (xs =

xp) for S-wave and P-wave.

Table 1 Comparison of seismic active earth coefficient (KAE) obtained by the present study with those from the existing pseudo-

dynamic method for xsH/Vs = 1; xp = xs; D = 10 % u/d = 0.5; av0 = 0.5ah0

ah0/g Existing pseudo-dynamic method with amplificationa Present study

u = 30� u = 40� u = 30� u = 40�

0.05 0.357b 0.243 0.363 0.248

0.10 0.421 0.292 0.435 0.304

0.15 0.494 0.349 0.520 0.368

0.20 0.579 0.412 0.620 0.442

0.25 0.678 0.484 0.740 0.527

a Assuming the same amplification factors obtained by Eqs. (13)–(14); i.e. fah = 1.782, fav = 1.155
b The value refers to the maximum KAE obtained with av0[ 0 and av0\ 0

Table 2 Comparison of seismic active earth coefficient (KAE) obtained by the present study with those from the existing pseudo-

dynamic method for xsH/Vs = 2; xp = xs; D = 10 % u/d = 0.5; |av0| = 0.5ah0

ah0/g Existing pseudo-dynamic method with amplificationa Present study

u = 30� u = 40� u = 30� u = 40�

0.05 0.366b 0.250 0.366 0.250

0.10 0.441 0.308 0.440 0.307

0.15 0.529 0.375 0.526 0.372

0.20 0.633 0.452 0.626 0.447

0.25 0.824 0.547 0.805 0.534

a Assuming the same amplification factors obtained by Eqs. (13)–(14); i.e. fah = 2.293, fav = 1.980
b The values refer to the maximum KAE obtained with av0[ 0 and av0\ 0
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Data shown in Table 1 indicate that for a normal-

ized frequency xsH/Vs = 1 the present method is

more conservative than the existing pseudo-dynamic

method. The differences between the values of KAE

increase at increasing base horizontal acceleration,

from about 5 % for ah0/g = 0.15 to about 9 % for ah0/

g = 0.25.

For a higher normalized frequency xsH/Vs = 2

(Table 2) the present approach gives values of KAE

practically coincident with those of the existing

pseudo-dynamic approach, with differences not ex-

ceeding 2 %.

It is well recognized that most of the available

methods assume a constant acceleration in the soil

using seismic coefficient kh and kv obtained from the

maximum acceleration expected at the soil surface

taking into account of stratigraphic amplification (see

for example Eurocode 8):

kh ¼ ahah;max=g: kv ¼ �avkh ð50Þ

where ah � 1 1=3� av � 1=2.
Therefore a more comprehensive comparison can

be made assuming the same maximum acceleration

instead of the same base acceleration. With this aim

the seismic input must be adapted; in particular the

present method requires to calculate the base accel-

eration considering amplification factors fah and fav
and Eq. (50), i.e. ah0 = khg/(fahah) and av0 = kvg/

(favah).
Table 3 shows the numerical results for seismic

active earth coefficient KAE obtained from the present

solution and some established solutions in the lit-

erature. For sake of simplicity the comparison is made

neglecting the vertical acceleration for two different

values of ah (ah = 1 ah = 2/3). For the proposed and

the existing pseudo-dynamic methods a normalized

frequency of 1.885 (i.e. H/VsTs = 0.3) is assumed,

according to previous studies on similar topic (Choud-

hury and Nimbalkar 2005, 2006; Ghosh 2007, 2010;

Kolathayar and Ghosh 2009; Ghosh and Kolathayar

2011).

Results are in reasonable good agreement (largest

discrepancy 16 %). As expected, the predictions given

by the present method underestimate KAE when

ah = 1 because in other methods the acceleration is

assumed to have its maximum amplitude through the

entire wedge. On the contrary, the proposed approach

leads to slightly conservative predictions of KAE when

the available approaches assume ah = 2/3 to calculateT
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kh from the maximum acceleration. In this case the

present approach can be more suitable for practical

applications. Indeed it should be emphasized that the

present method, unlike pseudo-static method and

Mylonakis et al. analysis, allows to consider effect

of time, as well as to predict a not linear pressure

distribution along the back of the wall, according to

experimental observations (e.g. Steedman and Zeng

1990).

7 Conclusions

The new pseudo-dynamic approach proposed by

Bellezza (2014) has been extended taking into account

both horizontal and vertical acceleration.

The proposed approach represents an improvement

of the pioneering pseudo-dynamic approach for two

main reasons: (1) standing seismic S-wave and P-wave

respect the zero stress boundary condition at the

ground surface and therefore both horizontal and

vertical accelerations are naturally amplified within

the backfill without the need of introducing an

amplification factor; (2) a more realistic behavior of

soil is accounted for by modeling the backfill as a

visco-elastic medium.

Maintaining some hypotheses of the existing pseu-

do-dynamic method—including absence of water,

homogeneous backfill and planar failure surface—

inertia forces, seismic active thrust, active pressure

distribution and overturning moment were derived in

dimensionless form as a function of the normalized

frequencies xsH/Vs and xpH/Vp and damping ratio D,

assumed to be the same for both shear and primary

wave.

The range of applicability of the pseudo-dynamic

approach and the correlations with pseudo-static

method have been also discussed by introducing the

concept of weighted average acceleration.

The results of the parametric study substantially

confirm the results previously obtained in the absence

of the vertical acceleration; soil active thrust and

pressure distribution are very sensitive to variation of

amplitude of base horizontal acceleration, soil shear

resistance angle and normalized frequency of shear

wave, especially close to its fundamental frequency

where the effect of damping is magnified. The effect of

soil-wall friction angle is generally small.

Unlike the pioneering pseudo-dynamic approach,

the effect of a different frequency for S- and P-wave

has been investigated, highlighting that soil active

thrust generally increases when P-wave have a

frequency greater than that of S-wave.

The results obtained by the proposed method are

found to be in agreement with previous studies,

provided that the seismic input is adapted to include

amplification effects.
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