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Abstract Hulu Kelang is known as one of the most

landslide susceptible areas in Malaysia. From 1990 to

2011, a total of 28 landslide events had been reported

in this area. This paper compares two models as

Analytical Hierarchy Process (AHP) and probability–

frequency ratio (FR) methods for recognizing land-

slide susceptibility regions in the Hulu Kelang area.

Eleven landslide influencing factors were considered

to form the probability–FR and AHP matrix, i.e.

lithology-weathering, land cover, curvature, slope

inclination, slope aspect, drainage density, elevation,

distance to lake and stream, distance to road and

trenches, the Stream Power Index and the Topographic

Wetness Index. The accuracy of the maps produced

from the two models were verified using a receiver

operating characteristics. The verification results

indicated that the probability–FR model based on

probabilistic analysis of spatial distribution of histor-

ical landslide events was capable of producing a more

reliable landslide susceptibility map in this study area

compared to AHP model. About 89 % of the landslide

locations have been predicted accurately by using the

FR map.

Keywords Landslide susceptibility � Landslide

mapping � Probability–frequency ratio � Bivariate

approach � Analytical hierarchy process

1 Introduction

Landslides are one of the most common geohazards in

many parts of the world. The frequency of landslide

occurrences increases with growing human popula-

tion. The needs of protecting natural and agricultural

areas have further pressed human developments ever

closer to unstable slopes. To minimize losses incurred

by landslides, it is essential to develop a good

understanding of their causative factors which are

useful for assessing landslide susceptibility of an area.

The identification of landslide-prone regions is useful

for carrying out quicker and safer mitigation programs,

as well as future development planning of the area.

GIS based Criteria Decision Making (MCDM) has

recently emerged as a multi criterion analysis method

that enables incorporation of data retrieved from

various sources for landslide assessment. MCDM

implies a process of assigning values to alternatives

that are evaluated along multi-criteria (Phua and

Minowa 2005). One of the widely used GIS-MCDM

techniques is known as analytical hierarchy process

(AHP; Saaty 1980; Saaty and Vargas 2001). AHP
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method provides a flexible and easily understood way

of analyzing complex technological problems. And

other GIS-MCDM technique is frequency ratio (FR)

model that use a numerical assessment of the

relationship between slope instability and other con-

trolling factors. Probability frequency ratio method

focuses on historical correlations between landslide-

controlling parameters and the distribution of land-

slide events.

The goal of this study was to compare and evaluate

both AHP approaches and probabilistic frequency

ration model for their ability to assess the landslide

susceptibility of a case study. The first step was to set

parameter weights and combined the decision alter-

natives with AHP to create a landslide susceptibility

map. The probabilistic frequency ratio draws on data

regarding the distribution and effectiveness of factors

that cause landslides to determine the correlation

between regions and these factors (Lee 2005). Finally,

the landslide susceptibility maps created as a result of

this process are subjected to a comprehensive valida-

tion process. The models are validated using either

data for landslides that was used to create the map or

independent landslide information can be uses (Chung

and Fabbri 2003; Guzzetti et al. 2006). This study used

landslide data that was divided in two groups, a

modeling group (70 % of the total landslide events)

and a prediction group (30 % of the total landslide

events). The modeling group was used as a training set

for the development of landslide susceptibility maps

that built on the two models discussed earlier (AHP,

probabilistic frequency ratio models) while the pre-

diction group was used for verification purposes.

2 Background of Study Area

Hulu Kelang is known as one of the most landslide

prone areas in Malaysia. The area is located at the

suburb of Kuala Lumpur, the capital city of Malaysia

between 3�0902500 and 3�1304500E longitude and

101�4401300 and 101�4705100N latitude (Fig. 1). The

average annual rainfall is about 2,440 mm in this area.

The rainfall distributions are mainly characterized by

two monsoon seasons, namely the Southwest monsoon

from late May to September and the Northeast

monsoon from November to March.

Soil investigations from previous studies revealed

that the area is generally underlain by coarse-grained

granite (Ali 2000). Weathering of the granite produced

sandy clay residual soil of approximately 15–30 m

thick at the areas of high elevation. The residual soil

layer becomes thinner on the mid-course of slopes,

followed by exposed granite at the low elevation areas.

Most of the slip planes of landslides developed within

the residual soil layer. Somehow, the area has been

constantly hit by fatal shallow landslides. From 1990

to 2011, a total of 28 major landslide incidents had

been reported in this area.

3 Layers of Landslide Influencing Information

ArcGIS 10 with Spatial Analyst was used in the

present study. To perform a reliable landslide suscep-

tibility assessment, it is important to incorporate

multiple layers of relevant information into the GIS

system. Eleven layers of information, which can be

broadly grouped into GIS as lithology-weathering,

land cover, curvature, slope inclination, slope aspect,

drainage density, elevation, distance to lake and

stream, distance to road and trenches, the Stream

Power Index (SPI) and the Topographic Wetness

Index (TWI) were identified for processing relevant

results. All the layers were digitalized into GIS format

and their correlation, expressed in hazard index, with

landslide occurrence was established using actual

landslide data.

3.1 Landslide Inventory Map

Landslide inventory maps illustrate the distribution

and locations of past landslides without indicating

the mechanisms that triggered them. According to

the data sources from the Ampang Jaya Municipal

Council (MPAJ) and the Slope Engineering Branch

of Public Works Department Malaysia (PWD), as

well as data compilation from the previous reported

studies by Farisham (2007), and Low and Ali

(2012), a total of 28 major historical landslide

events have been reported in the Hulu Kelang area

from 1990 to 2011 (Fig. 2a).

3.2 Lithology-Weathering

The types of regolith material has a strong correlation

with slope instability (Derbyshire et al. 2000;
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D’Amato Avanzi et al. 2004; Wakatsuki et al. 2005;

Sidle and Ochiai 2006). Weathering alters the

mechanical, mineralogical and hydrologic attributes

of regolith (Chigira 2002; Wakatsuki et al. 2005), and

it is suggested that the effect is even more profound in

tropical regions like Malaysia. Geological map at Hulu

Kelang (Fig. 2b) revealed that the area is generally

underlain by granitic rocks, phyllite-schist, and lime-

stone with minor intercalations of phyllite. More than

90 % of the historical shallow landslides in Hulu

Kelang occurred on highly/completely weathered

granitic rock formation (Table 1).

3.3 Landcover

Landcover is an important extrinsic factor for slope

stability. For instances, vegetated areas tend to reduce

the action of climatic agents such as rainfall infiltra-

tion. Thus, a vegetated slope should possess lower

landslide susceptibility than a barren slope. The

landcover map in this study area was classified by

the Department of Survey and Mapping Malaysia

(JUPEM). Under the classification system, nine

different types of landcovers were identified, i.e.

primary forest, secondary jungle, rubber, resort and

Fig. 1 Location of Hulu

Kelang area, Kuala Lumpur,

Malaysia
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recreation, sundry tree cultivation, grass, cleared land,

urban area, and lake while, resort and recreation cover

is in combination with urban area (Fig. 2c). Historical

slope failures were mainly scattered on the rubber

plantation as a crop agriculture area and grassland

areas in the Southeast Asia. These areas have

Fig. 2 a Landslide inventory map of Hulu Kelang area b Litology c Land cover d Slope inclination
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Table 1 AHP and frequency ratio values of the data layers

Factor Class % of

total

area

% of

landslide

area

AHP Frequency

ratio
Third

level (C)

Second

level (B)

Final

weights

Lithology Granite 54.08 44.08 0.571 0.216 0.123 1.345

Physchist 42.51 16.53 0.286 0.062 0.642

Limestone 3.41 0.00 0.143 0.031 0.000

Landcover Prim. forest 31.61 7.35 0.04 0.154 0.006 0.383

Sec. forest 1.88 2.20 0.158 0.024 1.934

Rubber 14.29 21.67 0.285 0.044 2.502

Sundry tree cultivation 1 0.00 0.04 0.006 0.000

Grass 2.87 3.67 0.315 0.049 2.112

Cleared land 4.64 2.57 0.082 0.013 0.914

Urban area 43.25 23.14 0.04 0.006 0.883

Lake 0.47 0.00 0.04 0.006 0.000

Slope inclination 0–10 56.69 32.32 0.035 0.154 0.005 0.941

10–20 15.16 15.43 0.069 0.011 1.679

20–30 22.01 9.92 0.148 0.023 0.743

30–40 5.54 2.20 0.193 0.030 0.656

40–50 0.49 0.73 0.259 0.040 2.474

50–90 0.11 0.00 0.296 0.046 0.000

Slope aspect North 5.77 6.61 0.024 0.118 0.003 1.891

Northeast 5.08 2.57 0.113 0.013 0.835

East 7.5 7.35 0.215 0.025 1.616

Southeast 8.75 0.37 0.093 0.011 0.069

South 8.08 7.71 0.024 0.003 1.575

Southwest 8.75 3.67 0.134 0.016 0.693

West 10.77 1.47 0.215 0.025 0.225

Northwest 7.93 8.45 0.134 0.016 1.758

Flat 37.37 22.41 0.049 0.006 0.989

Plan curvature Concave 34.87 23.88 0.588 0.084 0.049 1.130

Flat 30.89 17.63 0.089 0.007 0.942

Convex 34.24 19.10 0.323 0.027 0.920

Elevation 0–100 48.24 34.89 0.467 0.046 0.021 1.194

100–200 31.92 25.71 0.277 0.013 1.329

200–300 17.99 0.00 0.16 0.007 0.000

300–425 1.85 0.00 0.095 0.004 0.000

Distance to the roads

and trenches

0–25 10.13 11.75 0.442 0.050 0.022 1.915

25–50 13.22 19.83 0.228 0.011 2.476

50–75 7.22 1.47 0.112 0.006 0.336

75–100 5.82 2.94 0.091 0.005 0.833

100–125 5.04 6.61 0.07 0.004 2.165

125\ 58.57 18.00 0.056 0.003 0.507
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undergone land cover change processes, i.e. progres-

sive forest clearing, and conversion to rubber planta-

tion or grassland (Table 1).

3.4 Slope Inclination

The factor of safety of a slope is defined by ratio of

resistive force to sliding force. The sliding force is a

function of slope angle. The steeper the slope, the

larger the sliding force, and hence the lower the factor

of safety of the slope (Saha et al. 2002; Cevik and

Topal 2003; Ercanoglu et al. 2004; Lee et al. 2004a,b;

Lee 2005; Yalcin 2008). In the present study, the slope

angles were divided into five categories, i.e. 0�–10�,

10�–20�, 20�–30�, 30�–50�, and[50� (Fig. 2d). Based

on the distributions of the historical landslide events, it

was found that 98.8 % of the landslides occurred on

slopes between 0� and 40� (Table 1).

3.5 Slope Aspect

Aspect affects hydrologic processes of slopes via

evapotranspiration. The hydrologic process, in turn,

governs the weathering process, vegetation and root

Table 1 continued

Factor Class % of

total

area

% of

landslide

area

AHP Frequency

ratio
Third

level (C)

Second

level (B)

Final

weights

Distance to lake and streams 0–25 12.29 6.61 0.391 0.052 0.020 0.888

25–50 22.11 9.92 0.175 0.009 0.740

50–75 12.51 8.45 0.14 0.007 1.114

75–100 8.74 3.31 0.078 0.004 0.624

100–150 10.96 2.20 0.059 0.003 0.332

150–200 5.86 2.57 0.059 0.003 0.724

200–250 5.26 7.35 0.049 0.003 2.304

250\ 22.26 16.53 0.049 0.003 1.225

Drainage density 0–0.0025 44.22 11.75 0.102 0.056 0.006 0.439

0.0025–0.005 8.69 0.00 0.046 0.003 0.000

0.005–0.0075 8.88 2.94 0.09 0.005 0.546

0.0075–0.01 14.17 19.10 0.127 0.007 2.224

0.01–0.0125 10.89 15.06 0.235 0.013 2.282

0.0125–0.015 9.74 11.75 0.296 0.017 1.991

0.015–0.03 0.62 0.00 0.052 0.003 0.000

0.03–0.135 2.78 0.00 0.052 0.003 0.000

Topographic wetness

index (TWI)

6–9.32 0.00 0.00 0.081 0.039 0.003 0.858

9.32–11.04 0.62 0.00 0.043 0.002 0.000

11.04–12.76 7.58 4.85 0.043 0.002 0.000

12.76–14.48 11.61 24.24 0.132 0.005 0.640

14.48–16.2 3.09 6.06 0.409 0.016 2.089

16.2–17.9 0.59 0.61 0.159 0.006 1.962

17.9–19.3 0.59 0.00 0.043 0.002 1.025

Stream power index (SPI) 6–8.74 1.15 0.61 0.086 0.031 0.003 0.000

8.74–10.44 0.94 0.00 0.086 0.003 0.858

10.44–12.15 3.08 6.06 0.04 0.001 0.526

12.15–13.85 11.88 13.94 0.362 0.011 0.000

13.85–15.56 7.53 14.55 0.111 0.003 1.968

15.56–16.6 0.51 0.00 0.275 0.009 1.173
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development in soil slopes, particularly in dry envi-

ronments (Sidle and Ochiai 2006). In this study, the

aspect map was generated from DEM under nine

categories, i.e. flat area (-1�), north (337.5�–22.5�),

northeast (22.5�–67.5�), east (67.5�–112.5�), south-

east (112.5�–157.5�), south (157.5�–202.5�), south-

west (202.5�–247.5�), west (247.5�–292.5�), and

northwest (292.5�–337.5�). Observations from the

landslide inventory map revealed that about 48.5 %

of the landslides occurred on the slopes inclined to NE,

SW directions (Table 1).

3.6 Plan Curvature

Plan curvature generally refers to geometry of the

earth surface and it describes how the inclination or

aspect of a slope changes (Wilson and Gallant 2000;

Nefeslioglu et al. 2008). In this study, three zones were

identified based on their plan curvatures: positive

curvature (convex), negative curvature (concave), and

zero curvature representing flat surface. The analysis

of landslide distribution density showed that 40 % of

the landslides located in the concave zone, while 31 %

of the landslides occurred in the convex zone

(Table 1).

3.7 Elevation (DEM)

Figure 2a shows the digital elevation model (DEM) of

the study area from the mean sea level (MSL).

Elevation has an important influence on earth surface

and topographic attributes. These attributes often

account for spatial variability of different landscape

processes such as vegetation distribution that are

influenced by topographic effects. At this study, the

DEM was derived using photogrammetric techniques.

A series of aerial photographs from 1966 to 2003 were

provided by department of surveying and mapping

Malaysia (JUPEM). The cloud of photographic points

extracted from aerial photographs data was therefore

imported into a GIS environment. In addition to the

points obtained using the photogrammetric analysis,

the contour lines of the Regional Topographical Map

at a 1:10,000 scale is extracted in standard topographic

Ampang and Kampung Kelang Gates Baharu maps. In

this study, five categories of elevations were identi-

fied, i.e. 0–50, 50–100, 100–200, 200–300, and

[300 m. Most of the landslide distribution densities

occurred at 0–100 m (57.6 %) and 100–200 m

(42.4 %) (Table 1).

3.8 Distance to the Roads and Trenches

Distance to roads and trenches could be a controlling

factor for slope stability (Ayalew and Yamagishi

2005; Yalcin 2005). Road construction activities such

as soil excavation, imposing of surcharge load,

removal of vegetation cover may cause failures to

the slopes which are otherwise stable. Six buffers were

created based on the distance to roads, i.e. 0–25,

25–50, 50–75, 75–100, 100–125, and[125 m. About

86 % of past slides occurred 0–50 m from a roadway

(Table 1).

3.9 Distance to Lake and Streams

It is essential to analyze the stream networks in

landslide assessments because subsurface flows con-

trol the direction of groundwater movement, influence

both the temporal and spatial pore-water pressure

distribution in soil, and consequently alter the stability

of slopes. In this study, eight buffers were created

based on the distance to streams, i.e. 0–25, 25–50,

50–75, 75–100, 100–150, 150–200, 200–250, and

[250 m. Most of the historical landslides were

located between 0 and 75 m from a stream (Table 1).

3.10 Drainage Density

Drainage density is the proportion of the total length of

the water flow to the total area of the drainage basin. It

is a measure of how well a watershed is drained by

river channels. A high drainage density indicates a low

infiltration capacity and a quick surface runoff (Nag-

arajan et al. 2000; Cevik and Topal 2003; Nandi and

Shakoor 2009). Drainage networks in this study were

extracted directly from the DEM. Eight drainage

buffer zones were produced to define the extent of

slope instability caused by streams. These drainage

buffer zones were: Zone A (0–0.0025 m-1), Zone B

(0.0025–0.005 m-1), Zone C (0.005–0.0075 m-1),

Zone D (0.0075–0.01 m-1), Zone E (0.01–

0.0125 m-1), Zone F (0.0125–0.015 m-1), Zone G

(0.015–0.03 m-1), and Zone H (0.03–0.135 m-1).

The drainage density analyses showed that all the

historical landslides occurred within the density range

of 0–0.015 m-1 (Table 1).
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3.11 Topographic Wetness Index (TWI)

The TWI is a ratio of contributing catchment area to

slope inclination (Wilson and Gallant 2000). TWI

values estimate soil moisture, or the degree of surface

saturation and subsurface soils on land gradients that

are correlated to slope instability. TWI is calculated

as: Ln [AS/TAN(b)], where AS is the specific catch-

ment area of each cell and b represents the slope

gradient (in degrees) of the topographic heights

(Moore et al. 1988). The study area was divided into

eight different classes of TWI ranging from 0 to 19.3.

Table 1 shoes that 35.76 % of the historical landslides

occurred within the TWI range of 11.04–17.9.

3.12 Stream Power Index (SPI)

The SPI is a way of measuring the power of surface

water to erode surfaces based on the hypotheses that

discharge (q) is proportional to the specific catchment

area (As). The SPI value is governed by two param-

eters: viscosity of the land slope and steepness of the

terrain. The SPI is expressed as SPI = Ln [AS*TAN

(b)] (Moore et al. 1988). Seven SPI classes were used

in this study and they ranged from 0 to 16.6. The SPI

analysis showed that 57 % of the historical landslides

occurred within the SPI range of 10.44–15.56

(Table 1).

4 Analysis of Landslide Susceptibility

In this study, analyses of the susceptibility to land-

slides was carried out using the AHP and probabilistic

frequency ratio models. Prior to the analyses, the

factors affecting landslides in Hulu Kelang area were

identified. Landslide regions were defined using the

landslide inventory map and satellite images.

4.1 Analytical Hierarchy Process (AHP)

One method of analyzing complex decisions based on

quantifiable and tangible criteria is the AHP (Vargas

1990). AHP breaks an unstructured and complex

problem down into simple component parameters and

then arranges them in hierarchic order, gives them a

numerical value that reflects their relative importance

before finally defining the priorities to be assigned to

the parameters (Saaty and Vargas 2001). This tech-

nique has been used successfully to map landslide

susceptibility (Ayalew et al. 2004, 2005; Komac 2006;

Yoshimatsu and Abe 2006; Akgün et al. 2007, 2008;

Castellanos EA and Van-Westen CJ 2007).

AHP involves structuring a problem into primary

and secondary objectives. Upon establishment of the

hierarchy, a pairwise comparison matrix for each

factor in each level is constructed. Each factor is

weighed against other factors within the same level,

and correlate to the levels above and below its

position. The entire scheme is mathematically joined,

resulting in a priority statement for each individual or

group (Table 1).

The consistency of a matrix was checked by

calculating the consistency ratio (CR):

CR ¼ CI

RI
ð1Þ

where RI is the average value of the consistency

index (Table 2) created using a random matrix that

depends on the matrix order and CI is the consis-

tency index (Saaty 1977). A matrix with a satisfac-

tory consistency level should yield a CR of \0.10.

The consistency index (CI) and average RI obtained

from the matrices 11 9 11 in the present study were

0.453 and 1.51, respectively yielding an consistency

ratio (CR) of 0.03. The low consistency ratio

(\0.10) implied that the computed weight for each

factor was acceptable.

4.2 Probabilistic Frequency Ratio Model

The probabilistic frequency ratio method is based on

the distribution of landslides and the parameters

related to landslides so that the correlation between

the location of the landslide and the parameters for the

area can be represented (Pradhan et al. 2010). The first

Table 2 Consistency index of random matrix

N 1 2 3 4 5 6 7 8 9 10

Consistency index of random matrix, IR 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

* N in symmetric matrix (n 9 m) equal to the number of columns
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step was to calculate the frequency ratio for each

parameter based on its relationship to landslides, as

shown in Table 1. Next, the frequency ratio for the

sub-criteria of each parameter was calculated. These

ratios were used to find the landslide susceptibility

index (LSI; refer to Eq. 1; Lee and Pradhan 2007).

LSI ¼ Fr1 þ Fr2 þ Fr3 þ � � � þ Frn ð2Þ

where, Fr is the rating for each parameter. According

to the probabilistic frequency ratio method, an average

LSI has a value of unity. A value of[1 indicates that

there is a strong relationship between the landslide and

the parameter being investigated (Akgun et al. 2007).

5 Results and Discussion

The landslide susceptibility maps were determined

using six different weighting procedures in a GIS-

based tool; very low (the lowest susceptibility), low,

moderate, high, very high, and critical (The highest

class) susceptibility. The area and distribution per-

centage of the susceptibility landslide classes in the

study area were prepared as a conclusion of the two

different methods; AHP and probability–FR models.

5.1 Application of Analytical Hierarchy Process

Model (AHP)

The conclusions of spatial relationship between land-

slides and landslide conditioning factors using AHP

model is shown in Table 1. The geological character-

istic of the study area is consisting of three classes of

lithological units; granitic rocks, phyllite-schist, and

limestone with minor intercalations of phyllite. The

AHP was higher (0.571) in granite and (0.286)

phyllite-schist and lower (0.143) in limestone bed-

rocks. Investigation of soil type showed that granite

residual soil and phyllite residual soil are more

suitable for landslide occurrence with AHP model.

In the case of land cover, higher frequency ratio value

was seen for grassland (0.315) and rubber region

(0.285) types of land cover. This result referred to

anthropogenic (human-caused) interpositions such as

land cover change. The slope inclination classes

showed that 50–90� classes have higher FR weight

(0.296). As the slope inclination increases, the shear

strength in the soil or other unconsolidated soil layers

generally decreases. In the case of slope aspect, most

of the slope failures occurred in north-east and south-

west facing. This condition may be conclusion of

direction of the two monsoon influenced in this area.

The plan curvature values expose the morphology of

the terrain surface. A positive curvature is an upwardly

convex cell, and a negative curvature is upwardly

concave cell. Concave regions have a higher AHP

value (0.588) than convex lands. The curvature area,

in turn, will increase the moisture content, which will

remain saturated, increase erosion and decrease slope

stability. In the case of altitude, both 0–100 and

100–200 m classes have 46.7 and 27.7 % of landslide

probability and AHP values of 0.467 and 0.277

respectively. The Hulu Kelang area represents that

the elevation ranges from 0 to 425 m above mean sea

level and 100 % of landslide located in range of

0–200 m. Road construction activities such as soil

excavation, imposing of surcharge load, cut slope,

embankment alongside road, and removal of vegeta-

tion cover may cause failures to the slopes which are

otherwise stable. The distance to roads analyses

showed that landslides usually occurred at the dis-

tances between 0–25 and 25–50 m respectively

(Table 1). The connection between distance to rivers

and slope failures indicates direct values. And the

distance from rivers augments the constituting of

landslide is decreases. The AHP in range between

0–25 and 25–50 m distance show the highest weight

(Table 1). In the case of drainage density, the AHP

results showed that increasing drainage density has

obvious trend in increasing landslide in class

0–0.015 m-1. Relation between TWI and landslide

probability showed that 12.76–14.48 class has the

highest value of AHP (0.409). Similarly, for SPI, class

10.44–12.55 has the most AHP value (0.275). On

conclusion of the analyses the frequency of each

layer’s classes was defined, and a LSI map (Fig. 3)

was yielded by the landslide susceptibility map using

AHP model.

5.2 Application of Frequency Ratio Model

Similarly, the conclusions of spatial relationship

between landslides and landslide conditioning factors

using FR model is represented in Table 1. In the case

of the lithology, Granite rack includes 1.345 of the

higher FR with 74 % of landslide events. The land

cover factor is very important for landslide suscepti-

bility studies, particularly the mostly of hazard regions
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that are covered with different vegetation. Rubber

plantation, grassland, and secondary jungle lands

display more saturation and greater landslides than

other places. Slope failures are largely represented in

rubber and grassland areas. The rubber and grass areas

are the result of land cover change, Progressive forest

clearing, and conversion to rubber plantation. The

potential of the landslide events is high in these

regions, the FR being 2.50 and 2.11, respectively

(Table 1). The connection between slope failures and

slope inclination gives direct values. Normally, the

increase of slope degree propagates the landslide

constituting should be growth. Accordingly, in this

study, the increase of slope degree develops the

landslide constituting rises (Table 1). 100 % of

landslide events located in slope range of 0�–50�
include 0�–10� (0.941), 10�–20� (1.679), 20�–30�
(0.743), 30�–40� (0.656), and 40�–50� (2.474) of the

higher FR, respectively. In the case of slope aspect, the

estimation of the slope aspect parameter on North-

facing slopes represents high probability (1.891) of

landslide occurrence (Table 1). In the case of plan

curvature, Concave lands have a higher FR value

(0.588) than convex lands. The elevation–landslide

analysis determined that landslides frequently

occurred from sea level to 200 m; in specific, the FR

is very high in the elevation range of 100–200 m

(Table 1). Conclusions defined that the FR values

decreased with the altitude growth in the study area

(Table 1). In the case of distance from roads, higher

Fig. 3 Landslide

susceptibility map produced

from AHP model
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FR value 0.650, 0.907 were found for distances

between 0–25 and 25–50 m respectively. In the study

area, road construction and embankment erosion are

the most important factors in land gradient imbalance

causing frequent occurrence of slope failures. Assess-

ment of distance from rivers is represented that

distance of 0–75 m have high correlation with land-

slide occurrence (Table 1). From this observation, we

can conclude that the general trend of the FR value

decreases with the distance from the rivers and roads.

In the case of drainage density, most of the landslides

occurred in 0–0.0025 m-1 class (FR value of 0.439).

The relation between TWI and landslide probability

indicated that class between 12.76–14.48 has most FR

value. Similarly, for SPI values, 10.44 and 12.15 class

has the highest value of FR 1.968. On conclusion of

the analysis the frequency of each layer’s classes was

defined, and a LSI map (Fig. 4) was yielded by the

landslide susceptibility map using FR model.

5.3 Validation of the Susceptibility Maps

5.3.1 Receiver Operating Characteristics (ROC)

The final landslide susceptibility maps were evaluated

in regards to unknown future landslides (Chung and

Fabbri 2003). A ROC curve is an effective way to

indicate the quality of probabilistic and deterministic

findings and forecast systems (Swets 1988). In this

study a ROC curve test was used as a cross-validation

Fig. 4 Landslide

susceptibility map produced

from probability-frequency

ratio (FR) model
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method. First, the historical landslide events were

divided into two groups. The modeling group, which

represented approximately 70 % of the total land-

slides, was used as a training set to construct the

susceptibility maps. The remaining 30 % of landslides

were used for prediction testing. The regions that were

not affected by landslides were used as prediction

group during the training phase. The regions affected

by landslides were used in the training set labeled

‘‘areas prone to landslides’’. The true positive rate of

the Y-axis and the false positive rate of the X-axis were

plotted using the ROC curve. This value ranged from

0.5, which indicated a random prediction, represented

by the diagonal straight line, to one, which indicated an

excellent prediction that could be used to collect the

relative ranks for each prediction type (Cervi et al.

2010). In this study, the percentage of unstable pixels

was correctly predicted by the model as was the

specificity validation or the percentage of predicted

unstable pixels. The result of sensitivity analysis

indicated that the probabilistic FR model (Fig. 5) was

more efficient in terms of its predictions when com-

pared to AHP model used in this study. The area under

curve (AUC) for the landslide susceptibility map

produced using the probabilistic frequency ratio model

was 0.8154 (prediction accuracy = 81.5 %) as deter-

mined by the ROC plot assessment. The AUC for the

AHP model has shown 0.7130 (Table 3). With respect

to predicted unstable pixels (Fig. 6), the AUC for the

probabilistic frequency ratio was also the highest

(0.7904), and the AHP model was lower than FR by

0.6787 (Table 4). From the ROC curve test, it can be

concluded that the probabilistic frequency ratio model

was the best modeling technique used in this study.

6 Prediction of Landslides

One main objective of this study was to evaluate the

spatial predictability of landslide events in Hulu

Kelang area, using the AHP and probability-FR
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Fig. 5 Success rate curves for the two landslide susceptibility

maps

Table 3 Comparison of success rate curves for the four

landslide susceptibility maps

Model AUC Prediction

Probability–frequency ratio 0.8154 Very good

Analytical hierarchy process (AHP) 0.7130 good
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Fig. 6 Prediction rate curves for the two landslide susceptibil-

ity maps

Table 4 Comparison of prediction rate curves for the four

landslide susceptibility maps

Model AUC Prediction

Probability–frequency ratio 0.7904 good

Analytical hierarchy process (AHP) 0.6787 moderate
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models for regional landslide hazard assessment. The

success of landslide prediction model has been

typically evaluated by comparing locations of mea-

sured landslides with the predicted results. Thus, the

landslide ratio of each predicted hazard class (land-

slide ratio for each predicted hazard class) was

employed for evaluating the performance of the

landslide model. Landslide ratio for each predicted

hazard class (LRclass) was based on the ratio of

landslide sites contained in each hazard class, in

relation to the total number of actual landslide sites,

according to the predicted percentage of area in each

class of hazard category.

LRclass ¼ % of contained landslide sites in each class of hazard

% of predicted landslide areas in each class of hazard

Note that in the numerator, the number of landslide

sites, instead of the number of landslide cells, is used.

The performance value derived by LRclass enables

consideration of predicted stable areas as well as

predicted unstable areas, and thus substantially

reduces the over-prediction of landslide potential.

Unlike the numerator, the number of predicted and

total cells is used in denominator. The numerator, also,

is the same as the SR (success ratio) index. Tables 5

and 6 show that 5.1 and 15.09 % of the area were

classified as unstable (hazardous area C high), and

that 33 and 49 % of the actual landslides were

correctly localized within this predicted unstable

areas, respectively. AHP model represented the

LRFS C high about 17.2 by calculating the % of

LRclass equal to 90.27 %. The % of LRFS C high of

FR model presented about 96.37 % by calculating the

LRclass equal to 35.17, if a landslide happens, then

predicted unstable area (hazardous area C high) has

90 % chance of including the landslide.

7 Conclusion

This paper provides a susceptibility assessment of

shallow landslides in Hulu Kelang area, Kuala Lum-

pur, Malaysia using AHP and probability–FR meth-

ods. Two landslide susceptibility maps were produced

and their reliabilities were verified by the ROC and

active landslide zones. The susceptibility level was

classified into five categories, namely equal, moderate,

high, very high, and extreme. The spatial distributions

of the landslide susceptibility zones showed that most

of the landslide prone areas located near the toe of

hillsides with intensive new developments. The rela-

tively flat and well developed areas at the east of Hulu

Kelang are less susceptible to landslide. The predic-

tion rate of ROC curves for the susceptibility maps

Table 5 Summary of AHP

model results in landslide

simulations

AHP Landslide

site (a)

% of landslide

site (c) = a/b

% of predicted

area (d)

LRclass

(e) = c/d

% of

LRclass = e/f

Very low 4 2 7.30 0.22 1.16

Low 82 33 56.83 0.58 3.05

Moderate 80 32 30.77 1.05 5.50

High 75 30 4.67 6.47 33.96

Very high 8 3 0.30 10.73 56.31

Critical 0 0 0.13 0 0

Sum 249 (b) 100.000 100.00 19.06 (f) 100.00

Table 6 Summary of FR

model results in landslide

simulations

FR Landslide

site (a)

% of landslide

site (c) = a/b

% of predicted

area (d)

LRclass

(e) = c/d

% of

LRclass = e/f

Very low 0 0 4.34 0.00 0.00

Low 28 11 43.22 0.26 0.72

Moderate 99 40 37.35 1.07 2.93

High 83 33 12.89 2.60 7.11

Very high 27 11 2.02 5.38 14.75

Critical 12 5 0.18 27.19 74.51

Sum 202 (b) 100.000 100.00 36.49(f) 100.00
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indicated that the probabilistic frequency ratio model

had the highest prediction accuracy ([81 %), while

the AHP model showed the middle prediction accu-

racy (71.3 %). A landslide susceptibility map for Hulu

Kelang area was successfully developed. And the field

observation verification results showed that 96.37 %

of the historical landslide events occurred in the zones

of high–very high landslide susceptibility based on FR

model. The results proved that the developed landslide

susceptibility map is reliable and capable of providing

good predictions on the spatial distributions of land-

slide occurrence in the study area.
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