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Abstract This paper investigates the performance of

geo-reinforced soil structures subjected to loading

applied to strip footings positioned close to a slope

crest. The kinematic theorem of limit analysis, which

is based on the upper bound theory of plasticity, is

applied for evaluating the ultimate bearing capacity

within the framework of pseudo-static approach to

account for earthquake effects. The mechanism con-

sidered in this analysis is a logarithmic spiral failure

surface, which is assumed to start at the edge of the

loaded area far from the slope, consistent with the

observed failure mechanisms shown in the experi-

mental tests reported in the literature. A parametric

study is then carried out to investigate the influence of

various parameters including the geosynthetic config-

uration, backfill soil friction angle, footing distances

from the crest of the slope, slope angles and horizontal

seismic coefficients. Attention is paid to the failure

mechanism because its maximum depth is the depth at

least to which the reinforcements must be placed.

Results of the analyses are presented in the form of

non-dimensional design charts for practical use.

Finally, a simple procedure based on the assessment

of earthquake-induced permanent displacements is

shown for the design of footing resting on reinforced

slopes subjected to earthquake.

Keywords Bearing capacity � Strip footing �
Geo-reinforced soil structures � Pseudo-static

analysis � Permanent-displacement

1 Introduction

Footings are sometimes built on geosynthetic rein-

forced soil structures, such as walls and artificial

slopes. Such structures are used quite extensively to

support bridge loads and to form approach roads. In

fact, the bearing capacity of a footing on a sloped fill

structure can be considerably improved by incorpo-

rating geosynthetic reinforcements down to an appro-

priate depth. To design a footing on a reinforced

sloped fill it is important to understand fully the effect

of the load on the structure performance.

Several studies, especially experimental, on the use

of reinforcements to improve the bearing capacity

behaviour of footings on soil structures have been

reported in the literature. They mainly include: studies

of full-scale structures (Thamm et al. 1990; Bathurst

et al. 2003; Yoo and Kim 2008), reduced-scale

models, where the investigations were performed with

soil structures with slope angle ranging essentially

between 20� and 35� (Selvadurai and Gnanendran
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1989; Huang et al. 1994; Shin and Das 1998; Lee and

Manjunath 2000; Yoo 2001; El Sawwaf 2007; Alam-

shahi and Hataf 2009; Choudhary et al. 2010) and

centrifuge model tests (Sommers and Viswanadham

2009). Some Authors have also shown a comparison

of these laboratory model test results with those

obtained by analytical and numerical approaches.

Bathurst et al. (2003) reported the results of an

experimental investigation on two large-scale geosyn-

thetic reinforced soil embankments and one unrein-

forced soil embankment 3.4 m high. The results show

that the ultimate footing load capacity of the reinforced

soil embankments is 1.6–2.0 times that of the nominal

identical control embankment without reinforcement.

Selvadurai and Gnanendran (1989), Lee and Manj-

unath (2000) and Huang et al. (1994) reporting the

results obtained by small-scale tests show that the

load–settlement behaviour and ultimate bearing

capacity of the footing can be significantly improved

using reinforcing layer at the appropriate location in

the fill slope. Lee and Manjunath (2000) also show that

for both reinforced and unreinforced slopes, the

bearing capacity decreases with an increase in slope

angle and a decrease in edge distance and that at an

edge distance of five times the width of the footing, the

bearing capacity becomes independent of the slope

angle. The study of Huang et al. (1994) focused on the

failure mechanism of the reinforced slope and the

strain distributions in geogrid layers. Yoo (2001) drew

the conclusion that the failure zone for the reinforced

slope loaded with a footing tends to become wider and

deeper than that for the unreinforced slope and this

affects the required anchorage length of reinforce-

ments. The results obtained by Alamshahi and Hataf

(2009) on a sand slope also show that the presence of

reinforcement increases the bearing capacity behav-

iour and this increase depends greatly on the geogrid

distribution. Moreover, the effect of the ordinary

geogrid in improving the soil bearing capacity is less

than that of the grid-anchor reinforcement.

El Sawwaf (2007) investigated the bearing capacity

of a strip footing resting on a replaced sand layer

constructed on a soft clay slope also in the presence of

geogrid reinforcement. The study focused on the

influence between the footing response and the

replaced sand depth, the distance of footing from the

edge slope and the geosynthetic configurations.

Choudhary et al. (2010) conducted a series of

model footing tests on bearing capacity behaviour of a

strip footing on reinforced slope covering a wide range

of boundary conditions. These experimental results

are highly consistent with the results reported previ-

ously in the literature although the fill material used in

the study is flyash, an industrial waste.

Sommers and Viswanadham (2009), on the basis of

their centrifuge model tests, reported that the vertical

spacing between reinforcement layers has a significant

impact on the stability of a reinforced slope when

subjected to vertical loading and less vertical distance

between reinforcement layers allows the slope to

tolerate much greater loads than layers spaced further

apart.

In addition, analytical models have been developed.

They are most used by practitioners to analyze the

bearing capacity of footings resting on reinforced soil

structures.

Zhao (1996a) used the slip-line method to calculate

the limit loads on geosynthetic-reinforced soil slopes,

and he also presented the stress characteristic fields to

better understand the plastic failure regions of reinforced

structures. These results were compared with those

obtained using the limit analysis method (Zhao 1996b).

To analyze the bearing capacity of footing placed

on reinforced soil structures under seismic condition

Jahanandish and Keshavarz (2005) presented a new

approach to the slip-line method. They considered

uniform or non-uniform distribution of the reinforce-

ment and showed the results in the form of non-

dimensional design charts.

Basha and Basudhar (2010) used the limit equilib-

rium method with a logarithmic spiral failure surface

to analyze reinforced soil structures under the seismic

condition also in the presence of surcharge load placed

on the backfill.

Ausilio (2012) presented the results obtained with

the kinematic theorem to show the effects of both soil

and structure inertia and of seismic vertical acceler-

ation on the reduction of the seismic bearing.

The above studies considered a uniformly distrib-

uted load while surprisingly, analytical studies on the

bearing capacity behaviour of a strip footing with

loading width placed close to the crest of a reinforced

slope are limited.

Blatz and Bathurst (2003) used a conventional two-

part wedge limit equilibrium method to predict the

ultimate capacity of a footing placed close to the crest

of the earth structure constructed with multiple layers

of geogrid reinforcement.
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Haza et al. (2000) used the overall approach of the

double wedge method based on the limit equilibrium

principle to evaluate the stability of a reinforced

structure with a local surcharge load. The studies of

Blatz and Bathurst (2003) and of Haza et al. (2000)

considered the static case.

The seismic performance of a geo-reinforced

structure is usually analyzed with the pseudo-static

approach. The pseudo-static approach generally leads

to a conservative design and for large values of the

seismic coefficient the design could prove very

expensive, and in some cases even impracticable. In

such circumstances it is reasonable to accept that the

reinforced slope is affected by tolerable permanent

displacement and so it is necessary to use an alterna-

tive approach based on the assessment of

displacement.

Several methods have been proposed for predicting

the seismic induced permanent displacement of earth

structures. Most of these methods are based on the

rigid-block analysis procedure originally proposed by

Newmark (1965) and they refer to geosynthetic

reinforced soil retaining walls or slopes (Cai and

Bathurst 1996; Ling et al. 1997; Ling and Leshchinsky

1998; Ausilio et al. 2000; Kramer and Paulsen 2004;

Huang and Wang 2005).

This paper uses the kinematic approach of limit

analysis as a theoretical framework to derive upper

bound solutions for the seismic bearing capacity of

shallow strip foundation on geo-reinforced soil struc-

tures. The analysis is based on the pseudo-static method

and the dynamic effects of earthquake shaking on the

pore pressures and the change of soil strength are

disregarded. A parametric study is carried out to

investigate the influence of various parameters on the

bearing capacity including the geosynthetic configura-

tion, edge distance between the footing and the crest of

the slope, slope angle, backfill soil friction angle,

horizontal seismic coefficients. The results of the

analysis are presented in the form of non-dimensional

graphs to facilitate preliminary design with static and

pseudo-static conditions.

Finally, a simple and rational procedure based on

the assessment of earthquake-induced permanent

displacements is proposed for the design of a strip

footing placed close to the crest of the geo-reinforced

soil structures subjected to earthquake loading. Exam-

ples illustrating the application of the preliminary

design procedures are presented.

2 Method of Analysis

The kinematic theorem of the plasticity theory is

applied here for evaluating the seismic bearing

capacity of a strip footing of width B on a geosynthetic

reinforced soil slope at a distance D from the edge

(Fig. 1). Application of this theorem states that the rate

of internal work is not smaller than the rate of work of

external forces in any kinematically admissible col-

lapse mechanism and that the soil deforms plastically

according to the normality rule associated with the

Coulomb yield condition.

According to the pseudo-static approach, the

earthquake effect is considered in an approximate

manner as equivalent horizontal and vertical forces

acting both on the foundation and on the soil below the

foundation. The horizontal and vertical inertial forces

in the soil are calculated as the product of the seismic

intensity coefficients (kh and kv) and the weight of the

potential sliding mass, whereas those applied to the

foundation are calculated as the product of seismic

intensity coefficients (kh1 and kv1) and a uniform

distributed load, q, which is assumed to be applied to

the foundation soil. The seismic coefficients for the

foundation, kh1 and kv1, and the inertia forces of the

soil mass, kh and kv, can be different, to make the

solution as general as possible (Askari and Farzaneh

2003; Castelli and Motta 2010; Sawada et al. 1994).

This also allows the ductility classes of the structures

in elevation to be taken into account (Eurocode 8—

Fig. 1 The geometry of the reinforced soil structure with the

log-spiral failure surface
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Part 1 and 5 2003). Positive values of kv and kv1 are

assumed to act upwards, whereas positive kh and kh1

indicate inertial forces acting in direction away from

the slope.

The kinematically admissible mechanism consid-

ered in this work is illustrated in Fig. 1. This

mechanism is characterized by a log-spiral failure

surface, which is assumed to pass through the right-

edge of strip footing on the surface of the reinforced

slope and it is consistent with the observed failure

mechanisms shown in the tests both full-scale struc-

tures and reduced small models (Thamm et al. 1990;

Bathurst et al. 2003; Selvadurai and Gnanendran 1989;

Huang et al. 1994; Yoo 2001; Sommers and Viswa-

nadham 2009). The reinforced soil mass rotates as a

rigid body with velocity of rotation _x about the log-

spiral center O. The geometry of the failure surface is

described by the log spiral equation:

r ¼ roeðh�h0Þtgu ð1Þ

where ro is the radius at initial angle ho, as shown in

Fig. 1, and u is the angle of soil shearing resistance.

The rate of external work is due to rate work done

by soil weight and inertial forces and it can be written

as:

_W ¼ ð1� kvÞcr3
o _xðf1 � f2 � f3Þ

þ khcr3
o _xðf4 � f5 � f6Þ

ð2Þ

where c is the soil unit weight.

The functions f1–f6 are dependent on the slope angle

(b), the angles defining the position of the failure

surface, (ho, hh) and the angle of soil shearing

resistance (u). They can be found in several works

(Chang et al. 1984; Saada et al. 2011).

The rate of internal dissipation derived by Chen

(1975) is:

_Dc ¼
c _xr2

0

2 tan u
e2ðhh�h0Þtgu � 1
h i

ð3Þ

where c is the soil cohesion.

The rate of work done by the surcharge boundary

load q and inertial forces is:

_Q ¼ ð1� kv1ÞqB _x r0 cos h0 �
B

2

� �
þ kh1qB _xr0 sin h0

ð4Þ

where B is width of the strip footing.

For uniformly placed geosynthetic reinforcement,

the energy dissipation rate during rotational failure

due to reinforcement is calculated by integrating the

unit energy dissipation and it can be written as:

_D ¼ 1

2
kt _xr2

0 sin2 hhe2ðhh�h0Þtgu � sin2 h0

h i
ð5Þ

where kt is an average tensile strength per unit cross-

section and it is defined as:

kt ¼
T

d
ð6Þ

where T is the tensile strength of a single the

reinforcement layer per unit width, and d is the

vertical distance between the layers of the reinforce-

ment layers. In this paper the geosynthetic layers are

only characterised by their tensile strength, but not by

their stiffness modulus.

By equating the rate of external work to the rate of

energy of dissipation and substituting the relationships

one obtains the following expression:

Equation (7) provides a lower-bound solution for the

bearing capacity of a footing placed at the crest of a

reinforced slope considering a log-spiral failure

mechanism. In order to find the best estimation of q,

Eq. (7) needs to be minimized with respect to angles ho

e hh. Once these angles are found, substituting these

values into Eq. (7) the limit load is calculated.

Furthermore, the geometry of the log-spiral failure

surface is fully defined by the two angles ho and hh, the

initial and final log-spiral angles.

In the case of general distribution of the reinforce-

ments the energy dissipation rate during failure due to

q ¼
1
2

ktr0 sin2 hhe2ðhh�h0Þtgu � sin2 h0

� �
þ cr0

2 tan u e2ðhh�h0Þtgu � 1
� �

� ð1� kvÞcr2
0ðf1 � f2 � f3Þ � khcr2

0ðf4 � f5 � f6Þ

B ð1� kv1Þ cos h0 � B
2r0

� �
þ kh1 sin h0

h i

ð7Þ
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reinforcements can be rewritten and the expression (5)

becomes:

_D ¼ _xr0

Xn

i¼1

Ti sin h0 þ
zi

r0

� 	
ð8Þ

where zi is the depth of layer ith measured downwards

from the top of the slope, n is the number of the

reinforcement layers, Ti is the force of the ith layer per

unit width.

Consequently the expression to calculate the q

becomes:

Again, Eq. (9) must be minimized with respect to

angles ho e hh to obtain the limit load.

It should be noted that the above expressions are

derived under the assumption that the geosynthetic

layers are anchored beyond the critical failure surface

into the stable soil with an adequate anchorage length.

In this study only the results of the parametric

analyses for a uniformly placed geosynthetic reinforce-

ment are shown, while Eq. (9) is used to make the

comparisons with the experimental and theoretical data.

3 Comparison

A method to evaluate the accuracy of the approach used

here requires the comparison between the numerical

calculated results with those obtained in others inves-

tigations and above all with experimental data.

At first, the comparison is shown for a footing on an

unreinforced slope, for the pseudo-static case, in

Table 1 where the failure load obtained in this study is

compared with those obtained using the upper-bound

technique of limit analysis by Sawada et al. (1994) and

Askari and Farzaneh (2003). Sawada et al. (1994) used

a logarithmic spiral failure mechanism while Askari

and Farzaneh (2003) considered a failure mechanism

composed of an active wedge, a passive wedge, and a

shear transition zone between the two wedges. The

case presented in Table 1 is characterized by b = 20�,

u = 30�, c’ = 9.8 kPa, B = 10 m and D = 20 m for

different c and kh/kh1.

The results of the present analysis are lower than

those obtained by Sawada et al. (1994) but higher than

those of Askari and Farzaneh (2003).

For the static case the comparison can also be

made with experimental studies. Figure 2 shows the

Failure mechanism 
obtained in this study 

Fig. 2 The displacement vectors for the test ARS4 of the

centrifuge model tests conducted by Sommers and Viswanad-

ham (2009) and the failure mechanism obtained in this study

(adapted from Sommers and Viswanadham 2009)

Table 1 Comparison of variation of bearing capacity (kPa) with kh1/kh and c (kN/m3) for the case of b = 20�, u = 30�,

c = 9.8 kPa, B = 10 m and D = 20 m (adapted from Askari and Farzaneh 2003)

kh kh1/kh Sawada et al. (1994) Askari and Farzaneh (2003) Present study

c = 0 c = 9.8 c = 19.6 c = 0 c = 9.8 c = 19.6 c = 0 c = 9.8 c = 19.6

0.1 0.1 275 1,798 3,321 234 1,066 1,855 242 1,342 2,443

1.0 232 1,518 2,803 202 861 1,486 241 1,175 2,098

0.2 0.1 271 1,770 3,296 230 829 1,307 206 976 1,748

1.0 198 1,294 2,391 169 555 883 203 733 1,234

q ¼
r0

Pn
i¼1

Ti sin h0 þ zi

r0

� �
þ cr0

2 tan u e2ðhh�h0Þtgu � 1
� �

� ð1� kvÞcr2
0ðf1 � f2 � f3Þ � khcr2

0ðf4 � f5 � f6Þ

B ð1� kv1Þ cos h0 � B
2r0

� �
þ kh1 sin h0

h i ð9Þ
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displacement vectors for the test ARS4 of the

centrifuge model tests conducted by Sommers and

Viswanadham (2009) to study the performance of

geotextile-reinforced slopes when subjected to load-

ing applied to a strip footing positioned close to the

slope crest. The failure mechanism for the same

case carried out in the present study is also shown in

Fig. 2 with an unbroken line. As regards the footing

pressure at failure, the experimental value obtained

with the centrifuge test is 154 kPa while that

calculated with Eq. (9) is 140 kPa.

The latter comparison regards a large-scale geo-

synthetic reinforced soil structure with height of

2.68 m and composed of five layers of gravelly sand

separated by geosynthetic sheets (Thamm et al. 1990).

The profile of the embankment after failure is shown in

Fig. 3, which also reports the failure mechanism

derived in this study with a dashed line. The maximal

failure load obtained in this study using the Eq. (9) of

241 kN/m is slightly lower than that measured during

the experiment, which is 296 kN/m.

The three comparisons above show a reasonable

agreement in terms of bearing capacity and failure

mechanism, between the results obtained in this study

and those of other investigations available in the

literature. The agreement can be considered reason-

able because the comparisons have been made with

both analytical methods and experimental tests that

have considered both full-scale structures and small-

scale models in centrifuge.

4 Results

Since the principal objective of this study is to

investigate the influence of some parameters on the

bearing capacity of strip footings resting on geo-

reinforced soil structures to facilitate preliminary

design, it is convenient to present the results obtained

from the present investigation in non-dimensional form.

Since there are many factors that influence the

bearing capacity the results of the static condition are

shown in the first part of this section. After that, the

dynamic condition is performed.

In the calculations it is assumed that the soil is

cohesionless with c = 17 kN/m3 and the angle of

shearing resistance u ranging from 20� to 45�.

To evaluate the efficiency of reinforcement in

improving the bearing capacity of the fill slopes, it is

convenient to present the results of the reinforced

system with respect to the corresponding results

derived for the footing on an unreinforced slope.

The benefits of using reinforcements are then

shown in terms of a non-dimensional factor called

bearing capacity ratio BCR. This factor is defined as

the ratio of the bearing capacity of a footing on the

reinforced slope to the bearing capacity of a footing on

the corresponding unreinforced slope.

Figure 4a shows variation of BCR with the non-

dimensional factor cB/kt for different values of edge-

distance for the case with b = 30� and u = 40�. The

results clearly indicate that the inclusion of geosyn-

thetic reinforcements improves the performance of the

footing by increasing the bearing capacity. The

maximum benefit of reinforcement is obtained when

the footing is placed closer to the slope crest and for

low values of cB/kt. It can be observed that when the

edge distance increases, the bearing capacity ratio

decreases (Fig. 4b). For example, for a value of cB/

kt = 0.4 the improvement in the bearing capacity for

D/B = 0.25 is about 2.5 while it is about 1.2 when the

foundation is positioned at D/B = 5. These trends are

consistent with the experimental and numerical results

obtained by El Sawwaf (2007) with model tests and

finite element analyses and with those shown by

Choudhary et al. (2010).

Figure 5a presents the normalized ultimate bearing

capacity (expressed as non-dimensional ratio, q/cB,

where q is the ultimate bearing capacity) on reinforced

slopes as functions of the factor cB/kt for different

Failure mechanism 
obtained in this study 

Fig. 3 The profile of the embankment after failure with the

failure mechanism derived in this study (adapted from Thamm

et al. 1990)
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slope angles (b = 35�, 45�, 60� and 75�) for a footing

placed at an edge distance of 0.25 times the width of

the footing D/B = 0.25 and u = 35� with unbroken

lines. In general this figure indicates that the non-

dimensional bearing capacity decreases with increase

in slope angle b and in the factor cB/kt. Similar trends

are also observed in Fig. 5b, c, which are obtained for

D/B = 1 and D/B = 3, respectively.

The influence of the edge distance between the

footing and the crest of the slope on the limit load can

be observed in Fig. 6 where the normalized ultimate

bearing capacity is plotted against the factor cB/kt at

0
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D
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B
C
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γB/kt = 0.40
1.00
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(a) (b)

Fig. 4 Variation of BCR

with cB/kt ratio (a) at

different D/B and with D/B

ratio (b) at different cB/kt

for b = 30� and u = 40�
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Fig. 5 The normalized

limit load versus cB/kt ratio

at different slope angles for

a D/B = 0.25, b D/B = 1

and c D/B = 3 for u = 35�
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different D/B for a reinforced slope with b = 45� and

u = 35�. The result clearly indicates that the ultimate

bearing capacity increases with increasing edge dis-

tance. The importance of the edge distance on limit

load is also shown in Fig. 7 where the limit load is

plotted against D/B for different slope angles and for

cB/kt = 0.4 with unbroken lines.

The effect of slope is minimized when the footing is

placed at an edge distance beyond four or five times

the width of the footing for the case with u = 35� and

cB/kt = 0.4. In Fig. 8a–c the failure mechanism

height H, as defined in Fig. 1, is plotted against the

factor cB/kt at different slope angles for the cases

examined in Fig. 5a–c. The mechanism height is

presented in non-dimensional form as ratio (H/B) with

respect to the width B. This height is very important in

the design of footing on reinforced slopes, because it

represents the depth to which the reinforcement is

needed, namely that the reinforcement must be at least

extended to the maximum depth of the failure

mechanism.

Figure 9 shows the normalized limit load against

the shearing resistance angle u for cB/kt = 0.4 and

2.2, D/B = 0.25 and 3 and for b = 45�. As can be

expected, q/cB increases with increasing u and as

noted also in Figs. 5 and 6 with decreasing with cB/kt

and with increasing distance from the edge slope. The

increase in q/cB is greater in the case of the greater u.

As regards the seismic condition, for the purposes

of this study, only the horizontal component of

earthquake shaking is considered (kv = kv1 = 0).

The influence of the seismic coefficient is illus-

trated in Fig. 10 where the limit load is plotted against

the shearing resistance angle for different values of the

horizontal seismic coefficient (kh = kh1 = 0 up to 0.6)

for the case with slope angle b = 45�, distance edge

D/B = 2 and cB/kt = 2.0. As can be noted q/cB

decreases with increasing kh, and the influence of kh is

similar for all the shearing resistance angles.

Figure 11a shows the normalized limit load against

the ratio cB/kt at different horizontal seismic coeffi-

cients for the case with slope angle b = 60�, distance

edge D/B = 3 and u = 35�. These results are also

presented in Fig. 11b, which reports the values of the

seismic coefficient kh on the horizontal axis. Both

Fig. 11a, b show that the bearing capacity is signif-

icantly influenced by the loading seismic, especially

for low values of the ratio cB/kt.

Similar observations can also be made from the

results presented in Fig. 5a–c where the curves

obtained for kh = kh1 = 0.2 are shown, with dashed

lines, beside those for the static condition

(kh = kh1 = 0) with unbroken lines.

As regards the mechanism height in the seismic

condition it is smaller than that obtained considering

the absence of seismic loading. This can be noted in

Fig. 8a–c where the ratios H/B are reported also for the

case with kh = kh1 = 0.2 with dashed lines whereas

those calculated with kh = kh1 = 0 are marked by

unbroken lines. The height decreases with increase in

kh. For example, the mechanism height is halved from

the case with kh = kh1 = 0 to that with

kh = kh1 = 0.2. Taking into account that the seismic

0

20

40

60

0 1 2 3γ B
 kt

q 
γ B        

D/B=0.25
1
2
3
4

Fig. 6 The normalized limit load versus cB/kt ratio at different

edge distances D/B for u = 35� and b = 45�

0
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    60°

    75°

Fig. 7 The normalized limit load versus edge distances D/B at

different slope angles for u = 35� and cB/kt = 0.4
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condition is a transient one, it should be recommended

using the higher depths obtained from static condition

for design purposes, and in any case the

reinforcements must be positioned along the height

of the structure, if it is necessary for the stability of the

structure.
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In order to understand better the effects of the

seismic coefficient on the other design parameters of

the footing bearing capacity, Figs. 12 and 13 are

shown. In these figures the normalized limit load is

reported versus the seismic coefficient to vary cB/kt,

D/B and b.

The graphs given in Figs. 12 and 13 can also be

used to determine the critical horizontal coefficient or

yield seismic coefficient ky, in order to compute the

possible displacement of the footing during large

earthquakes. For any given load on the footing the

graphs define the critical horizontal acceleration that

the footing can withstand without failure. If during an

earthquake the acceleration is greater than critical,

permanent displacements of the footing will take

place. It can be noted that the critical seismic

coefficient increases with decreasing b and cB/kt and

the increase of u and of the edge distance.

Figure 14 shows the reduction in the bearing

capacity owing to the soil inertia and the structure

inertia for the case with cB/kt = 0.4, D/B = 1 and

u = 35�. Figure 14 reports the results for the static

case, for the conditions in which the soil inertia

(kh = 0 and kh1 = 0) and the structure inertia

(kh1 = 0 and kh = 0) are separately accounted for

and when both the inertias are considered simulta-

neously. It can be noted that the effects of soil

inertia are less important than those owing to the

structure inertia especially for low values of the

slope angle.
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The charts shown above can be used for practical

applications. Given the width (B) of the footing and its

position respect to the edge slope (D), the soil (c, u)

and reinforcement (T and d) parameters, the ultimate

bearing capacity can be obtained from Figs. 5 (for

static condition) and 11 (for seismic condition) and the

depth to which the reinforcement is needed from

Fig. 8. If the required bearing capacity and soil and

geometrical parameters are known, the necessary

reinforcement configuration can be obtained from

Figs. 5 and 11 for static and dynamic condition

respectively. The necessary reinforcement or tensile

strength can then be calculated from Eq. (6) and again

the depth of failure and then the least depth for the

reinforcement is determined from Fig. 8.

Two examples are selected here to illustrate the use

of the charts to evaluate the bearing capacity of a strip

footing resting on reinforced earth structure.

Example 1 Assume a strip foundation with 2 m

width and placed at 6 m from the edge slope. In

addition, it is assumed: slope angle b = 45�, angle of

shearing resistance of the fill u = 35�, unit weight

c = 17 kN/m3. The reinforcement used is a strip

reinforcement with a tensile limit force of 17 kN/m

(for single strip) and vertical distance of 0.5 m. The

ultimate bearing capacity can be calculated as follows:

kt = T/d = 17/0.5 = 34 kPa then cB/kt = 1, from

Fig. 5c q/cB = 32 and q = 1,088 kPa and from

Fig. 8c H/B = 1.98 thus H = 3.96 m. Therefore,

considering H = 4 m, 8 layers of reinforcement are

required.

Example 2 For a strip footing with 2 m width and

placed at 2 m from the edge slope and with slope angle

b = 60� on a cohesionless soil of u = 35� and

c = 17 kN/m3, the required ultimate bearing capacity

is 550 kPa. The reinforcement configuration can be

calculated as follows:

from Fig. 5b having q/cB = 16.1 the value of cB/kt

is 0.63. The required kt is 53.96 kPa and selecting a

strip reinforcement with a tensile limit force

T = 20 kN/m the vertical spacing of the reinforce-

ment can be evaluated from Eq. (6): d = 0.37 m.

These reinforcements must be placed at least at a

depth of H = 5 m, which is obtained using Fig. 8b.

The number of reinforcement layers is calculated as

H/d and is equal to 14.

The use of the above procedure in the pseudo-static

analyses requires the appropriate choice of horizontal

seismic coefficient, kh, which is related to a specified

horizontal peak ground acceleration for the site, amax.

The relationship between amax and a representative

value of kh is nevertheless complex and there does not

appear to be a general consensus in the literature on

how to relate these parameters.

Recently, based on observations of uni-axial shak-

ing table tests performed on geosynthetic-reinforced

slope, Huang et al. (2011) have demonstrated that the

relationships suggested by Segrestin and Bastick

(1988) and Idriss (1990) are adequate.

5 Displacement-Based Analysis

The results obtained with the pseudo-static analysis

indicate that the reinforcement force required to

ensure an adequate bearing capacity could be exces-

sively great or even impracticable for elevated seismic

coefficients. In such circumstances it is reasonable to

accept that the structure is affected by tolerable

permanent displacement.

The conventional rigid-block analysis procedure

originally proposed by Newmark (1965) is usually

used to calculate the permanent displacement. In this

procedure the calculation of displacement is based on

the assumption that the failure soil mass displaces

together with the foundation (Sarma and Iossifelis

1990; Richards et al. 1993) as a rigid-plastic block

whenever ground acceleration exceeds yield acceler-

ation of the slope.
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Given a design accelerogram the earthquake-

induced displacement can be obtained by integrating

twice the equation of motion, which in the case of

rotational failure-mechanism it is more appropriate to

express in terms of the angular rotation of the failure

mass relative to the stable soil. The angular acceler-

ation €x of the failure soil mass is obtained as (Ling and

Leshchinsky 1995):

€x ¼ ½khðtÞ � ky�g
cos bcg

rcg

ð10Þ

where rcg is the distance of the centre of gravity of the

sliding mass from the centre of rotation, bcg is its

inclination measured from the vertical, kh(t)g is the

ground acceleration time-history and kyg is the yield

acceleration. The change of the yield acceleration due

to the change in geometry is usually neglected. The

rotation x of the soil mass is obtained by double

integrating Eq. (10), from which the horizontal and

vertical permanent displacements may be calculated at

any point along the log-spiral surface and then the

displacements of the foundation by simple geometri-

cal considerations.

To evaluate the seismic induced permanent dis-

placement, the Newmark double-integration method

requires the ground motion time history to be known.

Accurate prediction of such a record is not yet

feasible since it is highly random. In the absence of the

earthquake motion record, several empirical relation-

ships have been developed to predict the seismic

induced permanent displacement of earth structures

using the Newmark rigid-block theory by integrating

existing acceleration records. These relationships

between the permanent displacement and the input

ground motion parameters are very suitable to be used

in design practice. Among these relations the one

proposed by Jibson (2007) gives an adequate estimate

of permanent displacement. It was obtained using

2,270 ground motion recordings from 30 different

earthquake events with moment magnitudes (Mw)

ranging between 5.3 and 7.6 and it assumes the

following form:

log d ¼ �2:71þ log 1� ky

kmax

� 	2:335
ky

kmax

� 	�1:478
" #

þ 0:424Mw þ Srlog d

ð11Þ

where, ky is the seismic yield coefficient (in g,

acceleration due to gravity), kmax is the peak acceler-

ation of the rock outcrop motion (in g), d is the

permanent displacement (in cm), rlogd is the standard

deviation of the logarithm (base 10) of displacement

prediction, and S is the standardized normal variate

(with l = 0 and r = 1). Jibson (2007) reports a value

of 0.454 for rlogd.

The displacement d calculated with Eq. (11) is the

final cumulative displacement of a rigid block on a

horizontally-vibrating surface. The final cumulative

displacement s of a generic point P along the slip surface

has modulus equal to the product of the final cumulative

rotation and the corresponding radius r and has direction

orthogonal to the radius r (Fig. 1). It can be evaluated

with the expression (Crespellani et al. 1998):

s ¼ dF
r

ro

ð12Þ

where ro is the radius at initial angle ho of the log-spiral

failure surface. Parameter F is a function of the

geometry of the moving mass, defined by the angles

ho, hh, b and the angle of soil shearing resistance (u),

whose expression can be found in Crespellani et al.

(1998). Also in this case, the horizontal and vertical

displacements of the foundation can be obtained by

knowledge of the displacements of the points along the

failure surface.

An alternative and simplified approach is to con-

sider the displacement evaluated by Eq. (11) as the

displacement of the midpoint of the failure surface

(based on the values that can take parameter F), and, as

rough first approximation, as the displacement of the

unstable soil mass.

The calculated seismic displacement d must be

viewed appropriately as order-of-magnitude estimate

rather than accurate prediction and therefore as an

index of seismic performance. However, when viewed

as an index of potential seismic performance, the

predicted displacement can and has been used effec-

tively in preliminary design purposes.

The subsequent step in the design is to decide

whether the calculated displacement is acceptable.

The amount of displacement that is tolerable depends

on the characteristics of the geo-reinforced soil

structure and what it supports and accordingly,

allowable displacement levels must be established

from engineering judgment.
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The charts shown above and Eq. (11) can be used

for practical applications in the seismic design where

the performance expectations are established in terms

of acceptable amount of displacement. Given the

width (B) of the footing and its position with respect to

edge slope (D), the soil (u, c) and reinforcement (T and

d) parameters and the ultimate bearing capacity, the

critical acceleration factor ky can be obtained from

Fig. 11b. The parameters of seismic design event (Mw,

kmax) required to calculate the displacements are

determined by using seismic hazard maps. The

permanent displacements can be calculated using

Eq. (11) for given confidence levels.

If the evaluated displacements are considered

tolerable for the specific application, the scheduled

reinforcements must be placed to a depth that can be

drawn from Fig. 8, but if the displacements are not

acceptable then one has to repeat the process by

considering a different reinforcement configuration.

To show how the proposed procedure, incorporat-

ing a tolerable displacement, may be used for design-

ing footing placed on reinforced soil structures, an

example is considered.

Example 3 Assume a strip foundation with 4 m

width and placed at 12 m from the edge slope. In

addition, it is assumed: slope angle b = 60�, angle of

shearing resistance of the fill u = 35�, unit weight

c = 17 kN/m3. The reinforcements used are a strip

reinforcements with a tensile limit force of 15 kN/m

(for single strip) and are installed at equal vertical

spacing of 0.5 m. The design event is characterized by

Mw = 6.7 and kmax = 0.57 (in g) which are obtained

from seismic hazards maps. If the bearing capacity of

the footing must be of 950 kPa then q/cB = 14 and

cB/kt = 2.26. For these values a critical acceleration

factor ky = 0.1 is obtained from Fig. 11b. Equation

(11) provides the permanent displacements of 11 and

62 cm for confidence levels of 50 and 95 %

respectively.

If the calculated displacements can be considered

allowable, the depth of reinforcements can be obtained

from Fig. 8. If the displacements are not allowable

then the process has to be repeated changing the tensile

limit force or the vertical distance or both and such to

have a greater value of kt. Assuming a strip reinforce-

ment with a tensile force of 24 kN/m and a vertical

distance of 0.3 m again from Fig. 11b for q/cB = 14

and cB/kt = 0.85 the critical acceleration factor

ky = 0.27 is obtained. As can be noted ky increases

with an increase in kt.

The values of the permanent displacements of

0.9 cm. and 5 cm for confidence levels of 50 and 95 %

respectively, are obtained from Eq. (11). As expected

these values are lower than those of the previous

calculation.

Obviously this procedure can be applied by calcu-

lating ky as a function of allowable displacement,

earthquake magnitude and peak acceleration from

Eq. (11) and using Fig. 11b to derive the value of the

bearing capacity for assigned geometrical character-

istics, soil properties and reinforcement configuration

parameters.

6 Conclusions

The kinematic theorem of the limit analysis set up

within the framework of the pseudo-static method is

used to assess the seismic bearing capacity of shallow

strip foundations placed close to the crest of the geo-

reinforced soil structures. The study primarily aims at

determining the effects of the various design param-

eters on the bearing capacity of such footings.

The ultimate bearing capacity of the footing on both

unreinforced and reinforced slopes increases with an

increase in edge distance and decreases with an

increase in slope angle. The provision of geosynthetic

reinforcements considerably improves the perfor-

mance of the footing situated on the crest of sloping

ground. The degree of bearing capacity increase

depends not only on the geosynthetic configuration

but also on the location of the footing from the slope

face. In terms of BCR, the reinforcement is most

effective when the footing is placed at closer slope

crest and for low values of the ratio cB/kt.

However, the ultimate bearing capacity seems to be

affected by the presence of the slope with an edge

distance smaller than four or five times the width of the

footing.

The results obtained from the analyses show the

influence of the several factors and they are presented

in the form of non-dimensional charts that can be used

for preliminary seismic design based on a pseudo-

static approach. Design procedures allow one to obtain

the bearing capacity of a footing, the required strength

of geosynthetic layers, the vertical distance between

the layers of reinforcement and the depth to which the
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reinforcement is needed. Effects of seismic coeffi-

cients are also investigated. Examples are included to

illustrate the use of the charts. The charts can also be

used to evaluate the yield seismic coefficient. It is

increases as the ratio cB/kt and the slope angle

decrease and with an increase in the edge distance.

The pseudo-static approach generally leads to a

conservative design often rendering seismic design

uneconomical. In such circumstances it is reasonable

to accept that the reinforced slope is affected by an

induced permanent displacement that does not exceed

a threshold limit and therefore an alternative approach

based on a tolerable displacement is used.

An example is considered to show how the

proposed procedure, incorporating a tolerable dis-

placement, can be used for designing a footing placed

on reinforced soil structures.
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