
ORIGINAL PAPER

Modeling and Interpretation of Pressuremeter Test Results
with Artificial Neural Networks

Mohammad Emami • S. Shahaboddin Yasrobi

Received: 9 April 2013 / Accepted: 17 December 2013 / Published online: 29 December 2013

� Springer Science+Business Media Dordrecht 2013

Abstract In this paper, three types of artificial neural

network (ANN) are employed to prediction and

interpretation of pressuremeter test results. First, multi

layer perceptron neural network is used. Then, neuro-

fuzzy network is employed and finally radial basis

function is applied. All applied networks have shown

favorable performance. Finally, different models have

been compared and network with the most outstanding

performance in two stages is determined. Contrary to

conventional behavioral models, models based neural

network do not demonstrate the effect of input

parameters on output parameters. This research is

response to this need through conducting sensitivity

analysis on the optimal structure of proposed models.

Keywords Pressuremeter � Prediction �
Interpretation � Artificial neural network �
Sensitivity analysis

1 Introduction

In-situ tests play important role in any geotechnical

investigation. Pressuremeter test can be considered

one of the most important in situ tests. This test is

capable to properly estimate the ground strength and

compressibility under measured deformations of the

probe.

During the past decades, increasing interest has

been shown in the development of a satisfactory

formulation for the stress–strain relationships of

engineering soils that incorporates a concise statement

of nonlinearity, inelasticity and stress dependency

based on a set of assumptions and proposed failure

criteria. In spite of the considerable complexities of

these constitutive models, and due to an inadequate

understanding of the mechanisms and all factors

involved, it is not possible to capture the complete

material response along all complex stress paths and

densities. Furthermore, the degree of complexity of

these constitutive models (in many cases) inhibits their

incorporation into general purpose numerical codes,

thus restricting their usefulness in engineering practice

Shahin and Jaksa (2005).

Artificial neural network (ANN) offers a funda-

mentally different approach for modeling soil behav-

ior. ANN is an oversimplified simulation of the human

brain and composed of simple processing units

referred to as neurons. It is able to learn and generalize

from experimental data even if they are noisy and

imperfect. This ability allows this computational
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system to learn constitutive relationships of materials

directly from the result of experiments. Unlike con-

ventional models, it needs no prior knowledge, or any

constants and/or assumptions about the deformation

characteristics of the geomaterials. Other powerful

attributes of ANN models are their flexibility and

adaptivity, which play an important role in material

modeling Hagan and Menhaj (1994).

When conventional models cannot reproduce a new

set of experimental results, a new constitutive model

or a set of new constitutive equations, needs to be

developed. However, trained ANN models can be

further trained with the new data set to gain the

required additional information needed to reproduce

the new experimental results. These features ascertain

the ANN model to be an objective model that can truly

represent natural neural connections among variables,

rather than a subjective model, which assumes vari-

ables obeying a set of predefined relations Hagan et al.

(1996).

In recent times, ANNs have been applied success-

fully to many prediction tasks in geotechnical engi-

neering, as they have the ability to model nonlinear

relationships between a set of input variables and

corresponding outputs. Shahin et al. (2001) give a

comprehensive list of the applications of ANNs in

geotechnical engineering. A review of the literature

reveals that ANNs have been used successfully in pile

capacity prediction, modeling soil behavior, site

characterization, earth retaining structures, settlement

of structures, slope stability, design of tunnels and

underground openings, liquefaction, soil permeability

and hydraulic conductivity, soil compaction, soil

swelling and classification of soils. Najjar and Ali

(1998) used neural networks to characterize the soil

liquefaction resistance utilizing field data sets repre-

senting various earthquake sites from around the

world.

Goh (1994a; 1995b) presented a neural network to

predict the friction capacity of piles in clays. Chan

et al. (1995) developed a neural network as an

alternative to pile driving formulae. Lee and Lee

(1996) utilized neural networks to predict the ultimate

bearing capacity of piles. Kumar and Kumar (2006)

applied the artificial neural network model to predict

the lateral load capacity of piles in clay. Teh et al.

(1997) proposed a neural network for estimating the

static pile capacity determined from dynamic stress-

wave data for precast reinforced concrete piles with a

square section. Goh (1994a) developed a neural

network for the prediction of settlement of a vertically

loaded pile foundation in a homogeneous soil stratum.

Shahin et al. (2000) carried out similar work for

predicting the settlement of shallow foundations on

cohesionless soils.

Ellis et al. (1995) developed an ANN model for

sands based on grain size distribution and stress

history. Penumadu and Zhao (1999) also used ANNs

to model the stress–strain and volume change behavior

of sand and gravel under drained triaxial compression

test conditions. Banimahd et al. (2005) utilized

artificial neural network for stress–strain behavior of

sandy soils. Lee et al. (2003) presented an approach to

estimate unsaturated shear strength using artificial

neural network. Moosavi et al. (2006) utilized artificial

neural networks for modeling the cyclic swelling

pressure of mudrock. Kim and Bae (2004) presented a

neural network based prediction of ground surface

settlements due to tunneling. Kanungo et al. (2006)

done a comparative study of conventional, ANN black

box, fuzzy and combined neural and fuzzy weighting

procedures for landslide susceptibility zonation in

Darjeeling Himalayas.

So far, ANNs have been applied to the constitutive

modeling of rocks Kanungo et al. (2006), clays

Ghaboussi and Sidarta (1998), clean sands Nabney

(1999), gravels Buckley and Hayashi (1994a) and

residual soils Hagan and Menhaj (1994). It has also

been shown that ANN can generalize traditional

constitutive laws well (e.g. a hyperbolic model) by

considering their descriptive parameters Shahin and

Jaksa (2005). Despite their good performance on the

available data ANN models give no clue on the way

inputs affect the output and are therefore considered

as a _black box class of model. The lack of

interpretability of ANN models has inhibited them

from achieving their full potential in real world

problems Moosavi et al. (2006) as the credibility of

the artificial intelligence paradigm frequently depends

on its ability to explain its conclusion Shahin and

Jaksa (2005).

Therefore, for verification of such models, as well

as the accuracy measuring of ANN based models with

available data, a methodology should be adopted to

extract the meaningful rule from the trained networks,

which are comparable with trends inferred from

experiments. Lu et al. (Moosavi et al. 2006) reviewed

the methods that have been introduced to acquire the
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knowledge contained in a trained ANN [e.g. fuzzy

logic Lee et al. (2000) and principal component

analysis Shahin and Jaksa (2005)] and stated that these

methods could not determine the effect of each input

parameter on the output variable, in terms of magni-

tude and direction. They defined input sensitivity

based on the first order partial derivative between the

ANN output variable and the input parameters in

mathematical term for the sensitivity analysis of spool

fabrication productivity problems. Hashem (Shahin

and Jaksa 2005) has also obtained this formulation. As

will be discussed later, this formulation cannot be used

in the sensitivity analysis of ANN constitutive soil

models.

2 Pressuremeter Test Results

The pressuremeter test is one of the most important

in situ tests for determination of the stress–strain

behavior of subsurface layers. The pressuremeter

consists of two main elements: a radially expendable

cylindrical probe, which is placed inside the borehole

at the desired test depth and a monitoring unit, which

remains on the ground surface. These parameters can

be obtained from pressuremeter test results:

• Pressuremeter Modulus Em.

• Undrained shear strength Cu for clays

• Shear modulus

• Pressuremeter limit pressure of the ground

There are several different kinds of pressuremeters

(Briaud 1992; Clarke and Gambin 1998) that differ

mainly by the way the probe is placed in the ground.

• The pre-bored or predrilled pressuremeter (PBP).

• The self-bored pressuremeter (SBP).

• The cone pressuremeter, either pushed or driven in

place.

• The pushed Shelby tube pressuremeter.

• The Predrilled pressuremeter, that is the Menard

pressuremeter (MPM), which is a volume-dis-

placement pressuremeter, has been used in this

project. It is based on expansion of the central test

section of the probe that is placed inside the

borehole and the pressure–volume variation during

testing is recorded. The Menard pressuremeter,

which has been used in this project, is shown in

Fig. 1.

2.1 Analysis of Pressuremeter Tests According

to ASTM D 4719

The procedure to perform the pressuremeter test data

is as follow:

1. Volume and Pressure loss calibration. The

pressure difference between cell and core Pc

based on calibration tests.

2. Determination of hydrostatic pressure between

cell and control unit Pd

Pd ¼ H � c1 ð1Þ

H: Depth of cell placement with respect to control unit

(in m)

c1: Unit weight of fluid (in KN/m3)

3. Pressuremeter test data correction based on

above-mentioned items (1–3):

PG ¼ Ppressuremeter þ Pd � Pc ð2Þ

4. Drawing pressure–volume change curve such as

Fig. 2.

5. Determination of DP, DV and Vm from Fig. 2.

DP: Corrected pressure difference in the linear

part of the graph

DV: Corrected volume difference in the linear part

of the graph

Fig. 1 A view of used Menard pressuremeter instrument
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Vm: Corrected volume reading in the central

portion of the DV volume increase

6. Based on the values of item 5 and V0 (primary

volume of the probe at ground surface), pressure-

meter, Modulus Menard (EM) is calculated::

Ep ¼ Em ¼ 2ð1þ mÞðV0 þ VmÞ
DP

DV
ð3Þ

The pressuremeter Modulus (EM) is related to the

Oedometer Modulus (Es) with following relation:

Es ¼ Eoed ¼ Ep=a ð4Þ

The values of a is presented in Table 1.

In very compact embankment the values of a may

be more than one a = 1. According to above Table a
is equal to 0.67 in marls. a is equal to a = 0.67 in

Normally-Consolidated clays and a = 1 for Over-

Consolidated clays.

The values of pressuremeter modulus obtained

from pressuremeter tests are converted to Young

modulus as follow:

Elasticity Modulus� Young Modulus :

E ¼ Epð1þ mÞð1� 2mÞ
ð1� mÞ ð5Þ

m: Poisson’s ratio (m = 0,33 usually in pressuremeter

theory).

3 Database

In this research, the results of approximately 500

conducted pressuremeter tests on the soils by Pajohesh

Omran Rahvar Ltd (2006–2007) is employed. The

number of tests decreased to 400 due to lack of accuracy

and also high changes in the range of pressuremeter

modules. The tests have been carried out on the soils of

Northwest Iran (Tabriz), South Iran (Kharg Island) and

Northeast Iran (Mashhad). The pressuremeter instrument

used is a pre-bored Menard MPM type. Tests performed

according to ASTM-D4719 represented acceptable

accuracy. An example of physical and density properties

of soils is presented at Table 2. In addition, a number of

soil grading curves are shown at Figs. 3 and 4.

Bank information used in the current study is

divided into two different categories to predict volume

change-pressure curve obtained from pressuremeter

test and to interpret pressuremeter module. Due to

using applied pressure as one of the input parameters,

the number of data at the prediction stage is more than

that of at the interpretation stage. 500 data resulting

from pressuremeter tests are employed at the stage of

prediction. A number of volume change-pressure

charts of pressuremeter tests are presented at Fig. 5.

4 Model Development

In this study, three types of artificial neural network

(ANN) are used to predict and interpret the

Pressure
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Fig. 2 Pressure–volume change curve in pressuremeter test

Table 1 The values of a for various soil types (Menard and

Rousseau 1962)

Soil type Clay Silt Sand Gravel

a 0.67 0.5 0.34 0.25

Table 2 Physical and density properties of soils

NSPT Grain maximum

size (Dmax)

(mm)

Normal

specific weight

(kN/m3)

Water

content

(%)

Depth

(m)

12 9.5 18.2 18 6.75

32 0.425 17.7 14.5 7.75

33 24.5 18.1 15.6 8.75

28 38.1 18.5 14.2 9.25

36 24.5 17.8 18.5 10.75

23 4.75 17.0 23.2 11.75

49 3.35 16.0 21.3 13.25

30 24.5 17.5 18.1 14.75
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pressuremeter test. First, multi layer perceptron neural

network, one of the most applicable neural networks,

is used. Two types of perceptron neural network with

one and two hidden layers, respectively, along with

different neurons in the hidden layers are used.

Perceptron networks are employed both to obtain

volume change–pressure charst at the prediction stage

and to estimate the Menard pressuremeter module

(EM) at the interpretation stage. Physical and density

properties of the soils have been used as model input

parameters. 6 and 5 input parameters have been used

in the prediction stage of the network architecture and

interpretation stage, respectively. One parameter is

considered in both stages as output parameter. Hidden
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distribution of CL soils
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Fig. 5 Volume change-pressure charts of pressuremeter tests
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layers with different number of neurons are tested in

both one and two layers networks so as to select the

most proper network architecture. It has been shown

that a three-layer perceptron with differential transfer

functions and sufficient number of neurons in hidden

layer can approximate any nonlinear relationship

Shahin and Jaksa (2005). Consequently, one hidden

layer is used in the present study. The neural network

toolbox of MATLAB7.4, a popular numerical com-

putation and visualization software, is used for

training and testing of the MLPs. Transfer functions

of networks are selected by trial and error. Boundaries

of inputs and outputs are given in Table 3.

The Levenberg–Marquardt algorithm is used to

train the networks. This method, which is an approx-

imation of Newton_s method, has been shown to be

one of the fastest algorithms for training moderate size

MLPs Hagan and Menhaj (1994). In order to apply this

algorithm a static training approach is utilized, i.e.

This approach, which has been used satisfactorily by

Ghaboussi et al. (Hagan and Menhaj 1994) does not

have the potential drawback in that errors accumulate

excessively upon each step during the training process

Nabney (1999). However it lacks similarity of training

and prediction phases Nabney (1999).

To improve generalization of MLPs, training

should be stopped when overfitting is started. Over-

fitting makes MLPs memorize training patterns in

such a way that they cannot generalize well to new

data. In the present study, cross validation technique

are used as the stopping criterion. In this technique, the

database is divided into three sets: training, validation

and testing. The training set is used to update

networks_ weights. During this process, the error on

the validation set is monitored. When the error on the

validation set begins to increase, the training should be

stopped because it is considered to be the best point of

generalization. Finally, testing data is fed into the

networks to evaluate their performance. In this study,

the results of 250, 70 and 80 pressuremeter tests are

used for training, validation and testing of networks,

respectively. In order to choose the best structure of

the model the performances of MLPs with different

number of hidden neurons are studied.

The other neural network examined in this research

is neuron-fuzzy network. In this network, 6 and 5

physical and density parameters are used as input

parameters. Also, one parameter is used as output

parameter. This networks utilized a fuzzy system with

backpropogation algorithm. In order to update the

connection weights involved in the fuzzy neurons

(FNs), some learning and adaptation mechanisms for

the FN models that were proposed in the last section

are presented in this section. Like the least square error

functions used in the conventional BP algorithm for

multilayered feedforward neural networks (MFNNs),

the generic performance index used here is also

expressed as a squared error between the output of the

fuzzy neuron and a desired value. The learning

procedure for the free parameters in such a neural

network is considered on the basis of the elements of

the set of the training patterns. Given a set of input and

desired output pairs the adaptive weight learning rule

performs an optimization process such that the output

error function, defined as the summation of the square

of the errors between the desired and the real outputs

of the network, is minimized.

Finally, radial basis function neural network is

applied to evaluate the success of two previous

networks. The number of input and output parameters

is similar to the neuron-fuzzy and perceptron net-

works. Radial basis function (RBF) neural networks

have recently been studied intensively. The RBF

neural network has the universal approximation abil-

ity, therefore, the RBF neural network can be used for

the interpolation problem. A Gaussian radial basis

function, an unnormalized form of the Gaussian

density function, is highly nonlinear, and it provides

some good characteristics for incremental learning,

and has many well-defined mathematical features.

Gaussian neural networks, which have been found to

be powerful scheme for learning complex input–

Table 3 The boundaries of input and output parameters

Limits Inputs Output

NSPT cm (KN/m3) W (%) H (m) Dmax (mm) P (KPa) DV (cm3) Em (KPa)

Min. 10 1.53 10 3 0.25 100 10 10,000

Max. 50 1.88 26 30 38.1 3,000 120 40,000

380 Geotech Geol Eng (2014) 32:375–389

123



output mapping, have been used in learning, identifi-

cation, equalization, and control of nonlinear dynamic

systems.

The term radial basis function derives from the fact

that these functions are radially symmetric; that is,

each node produces an identical output for inputs that

lie at a fixed radial distance from the center. In other

words, a radial basis function u(x-ci) has the same

value for all neural inputs x that lie on a hypersphere

with the center ci.

It has been shown that the Gaussian RBF neural

networks are capable of uniformly approximating

arbitrary continuous functions defined on a compact

set to satisfy a given approximation error. This

approximation process is usually carried out by a

learning phase where the number of hidden nodes and

the network parameters are appropriately adjusted so

that the approximation error is minimized. There are a

variety of approaches for using the Gaussian networks.

Most of them start by breaking the problem into two

stages: learning in the intermediate stage, that is,

adjusting the center and variance parameters, followed

by learning or adjusting the weight parameters of the

linear combiners in the output stage. Learning in the

intermediate stage is typically performed using the

clustering algorithm, while learning in the output stage

is a supervised learning. Once an initial solution is

found using this approach, a supervised learning

algorithm is sometimes applied to both stages simul-

taneously to update the parameters of the network.

In what follows, the optimal structure of each

model based on their performance in error index is

introduced. Finally, the volume change-pressure chart

resulting from optimal structures of neural network

models at the prediction stage have been compared

with the empirical results. In order to evaluate the

generalization ability of the optimal structure of neural

network at the prediction stage, this model is evaluated

with the inexperienced data. The structural details of

neural network models are presented at Table 4.

This section deals with the comparison of efficiency

of the optimal structures of three neural network

models. Table 5 shows the error index for three

models have been shown for training, test and

validation subsets. As can be seen clearly, MLP2

network with two hidden layers, 15 neurons in each

layer proved to show the best performance compared

to other three models. However, the MLP1 network

with two hidden layers, 20 neurons in each layer

showed the best performance in the training subset.

MLP2 network has been assigned the lowest values of

other error index. Therefore, the mentioned network

can be considered as the most successful network to

predict the results of pressuremeter test.

The prediction of the change volume-pressure chart

resulting from pressuremeter test for the optimal

structures of perception, neuron-fuzzy and radial basis

function networks are shown in the Fig. 6a, b. These

charts are plotted based on the comparison with

empirical charts. As can be seen, the obtained charts

predict the soil behavior with satisfactory accuracy.

Also, neuron-fuzzy network showed the least accuracy

in this stage.

This section discusses the comparison of the

performance of optimal structures for three used

neural network models. Table 6 shows the error index

Table 4 The structural details of neural network models

Networks Inputs Output

Prediction

MLP1 NSPT, cm (KN/m3), W (%), Dmax, H (m), P(KPa) DV (cm3)

MLP2 NSPT, cm (KN/m3), W (%), Dmax, H (m) DV (cm3)

NF1 NSPT, cm (KN/m3), W (%), Dmax, H (m), P(KPa) DV (cm3)

NF2 NSPT, cm (KN/m3), W (%), Dmax, H (m) DV (cm3)

RBF1 NSPT, cm (KN/m3), W (%), Dmax, H (m), P(KPa) DV (cm3)

RBF2 NSPT, cm (KN/m3), W (%), Dmax, H (m) DV (cm3)

Interpretation

MLPI NSPT, cm (KN/m3), W (%), Dmax, H (m) Em (KN/m3)

ANFISI NSPT, cm (KN/m3), W (%), Dmax, H (m) Em (KN/m3)

RBFI NSPT, cm (KN/m3), W (%), Dmax, H (m) Em (KN/m3)
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of three models for training, test and validation

subsets. As can be seen clearly, MLP2 network with

two hidden layers, 15 neurons in each layer repre-

sented the best performance compared to other three

models. However, the RBFI network showed the best

performance in the training subset. MLP1 network has

been assigned the lowest values in other error index.

Therefore, the mentioned network can be considered

as the most successful network to predict the results of

pressuremeter test.

In order to evaluate the generalization ability of the

optimal structure of neural network, this model is

evaluated with the inexperienced data. For this

purpose, the pressuremeter tests conducted in the

second phase of geotechnical investigation of urban

train of Tabriz are employed. pressuremeter tests have

been conducted on soils similar to the first phase. Due

the availability of 30 pressuremeter tests, the results of

simulation have been compared with the results of the

best neural network model. According to the previous

section, the MLP-l1 model with 15 neurons in the

hidden layer is selected as the most proper model. The

obtained chart is shown at Fig. 7. As can be seen, the

network represents acceptable performance in the

simulation of inexperienced data. Considering the fact

that the pressuremeter test is an in situ test, the

prediction of pressuremeter module (Ep), as the most

important output of pressuremeter test, has been done

with satisfactory error by the proposed neural network.

Table 5 The comparison of the optimal structures of models based on the error index at prediction stage

Networks Num. of neurons or MFs R RMSE MAE MAXAE SDAE SSE

Validation subset

MLP1-2 20 20 0.94 0.061 0.033 0.37 0.056 0.75

MLP2-2 15 15 0.95 0.059 0.036 0.30 0.048 0.73

Training subset

MLP1-2 20 20 0.99 0.022 0.007 0.27 0.021 0.48

MLP2-2 15 15 0.98 0.037 0.018 0.32 0.028 1.3

NF1 3 0.94 0.050 0.042 0.55 0.055 2.5

RBF2 250 0.98 0.033 0.018 0.32 0.027 1.1

Testing subset

MLP1-2 20 20 0.90 0.080 0.057 0.30 0.045 1.35

MLP2-2 15 15 0.94 0.062 0.036 0.33 0.051 0.61

NF1 3 0.90 0.080 0.065 0.50 0.065 3.7

RBF2 250 0.92 0.072 0.042 0.46 0.053 1.8
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Fig. 6 a The obtained charts from the neural network models.

b The obtained charts from the neural network models
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Accordingly, the neural network model showed

acceptable performance in the interpretation of pres-

suremeter test.

5 Sensitivity Analysis

In this section, final structures of the models are

investigated at each stage including feedforward

neural network with one hidden layer, 15 neurons in

each layer and an output layer, 1 neuron in each layer.

And as such, indeterminate and sensitivity analysis

have been conducted on the neural network model to

evaluate the efficiency and sensitivity of the

parameters.

Although neural network is a robust method to learn

unknown and complex relation from input space into

output space, contrary to mathematic models do not

automatically explain the effects of input parameters

on the output parameters and the way that model

output is determined Lu et al. (2001). In order to

resolve this problem, numerous studies have been so

far conducted to explain the governing equation of the

neural network and the effects of input parameters on

the output parameters. In this section, first the

definition of the indeterminate and sensitivity analysis

is presented.

The relation of output derivative in relation to input

is proposed for optimal structures of the network at

each stage. Then, the effect of five main input

variables including normal specific weight, water

content, depth of, the number of standard penetration

test and the grains maximum size is discussed. This

research is based on the statistical analysis of the

values of the relative derivative of the outputs in

relation to specified inputs at 200 points located in the

five-dimensional space of inputs. These points are

derived by using normal distribution function.

As mentioned above, the sensitivity of neural

network output to input parameters is defined by

output derivative in relation to specified input. In this

section, the relation of the output relative derivative in

relation to independent inputs is presented. Lu et al.

(2001) determined the output relative derivative of a

Table 6 The comparison of optimal structures of models based on the error index at interpretation stage

Networks Num. of neurons or MFs R RMSE MAE MAXAE SDAE SSE

Validation subset

MLP-I1 15 0.96 0.060 0.042 0.26 0.037 0.43

MLP-I2 11 11 0.94 0.062 0.052 0.18 0.051 0.45

Training subset

MLP-I1 15 0.96 0.073 0.051 0.16 0.041 2.0

MLP-I2 11 11 0.96 0.068 0.052 0.21 0.043 2.4

NFI 3 0.96 0.061 0.050 0.18 0.050 2.2

RBFI 400 0.98 0.035 0.022 0.19 0.025 0.82

Testing subset

MLP-I1 15 0.95 0.064 0.053 0.16 0.044 0.56

MLP-I2 11 11 0.96 0.068 0.051 0.19 0.052 0.55

NFI 3 0.92 0.088 0.068 0.29 0.063 1.5

RBFI 400 0.87 0.10 0.085 0.38 0.072 3.3

Fig. 7 Comparison between simulation and empirical result
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network in which the input were totally independent

from output Lu et al. (2001). However, since at least

one input is the output of the model in the last seconds

in the behavior models based on the neural network,

this relation cannot be used directly and should be

modified. Figure 8 shows schematically the neurons

of input, hidden and output layers and their connection

in a MLP network that can be used as a soil behavior

model.

The study of relating the uncertainties of the model

output to different sources of that of the model output

is called sensitivity analysis (Saltelli et al. 2004).

Thus, the uncertainties analysis focuses to determine

the quantity of these uncertainties.

When the relation between inputs and outputs has

been defined, indeterminate and sensitivity analysis

can be conducted. For this purpose, Monte Carlo

analysis that deals with the distribution function of

input and output parameters may be used. The Monte

Carlo analysis involves the following procedure:

1. A distribution like normal distribution should be

provided for each input parameters x1, x2,….

Note: It is assumed that random variable x with

mean l and standard deviation r has normal

distribution and its density function is as follows:

f ðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2pr2
p exp � 1

2

x� l
r

� �2
� �

ð6Þ

and is described as x�Nðl; rÞ:
2. It is assumed that parameters are independent

from each other.

3. The distribution of each input parameter is derived

by using sampling methods like random sampling

methods This leads to create a matrix that its rows

and columns correspond to the number of samples

and input parameters, respectively.

x1
1 x1

2 . . .
x2

1 x2
2 . . .

..

. ..
.

. . .
xN

1 xN
2 . . .

2

6

6

6

4

3

7

7

7

5

ð7Þ

4. Then, derived data will be applied to the model to

obtain an output matrix as follows:

y1

y2

..

.

yN

2

6

6

6

4

3

7

7

7

5

ð8Þ

Mean, standard deviation, safety boundaries, etc.

can be determined for output parameters using

obtained results. After indeterminate analysis, sensi-

tivity analysis may be conducted on the model to

determine the input parameter which has the most

importance to create indeterminate in the network

output.

It is evident that output derivative yi in relation to

input xi, i.e. oy
oxi
; can be a proper mathematic definition

of model output sensitivity to its input. However, the

simple derivative method may not properly describe

the out sensitivity to the input. In order to clarify this

issue, suppose a linear model is given by y ¼
Pr

i¼1 XiXi; where Xi are fixed factors and Xi are

model variables. The derivative relation is oy

Xi
¼ Xi: In

the event of constant Xi factors, it is concluded that the

output sensitivity to all input parameters is the same

and consequently the inputs have the same importance

for output. However, the values of standard deviation

of each input may be different. In order to solve this

problem, Sigma-Normalized Derivatives method may

be used.

Sr
xi
¼ rxi

oy

ryox
ð9Þ

If a factor is considered to be fixed, X� i ¼ x�i ; in

reality, an effective change sources on the output

variance is fixed. Therefore, output variance is always

smaller than total output variance V(y) when one

parameter is fixed VðyjXi ¼ x�i Þ:

x1

x2

.

.

.

xn

Hidden Units

Output

Inputs

Bias

Fig. 8 Scheme of used MLP network
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V yjXi ¼ x�i
� �

�VðyÞ ð10Þ

Accordingly, it is expected that conditional vari-

ance VðyjXi ¼ x�i Þ may be an approximation of

relative importance of Xi in a way that the effect of

Xi increases with decrease in the V yjXi ¼ x�i
� �

:

However, output sensitivity is affected by x�i :

In the event of calculating the mean of variance on

the possible x�i ; the dependence effect to the x�i will be

removed. Conditional variance on the different x�i is as

follows:

EXi
V yjXið Þð Þ ð11Þ

If difference between conditional variance mean on

the all possible x�i and unconditional variance is equal

to the output mean variance on the different values of

x�i :

V yð Þ � EXi
V yjXið Þð Þ ¼ VXi

E yjXið Þð Þ ð12Þ
When Xi is an important parameter for model, the

value of EXi
V yjXið Þð Þ and VXi

E yjXið Þð Þ will be small

and large, respectively. Using the above equation, we

may have:

VXi
E yjXið Þð Þ�VðyÞ ð13Þ

Variance VXi
ðE yjXið Þ is called the first order effect

of Xi on the output. Thus, sensitivity index of first

order of Xi parameter on the output y is expressed as

follows:

Si ¼
VXi

E yjXið Þð Þ
VðyÞ ð14Þ

where Si is a number between zero and one. The

proximity of Si to zero indicates the more importance

of mentioned parameter.

5.1 Output Derivative of Multi Layer Perceptron

Neural Network in Relation to Input

Before, applying required equations to determine the

output relative derivative in relation to inputs, the

parameters used are introduced:

Ok: output of kth neuron in the output layer

xi: ith input to network

w
j
ik: weight of connections between ith neuron in

the jth layer and kth neuron in (j ? 1) th layer

b
j
i:

bios of ith neuron in the jth layer

net
j
i:

weighted sum of input to ith neuron in the layer jth

h
j
i:

output of ith neuron in the jth layer

It is evident that h
j
i ¼ fðnet

j
iÞ; where f() is activity

function of neuron at jth layer.

If the number of network hidden layer and neurons

in the output layer is considered to be one and also the

number of hidden layer and input to be m and n,

respectively, the output derivative in relation to input

xi may be determined using the following equations:

The output of second layer, output layer with one

neuron and linear transfer function, may be described

by the following equation:

O1 ¼ f net2
1

� �

¼ net2
1 ¼ b2

1 þ
X

m

j¼1

w1
j1h1

j

¼ b2
1 þ

X

m

j¼1

w1
j1fðnet1

j Þ

¼ b2
1 þ

X

m

j¼1

w1
j1f b1

j þ
X

n

i

w0
ijxi

 !

ð15Þ

Since the transfer function of hidden layer is in the

form of tangent hyperbolic, therefore equation (15) is

written as follows:

O1 ¼ b2
1 þ

X

m

j¼1

w1
j1:tansig b1

j þ
X

n

i

w0
ijxi

 !( )

ð16Þ

The derivative of the only network output, O1, in

relation to each of input, xi, can be determined using

chain rule.

oO1

oxi

¼ oO1

oh1
j

oh1
j

onet1
j

onet1
j

oxi

ð17Þ

oO1

oh1
j

¼ w1
j1 ð18Þ

oh1
j

onet1
j

¼
otansig net1

j

� �

onet1
j

¼ 1� ðh1
j Þ

2 ð19Þ

onet1
j

oxi

¼ w0
ij ð20Þ

Equation 17 defines the relative derivative in a

model based the multi layer percepton network as

output absolute sensitivity to independent input. In

effect, it shows the expected changes in the output in

relation to change unit, while other variables are

assumed to be constant Lu et al. (2001). Since each
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input has different units and changes range in the real

problems, absolute sensitivity may not be proper to

compare the importance of input and output variables.

Therefore, the values of absolute sensitivity should be

modified based on the change range of input so as to

obtain a proper parameter to compare the effects of

inputs on the output. Lu et al. (2001) defined the output

relative sensitivity to input by product of sensitivity

values in a proportion of changes range (10 % of

changes range) Lu et al. (2001). Thus, the output

relative sensitivity of the behavioral model based on

the independent input is:

oOi

oXp

	 


r

¼
Max Xp

� �

�MinðXpÞ
n

oOi

oXp

	 


ð21Þ

where n is the coefficient of change range (for example

10 for 10 % of changes range).

Since the weights are constant after training and

according to equations (17–20), the output relative

derivative in relation to each input is function of the

values of networks output at that moment and the

values of sensitivity at the previous moment. Thus, we

may have:

oOi

oXp

	 


¼ F Inputs;
oOi

oXp

	 


ð22Þ

In this study, the sensitivity analysis has been

conducted to the five input parameters including

normal specific weight, water content, test depth, the

number of standard penetration test and grains max-

imum size. In this analysis, 200 points located in the

five-dimensional space of input parameters correspon-

dent with normal distribution are selected by Simlab

3.0 Software.

For these points which have its own input values,

the values of derivative of the volume change at the

stage of prediction and pressuremeter module at the

stage of interpretation are calculated for optimal

structure. The statistical characteristics of these values

are presented at Tables 7 and 8.

According to what mentioned above and also

variability of the sensitivity values, a method is

required for sensitivity analysis that simultaneously

shows dispersion and the probability of different

values of output sensitivity to input. And as such,

statistical method of relative sensitivity proposed by

Loo et al. (2001) has been used in the current paper. In

this method, five statistical percents (D10, D25, D50,

D75 and D90) of the values of output relative

sensitivity are determined to input. This method is

capable to evaluate the effects of increase and/or

decrease of each input on the output and to determine

general trend governing throughout total input space

based on the random samples. The explanations of

obtained results are as follows Lu et al. (2005):

D10: represents a value for the relative sensitivity

that 90 and 10 %s of the values are larger and

smaller than it, respectively. Therefore, the

positive value implies that the probability of

positive value for relative sensitivity is more

than 90 %. In other words, the probability of

increasing the output by increase in the input is

more than 90 %.

D10: shows a value for the relative sensitivity that

90 and 10 %s of the values are smaller and

larger than it, respectively. Therefore, the

negative value indicates that the probability of

decreasing the output by increase in the input

is more than 90 %.

The explanation of D25 and D75 is similar to

D10 and D90.

D50: If this value is on the zero line, it will show that

the probability of decreasing or increasing the

output by increase in the input is 50 %.

Table 7 Statistical characteristics of absolute sensitivity of

volume change to the inputs

Input Max. Min. Mean. Standard

deviation

c 4.045 0.361 0.950 0.535

W 3.201 -1.218 1.482 0.984

H 2.068 -11.78 -1.593 1.188

NSPT 6.422 -17.34 -1.427 1.387

Dmax 2.584 -1.925 -0.659 0.620

Table 8 Statistical characteristics of absolute sensitivity of

pressuremeter module to the inputs

Input Max. Min. Mean. Standard

deviation

c 0.555 -0.482 0.052 0.257

W 0.166 -1.294 -0.360 0.337

H 0.452 0.246 0.384 0.057

NSPT 1.795 1.104 1.585 0.160

Dmax 0.256 -0.416 -0.034 0.200
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According to distance of statistical class from zero

line and the values of the statistical percent, the impact

factor of each variable on the output can be compared.

The mean values of relative sensitivity of the

volume change and pressuremeter factor to inputs are

discussed at Table 9.

Table 9 Relative sensitivity of the volume change and pressuremeter module to inputs

Output DV Ep

Input c W H NSPT Dmax c W H NSPT Dmax

Relative mean -0.928 0.246 -2.920 -1.165 -1.015 0.0957 -0.399 0.346 0.341 -0.025

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

γ

W

H

NSPT

Dmax

Relative Input Sensitivity

D10

D25

D50

D75

D90

Fig. 9 The sensitivity

analysis of neural network at

the prediction stage

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

γ

W

H

NSPT

Dmax

Relative Input Sensitivity

D10

D25

D50

D75

D90

Fig. 10 The sensitivity

analysis of neural network at

the interpretation stage
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In this section, the values of statistical percent

relative sensitivity of the volume change for five

inputs of MLP2 network with 15 neurons in the hidden

layer are presented at Fig. 9. As can be seen clearly,

more than 75 % of the values of relative sensitivity for

normal specific weight (cm) are negative. This indi-

cates the reduction in the volume change due to the

increase of normal specific weight.

Comparison the effects of five input parameters on

the volume change revealed that based on the distance

of statistical class from zero line, the values statistical

percent (Fig. 9) and the values of relative mean

(Table 9), test depth (H) has the most effect.

In this section, the values of statistical percent

relative sensitivity of the pressuremeter module for

five inputs of MLP2 network with 15 neurons in the

hidden layer are shown at Fig. 10.

Comparison the effects of five input parameters on

the pressuremeter module showed that based on distance

of statistical class from zero line, values statistical

percent (Fig. 10) and the values of relative mean

(Table 9), test depth (H) and the number of standard

penetration test (NSPT) have the most effect. However,

due to positive values more than 90 % of the number of

standard penetration test (NSPT) in the relative sensitiv-

ity, this parameter is selected as the most effective input

parameters on the pressuremeter module.

6 Conclusion

In this paper, three types of artificial neural network

(ANN) are employed to predictiction and interpreta-

tion of pressuremeter test results. First, multi layer

perceptron neural network, one of the most applicable

neural networks, is used. Then, neuro-fuzzy network,

combination of neural-phase network is employed and

finally radial basis function, a successful network in

solving nonlinear problems, is applied.

Of all neural network models, multi layer percep-

tron neural network proved to be the most effective.

However, other applied networks have shown favor-

able performance. Finally, different models have been

compared and network with the most outstanding

performance in two stages is determined. In order to

evaluate the network in the prediction stage, pressure–

volume change charts resulting from simulation of

optimal structure of each model have been compared

with empirical results. Also in for the purpose of

assessment the capability of model generalization, the

performance of mentioned network against unexperi-

enced data has been compared with empirical results.

Contrary to conventional behavioral models, mod-

els based neural network do not demonstrate the effect

of input parameters on output parameters. This

research is response to this need through conducting

sensitivity analysis on the optimal structure of pro-

posed models. Also, derivation of governing equation

for neural network model give more assurance to user

to employ such models and consequently this facili-

tates the application of models in the engineering

practices. These general rules were compared with

those inferred from engineering experience as a

second way of verification for the model. A consistent

response was observed in terms of the dominant trends

governing the model and the model output when

compared to the available data. The insight into the

behavior of ANN constitutive models by the approach

presented here gives the user more confidence in

model predictability and hence facilitates the incor-

poration of such models into engineering practice.
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