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Abstract This paper presents an approach for the

probabilistic inverse analysis of braced excavations

based on the maximum likelihood formulation. Here,

the soil parameters are updated using the observations

of the maximum ground settlement and/or the max-

imum wall deflection measured in a staged excavation.

The updated soil parameters are then used to refine the

predicted wall and ground responses in the subsequent

excavation stages, as well as to assess the building

damage potential at the final excavation stage. Case

study shows that the proposed approach is effective in

improving the predictions of the excavation-induced

wall and ground responses. More-accurate predictions

of the wall and ground responses, in turn, lead to a

more accurate assessment of the damage potential of

buildings adjacent to the excavation. The proposed

approach offers an effective means for a probabilistic

inverse analysis of braced excavations.

Keywords Uncertainty � Probability � Inverse

analysis � Building damage potential �Wall

deflection � Ground settlement � Braced

excavations

1 Introduction

The observational method (Peck 1969) is an important

tool in geotechnical engineering. Peck recognized the

importance of the observational method, as he ‘‘empha-

sized the need to first compute the various quantities

that can be measured in the field and then close the gaps

in knowledge on the basis of such measurements’’ (Wu

2011). In this paper, this observational method is

applied to supported excavation. Here, field observa-

tions in a staged excavation are used to update soil

parameters, which, in turn, are used to refine the

predictions of the wall deflection, ground settlement

and damage potential of buildings adjacent to the

excavation in the subsequent stages of excavation.

The inverse analysis in the braced excavation is

not uncommon. Conventionally, the finite element

method (FEM) is utilized to predict the excavation-

induced wall and ground responses (e.g., Hashash

et al. 2004, 2006; Tang and Kung 2009, 2010). In the

FEM analysis, the wall deflection, ground settlement

and building damage potential are generally pre-

dicted and used to check against the acceptance

criteria (i.e., Boone 1996). Due to the limited field

explorations and laboratory tests, the soil parameters

L. Wang (&) � Z. Luo � C. H. Juang

Glenn Department of Civil Engineering,

Clemson University, Clemson, SC 29634, USA

e-mail: lwang6@clemson.edu

J. Xiao

School of Transportation Science and Engineering,

Nanjing University of Technology, Nanjing 210009,

Jiangsu, China

C. H. Juang

National Central University, Jhongli, Taoyuan County

32001, Taiwan

123

Geotech Geol Eng (2014) 32:273–285

DOI 10.1007/s10706-013-9709-4



used in the FEM analysis may not be representative

of field behavior and thus the predicted excavation-

induced responses often do not match the field

observations. In a project such as braced excavation,

the observed wall deflection and ground settlement

from the initial excavation stages can be used to

update the design soil parameters. The updated soil

parameters, which represent the ‘‘refined’’ knowl-

edge of the soil parameters at a given stage, can be

used to refine the predictions in the subsequent

excavation stages. As the excavation proceeds stage

by stage, observations are collected in each stage and

the soil parameters can be updated accordingly.

Thus, the inverse analysis provides a means to

update the prediction of ground responses and

assessment of building damage during construction.

Conventional inverse analysis relies on the deter-

ministic approach such as the least squares method,

gradient method (Ou and Tang 1994), genetic algo-

rithms (Levasseur et al. 2008), artificial neural

networks (Hashash et al. 2006). It should be noted

that the deterministic inverse analysis techniques

could not deal with explicitly the uncertainty in the

soil parameters. It is reported that the uncertainty in

soil parameters has a significant influence on the

predicted wall and ground responses in braced exca-

vations (Hsiao et al. 2008). In this regard, it is

desirable to conduct the probabilistic inverse analysis

of a braced excavation. To this end, it is noted that

several approaches, including the Kalman filter

approach (Eykhoff 1974), the maximum likelihood

method (Ledesma et al. 1996b), and the Bayesian

method (Zhang et al. 2010b), have been shown

effective for the probabilistic inverse analysis of some

geotechnical problems.

Although FEM can be used in the probabilistic

inverse analysis of braced excavations, it is more

efficient, computationally, to combine the observa-

tional method with the empirical models such as

KJHH (Kung et al. 2007) and KSJH (Schuster et al.

2009). These models, which were developed using

well-documented case histories and finite element

simulations, can be readily adopted to predict the

excavation-induced wall and ground responses and the

potential of building damage caused by these

responses. To this end, the KJHH model is adopted

in this paper for predicting the excavation-induced

wall and ground responses in the probabilistic inverse

analysis of braced excavations.

In this paper, the observational method is combined

with the maximum likelihood formulation to update

the soil parameters in braced excavations. The prior

distributions of soil parameters are estimated based on

those reported in the literature and engineering

judgment. After the initial excavation stages are

conducted, the maximum wall deflection and maxi-

mum ground settlement are measured (or observed).

Those observations are used to update the soil

parameters, and the updated soil parameters are

presented as posterior distributions and characterized

by their sample statistics. The updated soil parameters

are then used to refine the predicted wall and ground

responses in the subsequent excavation stages, as well

as the building damage potential. This straightforward

approach is repeated in a staged excavation, and the

soil parameters are updated as the excavation pro-

ceeds. Comparing with the predictions using prior

distributions, the predictions using the updated soil

parameters generally result in an improved accuracy in

the prediction of wall and ground responses, which in

turn, yield an improved prediction of building damage

potential.

2 Probabilistic Inverse Analysis Procedure

The inverse analysis of the wall and ground responses in

a braced excavation requires three elements: (1) the

observed data, (2) the model to prediction these data,

and (3) the means for back analysis. In the present

study, the observed data include the maximum wall

deflection (dhm) and the maximum ground settlement

(dvm). The model that is used to predict these data is

KJHH model (Kung et al. 2007). This model is a semi-

empirical model that was developed based on hundreds

of simulations of case histories of excavations in clays

using FEM. This model requires six input parameters,

including the excavation depth He, the excavation

width B, the system stiffness S ¼ EI=cwh4
avg, the

normalized clay layer thickness ratio RHclay=Hwall,

the normalized undrained shear strength su=r
0
v, and the

normalized initial modulus Ei=r
0
v. The reader is

referred to Kung et al. (2007) for the detailed

formulation of the KJHH model. It should be noted

that as a simplified empirical method, the KJHH

model cannot consider the effects of excavation

sequence, construction methods, creep of soft soils
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and retaining structures, and three-dimension excava-

tion geometry. The probabilistic inverse analysis

framework inherits this limitation of the KJHH model.

As reported in a reliability-based sensitivity study

by Hsiao et al. (2008), two soil parameters (su=r
0
v and

Ei=r
0
v) are found to be the main factors affecting the

wall and ground responses of a braced excavation in

clays. Therefore, the focus of this paper is to develop

procedures for updating su=r
0

v and Ei=r
0

v in a braced

excavation using the observed maximum wall and

ground responses. Because of the uncertainties in

these two soil parameters, the updating analysis (or

inverse analysis) can be more effectively carried out

using a probabilistic approach.

In the probabilistic inverse analysis, soil parameters

su=r
0

v and Ei=r
0

v are treated as random variables, and

all others are treated as constants. Furthermore, the

model biases of the two component models (dhm and

dvm) of KJHH model are considered in this inverse

analysis. According to Kung et al. (2007), the model

bias of the component model for dhm, denoted as ch

herein, has a mean value of 1.0 and a COV of 0.25; the

model bias of the component model for dvm, denoted as

cv herein, has a mean value of 1.0 and a COV of 0.34.

These model bias factors are assumed to follow

normal distribution (Kung et al. 2007; Hsiao et al.

2008).

The third element of the probabilistic inverse

analysis is the means for such analysis. In this study,

the inverse analysis is implemented using the maxi-

mum likelihood principles. Here, the soil parameters

are back calculated so that the likelihood of a

hypothesis is maximized. The likelihood is propor-

tional to the product of the prior distributions of input

parameters and the probability density of the observed

responses given input parameters (see ‘‘Appendix’’

section). Maximizing this likelihood is equivalent to

minimizing the negative log-likelihood function,

which is expressed as (Ledesma et al. 1996a; Wang

et al. 2013):

SðhÞ ¼ ðGðhÞ � YÞTC�1
e ðGðhÞ � YÞ þ ðh� lhÞT

� C�1
h ðh� lhÞ ð1Þ

where h is the vector of input parameters including

su=r
0
v and Ei=r

0
v; GðhÞ is the predicted maximum wall

deflections and maximum ground settlements based on

input soil parameters h; Ce is the covariance of

residual error vector; lh is the prior mean vector of

input parameters; Ch is the prior covariance matrix of

the input parameters.

Thus, the posterior mean lhjY is obtained by

minimizing SðhÞ. Then, the covariance of the posterior

distribution can be calculated as follows (Tarantola

2005):

Cp ¼ HT C�1
e Hþ C�1

h

� ��1 ð2Þ

where H is defined as the partial derivative vector

evaluated at the posterior mean lhjY:

H¼ oGðhÞ
oh

� �

h¼lhjY

ð3Þ

The posterior distributions of the soil parameters

(su=r
0
v and Ei=r

0
v) are then used for predicting the wall

and ground movements in the subsequent stages of

excavation.

3 Case Study: TNEC Excavation Case

To demonstrate the maximum likelihood-based for-

mulation for the probabilistic inverse analysis, a well-

documented excavation case history, the Taipei

National Enterprise Center (TNEC), is analyzed here.

TNEC excavation site is located in the Taipei Basin,

and the seven-staged excavation is mainly conducted

in deposits of soft to medium clay. The well-

documented field observations of ground surface

settlement and wall deflection of TNEC case (Ou

et al. 1998) is well suited for the validation of the

proposed approach.

The TNEC excavation was carried out using the

top-down construction method with a maximum depth

of 19.7 m. A diaphragm wall with 35 m in depth and

0.9 m in thickness was used as the retaining wall. The

details of excavation can be found in Ou et al. (1998).

Figure 1 shows the excavation depths for seven stages

and the corresponding soil profile. The site of TNEC is

mainly a clay-dominated site (Kung et al. 2007). It

should be noted that su=r
0
v and Ei=r

0
v of the two clay

layers in Fig. 2 are approximately the same, and the

maximum wall and ground responses in this excava-

tion are mainly influenced by su=r
0
v and Ei=r

0
v of the

clay layers. As aforementioned, the soil parameters of

the clay layers (su=r
0
v and Ei=r

0
v) are the dominating
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parameters that will be updated with field observa-

tions. The input parameters of KJHH model of the

TNEC case for each stage are listed in Table 1.

3.1 Updating Using Both Observed Wall

Deflection and Ground Settlement

The prior distribution of the soil parameters must be

estimated before the soil parameters can be updated.

Based on the typical ranges of the two soil parameters

su=r
0
v and Ei=r

0
v reported by Kung (2003), four

different prior distributions of soil parameters are

assumed and summarized in Table 2. For illustration

purpose, Prior distribution 1 is adopted herein as the

prior distribution of soil parameters vector (su=r
0
v and

Ei=r
0
v). The parametric study using various assumed

prior distributions will be presented later. Since there

is no information regarding the correlation between

two model bias factors, the correlation coefficient (q)

is assumed to be zero for simplicity. Nevertheless, the

effects of q on the updated results are investigated

B = 41.2 m

2.8 m
4.9 m
8.6 m
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Depth of Hard 
Stratum= 46 m

Fig. 1 Soil profile and

excavation depths of TNEC

(adapted from Kung et al.

2007)
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Fig. 2 Comparisons of updated predictions with three updating

schemes (using Prior distribution 1)

Table 1 Excavation depths and system stiffness of TNEC

case history (adapted from Hsiao et al. 2008)

Factor Excavation sequence (Stage No.)

3 4 5 6 7

Depth, He (m) 8.6 11.8 15.2 17.3 19.7

System stiffness,

EI
.

cw h4
avg

1,023 966 1,109 1,115 1,294

Other deterministic factors required for computing maximum

wall deflection and ground surface settlement using KJHH

model include: excavation width B = 41.2 m, normalized

clay-layer thickness
P

Hclay=Hwall = 0.87
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later. It should be mentioned that the field observations

from Stages 1 and 2 are not used in the updating

process because the wall deformation shape at these

early stages is of cantilever type, which is not

compatible with the shape of bulging movement in

latter stages (Kung et al. 2007). Thus, updating with

the observations from Stages 1 and 2 is fruitless.

Fortunately, the wall and ground responses in first two

stages under normal workmanship are generally very

small, and thus, the wall and ground movements at

these early stages are negligible in the updating

process (Hsiao et al. 2008; Juang et al. 2013).

As shown in Table 3, the predicted maximum

ground settlement at excavation depth of 8.6 m (Stage

3) using the mean of soil parameters (Prior distribution

1) is 47.5 mm prior to Stage 3 of excavation, which is

inconsistent with the observed settlement in field at

excavation depth of 8.6 m (18.2 mm). After Stage 3 is

completed, the soil parameters are updated using the

observed wall and ground responses and the developed

procedure. With the updated soil parameters in Stage

3, the maximum wall and ground responses in

subsequent stages are predicted and compared with

field observations. With the updated soil parameters,

the predicted responses match better with the obser-

vations as evidenced in Tables 3 and 4. After Stage 4

of excavation is completed, the observations (settle-

ment and wall deflection) at both Stage 3 and Stage 4

are employed to update further the soil parameters as

well as the predictions of the wall and ground

responses in subsequent stages. This process continues

until the stage prior to the final stage (Stage 7).

As shown in Tables 3 and 4, at the completion of

Stage 6, the predicted wall deflection and ground

settlement prior to the final stage agree well with the

observations at the completion of final stage (Stage 7).

It is also observed that the predicted wall deflection

matches the field observation better than the settle-

ment does; this is consistent with findings by other

previous investigators: the wall deflection is generally

easier to predict accurately; the prediction of settle-

ment is, however, more difficult (Finno 2007).

The final excavation stage (Stage 7 with a final

excavation depth of 19.7 m) is considered the most

critical in the serviceability assessment of adjacent

buildings. As shown in Fig. 2 (see line with symbol

‘‘9’’ for updating with both ground settlement and

wall deflection), the predicted wall deflection and

ground settlement at the completion of the last stage of

excavation is refined as the excavation proceeds. It

indicates that as the soil parameters are updated with

more and more quality observations, the predicted

wall and ground responses can be significantly

improved accordingly.

3.2 Updating Using Observed Wall Deflection

or Ground Settlement

When the observation data is limited (for example, in

many case histories, only the observed wall deflection

is available), the proposed procedure can be easily

adapted for updating of soil parameters with only one

type of observation (either wall deflection or ground

settlement). For demonstration purpose, Prior distri-

bution 1 is selected as the prior distribution of soil

parameters. The aforementioned procedure for updat-

ing soil parameters using the maximum likelihood

formulation is repeated using the observed wall

deflection (or ground settlement) alone. With the

updated soil parameters at various excavation stages,

the predicted wall and ground responses at the final

excavation stage are also plotted in Fig. 2. The results

show the proposed framework is also effective and

efficient even when the soil parameters are updated

with only one type of response observation (either

maximum settlement or maximum wall deflection).

It is also useful to examine the distributions of the

predicted wall and ground responses using the updated

soil parameters. The probability distributions of the

updated ground settlement and wall deflection predic-

tions, prior to the last stage, using three updating

schemes are shown in Fig. 3. The results show that the

means of the updated predictions are quite consistent

with the observations. The variation in the predicted

wall and ground responses is the smallest when both

Table 2 Statistics of four prior distributions used in the

probabilistic back analysis process of TNEC case history

(adapted from Juang et al. 2013)

Parameter su=r
0

v Ei=r
0

v

Mean COVa Mean COVa

Prior distribution 1 0.25 0.16 500 0.16

Prior distribution 2 0.31 0.16 650 0.16

Prior distribution 3 0.27 0.16 550 0.16

Prior distribution 4 0.35 0.16 750 0.16

a COV suggested by Hsiao et al. (2008) for Taipei clays. The

effects of various assumed COVs are examined separately
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types of observations are used in the updating. In

addition, the variation of the predicted wall and

ground responses using only settlement observation is

smaller than that using only wall deflection. This is

mainly because the error vector of the observational

model for ground settlement is smaller than that for

wall deflection. It should be noted that in the

traditional back analysis of braced excavations, which

tries to match ‘‘the prediction’’ to be exact as

‘‘observation,’’ the predicted ground settlement and

wall deflection are a constant. However, the geotech-

nical inverse analysis involves model uncertainty as

well as the uncertainty of soil parameters. Due to those

uncertainties, it is desirable to interpret the updated

soil parameters as well as the predicted wall and

ground responses as a random variable rather than a

single fixed value. The developed maximum likeli-

hood-based procedure for the probabilistic back

analysis of soil parameters is shown effective for the

braced excavation problem.

It should be noted that the data points (observed

settlement and deflection) presented in Figs. 2 and 3

were measured near the midpoint of the length of the

TNEC excavation. According to Ou et al. (2000) and

Kung (2003), the instrumentation was set in the

representative section of the TNEC excavation to avoid

the corner effect.

4 Further Sensitivity Analyses and Discussions

4.1 Effect of Prior Distribution on the Updating

Results

The posterior distribution depends on both model and

prior distribution. Due to the insufficient field inves-

tigations and potential disturbance in sampling, the

estimation of the prior soil parameters could vary

significantly. In this regard, it is necessary to inves-

tigate the effects of estimated or assumed prior

distribution on the updating results. Thus, in addition

to Prior distribution 1 (Table 2), three other prior

distributions are assumed based on the test results of

Taipei clay, as shown in Table 2. The four assumed

prior distributions cover the possible variation for the

two soil parameters (su=r
0
v and Ei=r

0
v) for the TNEC

case. The COV of the four distributions is set to be

0.16 as suggested by Hsiao et al. (2008). The effects of

the magnitude of COV will be examined later.

Table 3 Observed and predicted maximum settlement using Prior distribution 1

Excavation Maximum settlement (mm)

Observation Prediction

Stage Depth(m) Prior to excavation End of 3rd stage End of 4th stage End of 5th stage End of 6th stage

3 8.6 18.2 47.5 – – – –

4 11.8 34.0 73.2 53.5 – – –

5 15.2 51.5 94.3 70.2 61.4 – –

6 17.3 63.4 105.6 79.1 69.3 65.4 –

7 19.7 78.0 114.1 85.7 75.0 70.7 70.2

Table 4 Observed and predicted maximum wall deflection using Prior distribution 1

Excavation Maximum wall deflection (mm)

Observation Prediction

Stage Depth(m) Prior to excavation End of 3rd stage End of 4th stage End of 5th stage End of 6th stage

3 8.6 44.6 59.4 – – – –

4 11.8 64.0 91.6 75.7 – – –

5 15.2 79.9 117.9 99.4 92.0 – –

6 17.3 99.0 132.0 112.1 104.0 100.5 –

7 19.7 105.8 142.6 121.3 112.5 108.7 108.2
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The effects of prior distributions on the updated wall

and ground responses are studied using two types of

observations (both wall deflection and settlement).

Following the aforementioned procedure, the updated

mean values of su=r
0

v and Ei=r
0

v prior to various exca-

vation depths are shown in Fig. 4. As shown in

Fig. 4a, the updated mean values of su=r
0
v prior to last

stage are almost identical no matter what prior

distribution is assumed. The updated mean values of

Ei=r
0

v also tend to converge as the excavation

proceeds, regardless of the assumed prior

distributions.

Figure 5 shows the updated COV for su=r
0
v and

Ei=r
0
v with excavation depths. It is observed that the

COV decreases as the excavation proceeds in this

example. It indicates that the newly gained ‘‘informa-

tion’’ from field observations can reduce the estimated

variation of soil parameters. Although the variation of

soil parameters is reduced most for Prior distribution

1, the COV for all four assumed prior distributions

decreases after updating, from 16 % to about 10 %.

The effect of different assumed COV on the

updated results is plotted in Fig. 6. The distribution

1 is used for illustration and additional COV values of

0.10 and 0.30 are assumed to illustrate the possible

overestimation and underestimation of the COV

values for su=r
0
v and Ei=r

0
v. It can be found that the

updated COV value of parameters decreases stage by

stage with the updating process regardless which prior

COV value is assumed. When the prior estimation of

COV is at higher end (30 % in this example), the effect

of reducing the parameter uncertainty is more effec-

tive, and the COV decreases to approximately 12 %.

When the prior estimation of COV is already quite

small (10 %), the COV can still be reduced (to

approximately 6 % in this case).

The above results validate the efficiency of using

observations to update the prior estimation of soil
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parameters. Even if the prior estimation is not

characterized perfectly initially, the observations

during the excavation can ‘‘move’’ the prior estimation

to its ‘‘true’’ value through the presented maximum

likelihood procedure. Furthermore, with the reduced

uncertainties in the input parameters, the uncertainty

in the predicted ground and wall responses at the final

stage of excavation is further reduced.

4.2 Effect of Correlation Between Bias Factors

of KJHH Model

The effect of correlation between the bias factors of the

two component models in KJHH model, namely wall

deflection model and ground settlement model, is

examined in this study. When no information regarding

the correlation between the two component models is

available, the two bias factors (ch and cv) may simply

be assumed uncorrelated, as in the previous analysis

(q = 0). However, the wall deflection and ground

settlement in a braced excavation tend to be positively

correlated, as reported by Kung et al. (2007).

To investigate the effect of the correlation between

ch and cv, the aforementioned back analysis procedure

is repeated using Prior distribution 1 with two positive

correlation coefficient levels, q = 0.5 and 0.8. The

updated predictions for wall and ground responses

with excavation depth at the three levels of correlation

(0, 0.5, and 0.8) are shown in Fig. 7. The results show

that the effect of the correlation between bias factors

on the outcome of the developed updating procedure

appears to be quite limited. Even with no correlation

assumption, the developed procedure for updating soil

parameters and predictions is still effective and yields

no inferior outcome. Furthermore, this example dem-

onstrates that the developed procedure for probabilis-

tic inverse analysis can be easily adapted to

incorporate the known correlation between the model

biases of the component models.
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5 Excavation-Induced Damage Potential

of Adjacent Buildings

The excavation-induced wall and ground settlement

can cause damage to adjacent buildings. Schuster et al.

(2009) has developed a framework to evaluate the

damage potential of buildings adjacent to the excava-

tion. The basis for this framework is the predicted wall

deflection and ground settlement. With the soil

parameters being updated during the excavation using

the field observations, the predictions of the wall and

ground movements are updated. This follows that the

prior assessment of building damage potential can be

updated with the updated predictions of wall deflec-

tion and ground settlement. Thus, updating of the

building damage potential is simply an extension of

the developed updating scheme for wall and ground

movement predictions.

The framework for excavation-induced building

damage assessment established by Schuster et al.

(2009) includes three components: (1) the profiles of

the excavation-induced vertical and lateral ground

movements using KJHH model (Kung et al. 2007) and

KSJH model (Schuster et al. 2009), respectively; (2)

computation of the angular distortion (b) and lateral

strain (el) using the empirical equations; and (3)

determination of damage potential index (DPI) based

on the calculated b and el. The DPI is a normalization

of the principal strain (Schuster et al. 2009):

DPI ¼ 20� 103 el cos h2
max þ b sin hmax cos hmax

� �

ð4Þ
tan 2hmaxð Þ ¼ b=el ð5Þ

where b is angular distortion, el is lateral strain, and hmax

is direction of crack formation measured from the

vertical plane. The DPI value ranges between 0 and

100. A smaller DPI value indicates a lower damage

potential.

In addition to the input parameters that are related to

soil conditions (su=r
0
v and Ei=r

0
v) and other excavation

parameters, the prediction of DPI for an adjacent

building requires four additional data regarding the

properties of the adjacent building. The first is the

location of the building, characterized in terms of the

distance from the excavation to the adjacent footings

(e.g., d1 and d2, as shown in Fig. 8, where d1 represents

the distance from the excavation to the nearest footing

and d2 represents the distance from the excavation to

the furthest footing in a building). The second is the

embedment depth of the building (D1 in Fig. 8). The

third is the soil-structure stiffness ratio, ðEsL
2=GHbÞ,

in which Es is the soil stiffness in the region of footing

influence, L is the length of building portion subjected

to ground movement, G is the elastic shear modulus of

the building, H is the height of the building, and b is

the building wall thickness. The fourth is the structure

cracking strain et, which depends on characteristics of

a specific building. It should be noted that in the DPI

model, the existing building conditions are repre-

sented by two parameters including soil-structure

stiffness ratio ðEsL
2=GHbÞ and structure cracking

strain et. These parameters, and thus the building

damage potential, are of course affected by the

structural types and building conditions (Schuster

et al. 2009).
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Fig. 7 Influence of correlation coefficient between model

biases on updated predictions using prior distribution 1
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Detailed parameters for the properties of the

adjacent buildings in TNEC case are documented in

Schuster et al. (2009). Figure 8 shows the layout for

Building D (Ou et al. 2000) that is adjacent to TNEC

excavation. It should be noted that Building D could

be split up into 4 bays for the purpose of computing

DPI (Eq. 4). As reported by Schuster et al. (2009), Bay

No. 4 is identified to be the critical bay (see Fig. 8) and

thus it is selected here as an example to demonstrate

the developed procedure for updating of DPI.

According to Schuster et al. (2009), the distances

from the excavation to the nearest and furthest footings

in Bay No. 4 (d1 and d2) are 25.5 and 31.0 m,

respectively; the embedment depth of the footing (D1)

is 4 m; the soil-structure stiffness ratio ðEsL
2=GHbÞ is

estimated to be 15; the structure cracking strain et is

estimated to be 0.9. In this study, we follow the

procedure by Schuster et al. (2009) to calculate DPI.

The readers can refer to Schuster et al. (2009) for

details.

In this paper, the soil parameters are updated with

the observed settlement and wall deflection. The

updated soil parameters are then used to calculate the

DPI at a target depth of 19.7 m (the final excavation

stage). The four prior distributions of su=r
0
v and Ei=r

0
v

listed in Table 2 are adopted herein. Prior to Stage 3

(the excavation depth at this point is 4.9 m), the

predictions of DPI for the final stage using the means

of the four prior distributions are made and shown in

Fig. 9. After Stage 3 excavation is completed, the

observed maximum settlement and wall deflection are

used to update the soil parameters. Then, the updated

soil parameters are used to calculate DPI at a target

excavation depth of 19.7 m (final excavation stage),

and again, shown in Fig. 9 (the depth at which this

prediction is made is 8.6 m). More and more obser-

vations are obtained as the excavation proceeds, and

this updating procedure is repeated at excavation

depths of 11.8, 15.2, and 17.3 m.

Figure 9 shows the predictions of the DPI at the

target depth of 19.7 m (the final stage) using the

updated soil parameters prior to Stages 3, 4, 5, 6, and 7

(the corresponding depths shown in Fig. 9 are 4.9, 8.6,

11.8, 15.2, and 17.3 m, respectively). As shown in

Fig. 9, the predicted DPI values prior to Stage 3 of

excavation differ significantly from each other, as the

mean values of those prior distributions are different.

With the updated soil parameters, the predictions of

DPI tend to converge as shown in Fig. 9. Thus, the

updating scheme presented in this paper is deemed

effective for this evaluation of damage potential of an

adjacent building. The predicted DPI values before the
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Fig. 8 Location of excavation and Building D in the TNEC

case (adapted from Juang et al. 2011)
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final stage of excavation (the excavation depth at this

point is 17.3 m) converge into the range of 19–25

among the four prior distributions examined. Accord-

ing to the DPI criteria established by Schuster et al.

(2009), the building with DPI = 19–25 would suffer a

‘‘slight damage.’’ As reported by Liao (1996) and Ou

et al. (2000), the field observations during and after the

construction showed that some cracks were found on

the internal walls of Bay No. 4 of Building D in the

TNEC excavation. This level of building damage

would be characterized as ‘‘slight damage’’ according

to the evaluation system established by Boscardin and

Cording (1989). Thus, the updated prediction of DPI

and the assessment of building damage are consistent

with field observations.

In summary, the case study of TNEC for the wall

and ground movements during excavation and their

effect on an adjacent building shows that as the soil

parameters are updated at each stage based on the

observed settlement and wall deflection, the accuracy

of the predicted wall and ground movements improves

significantly. As a result of the improved predictions

of wall and ground movements, the assessment of

damage potential of the building adjacent to the

excavation becomes more accurate.

6 Concluding Remarks

An approach for the probabilistic inverse analysis in

braced excavations based on the maximum likelihood

principle is presented. In this approach, the soil param-

eters (su=r
0
v and Ei=r

0
v) are updated with the observed

wall and ground responses in a braced excavation.

With the updated soil parameters, the predictions of

those responses in the subsequent excavation stages

and the predicted damage potential of an adjacent

building are refined stage by stage. Comparing with

the predictions using prior information, the predictions

using the updated soil parameters are significantly

improved in the case study of TNEC excavation.

Unlike the deterministic inverse analysis, the

developed probabilistic inverse analysis approach

allows for considerations of the variation in the soil

parameters and model bias factors. Accordingly, the

updated soil parameters are represented by the

posterior distributions. The developed procedure is

demonstrated to be effective regardless of the assumed

prior distributions of the soil parameters provide that

such assumption is within the reasonable range. The

efficiency and the effectiveness of this probabilistic

analysis approach are illustrated through the case

study of TNEC excavation in Taiwan.

Appendix: Formulation of Maximum Likelihood

Method

The formulation of the maximum likelihood method for

the probabilistic inverse analysis of braced excavations

by Wang et al. (2013) is adapted in the current paper.

The core component of this probabilistic inverse

analysis framework is a simplified model, known as

KJHH model (Kung et al. 2007), for predicting the

excavation-induced wall and ground responses.

Symbolically, KJHH model can be expressed as:

y ¼ GðhÞ ð6Þ

where h is the input vector including su=r
0
v and Ei=r

0
v;

y is the response vector including both maximum wall

deflection and maximum ground settlement at the end

of a given excavation stage. The response of the

excavation is related to the input parameter vector

through the KJHH model denoted as G. The correla-

tion between the vector of observations (Y) and the

vector of KJHH model predictions (y) can be

expressed as follows:

Y ¼ c � y ¼ c � GðhÞ ð7Þ

where c is a term that represents the model uncertainty.

For illustration purpose, let us assume that only one

pair of observations (i.e., one observed maximum

ground settlement and one observed maximum wall

deflection in the same excavation stage) is available

for back analysis (or inverse analysis) of soil param-

eters. Note that the model uncertainty of the KJHH

model is reflected through the use of bias factors in

multiplication form (as in Eq. 7) with a mean vector of

lc ¼ ½lch
; lcv
� and a covariance matrix of:

r2
c ¼

r2
ch

r2
chv

r2
cvh

r2
cv

� �
ð8Þ

where r2
chv
¼ r2

cvh
¼ q � rch

� rcv
and q is the correla-

tion coefficient between two model bias factors ch and

cv (Juang et al. 2013). In the common maximum

likelihood formulation, the model bias of the obser-

vation model is often expressed in ‘‘addition’’ form
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(Tarantola 2005). With the mean vector of model bias,

lc ¼ ½1; 1�, Eq. (7) can be converted into an addition

form as follows (Wang et al. 2013):

Y ¼ c � GðhÞ ¼ lc � GðhÞ þ e ¼ lc � yþ e ¼ yþ e

ð9Þ

where e is the residual error vector and is assumed to

follow a multivariate normal distribution

e�Nð0; CeÞ. The covariance Ce depends on both the

covariance of model bias factor vector rc and the input

parameter vector h, which can be expressed as:

Ce ¼
ðrch
� GhðhÞÞ2 ðrchv

� GhvðhÞÞ2

ðrcvh
� GvhðhÞÞ2 ðrcv

� GvðhÞÞ2

" #

ð10Þ

where G2
hvðhÞ ¼ G2

vhðhÞ ¼ GvðhÞ � GhðhÞ and where

GhðhÞ and GvðhÞ are the predicted dhm and the

predicted dvm, respectively.

It should be noted that the aforementioned model

uncertainty in the formulation of Eq. (10) is derived

for the scenario when only one pair of observations

(namely one maximum ground settlement and one

maximum wall deflection) at a given excavation stage

is adopted. If the observations from multiple excava-

tion stages (say, n stages with totally N = 2n obser-

vations) are available, the covariance Ce can be

transformed into a N 9 N covariance matrix similar to

one expressed in Eq. (10). For instance, when obser-

vations of the ith and the jth stages are available, Ce

can be expanded into:

where GhiðhÞ and GviðhÞ denote the predicted maxi-

mum wall deflection and ground settlement at ith stage

similar to Eq. (10). It should be noted that the

correlation of model uncertainty exists only in the

predicted wall deflection and ground settlement at the

same stage, while observations at different stages are

assumed independent from each other (Park et al.

2010).

Assuming that the soil parameters follow a multi-

variate normal distribution, with M input parameters,

the probability density function can be expressed as

(Ang and Tang 2007):

f ðhÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞM jChjÞ

q exp � 1

2
ðh� lhÞT C�1

h ðh� lhÞ
� �

ð12Þ

where lh is the prior mean vector of input parameters

and Ch is the prior covariance matrix of the input

parameters.

As in Eq. (9), the residual error e is assume to follow

a multivariate normal distribution with a zero mean

and a covariance matrix of Ce. Thus, the probability

density function of the observed responses (Y), given

input parameters h, can be described as follows

(Ledesma et al. 1996a; Zhang et al. 2010a):

f ðYjhÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞN jCejÞ

q

� exp � 1

2
ðGðhÞ � YÞT C�1

e ðGðhÞ � YÞ
� �

ð13Þ

where N is the number of observations and Ce is N 9 N

covariance matrix of model uncertainty. The likeli-

hood is proportional to the product of the probability

density of the observations (Eq. 13) and the prior

distribution (Eq. 12) as follows (Ledesma et al.

1996a):

LðhÞ / f ðYjhÞ � f ðhÞ ð14Þ
The posterior mean of h, denoted as lhjY, is an

optimal value which maximizes Eq. (14). For compu-

tational efficiency, the logarithm of the likelihood

function is selected as the objective function.

Ce ¼

ðrch
� GhiðhÞÞ2 ðrchv

� GhviðhÞÞ2 0 0

ðrcvh
� GvhiðhÞÞ2 ðrcv

� GviðhÞÞ2 0 0

0 0 ðrch
� GhjðhÞÞ2 ðrchv

� GhvjðhÞÞ2

0 0 ðrcvh
� GvhjðhÞÞ2 ðrcv

� GvjðhÞÞ2

2

6664

3

7775
ð11Þ
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Thus, maximizing the likelihood (Eq. 14) is equiva-

lent to minimizing the negative log-likelihood func-

tion, defined as SðhÞ ¼ �2 ln LðhÞ. This new

likelihood function SðhÞ can be simplified into

Eq. (1) by dropping the constant terms.
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