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Abstract Determination of soaked california bear-

ing ratio (CBR) and compaction characteristics of

soils in the laboratory require considerable time and

effort. To make a preliminary assessment of the

suitability of soils required for a project, prediction

models for these engineering properties on the basis of

laboratory tests—which are quick to perform, less

time consuming and cheap—such as the tests for index

properties of soils, are preferable. Nevertheless

researchers hold divergent views regarding the most

influential parameters to be taken into account for

prediction of soaked CBR and compaction character-

istics of fine-grained soils. This could be due to the

complex behaviour of soils—which, by their very

nature, exhibit extreme variability. However this

disagreement is a matter of concern as it affects the

dependability of prediction models. This study there-

fore analyses the ability of artificial neural networks

and multiple regression to handle different influential

parameters simultaneously so as to make accurate

predictions on soaked CBR and compaction charac-

teristics of fine-grained soils. The results of simple

regression analyses included in this study indicate that

optimum moisture content (OMC) and maximum dry

density (MDD) of fine-grained soils bear better

correlation with soaked CBR of fine-grained soils

than plastic limit and liquid limit. Simple regression

analyses also indicate that plastic limit has stronger

correlation with compaction characteristics of fine-

grained soils than liquid limit. On the basis of these

correlations obtained using simple regression analy-

ses, neural network prediction models and multiple

regression prediction models—with varying number

of input parameters are developed. The results reveal

that neural network models have more ability to utilize

relatively less influential parameters than multiple

regression models. The study establishes that in the

case of neural network models, the relatively less

powerful parameters—liquid limit and plastic limit

can also be used effectively along with MDD and

OMC for better prediction of soaked CBR of fine-

grained soils. Also with the inclusion of less signif-

icant parameter—liquid limit along with plastic limit

the predictions on compaction characteristics of fine-

grained soils using neural network analysis improves

considerably. Thus in the case of neural network

analysis, the use of relatively less influential input
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parameters along with stronger parameters is defi-

nitely beneficial, unlike conventional statistical meth-

ods—for which, the consequence of this approach is

unpredictable—giving sometimes not so favourable

results. Very weak input parameters alone need to be

avoided for neural network analysis. Consequently,

when there is ambiguity regarding the most influential

input parameters, neural network analysis is quite

useful as all such influential parameters can be taken to

consideration simultaneously, which will only

improve the performance of neural network models.

As soils by their very nature, exhibit extreme

complexity, it is necessary to include maximum

number of influential parameters—as can be deter-

mined easily using simple laboratory tests—in the

prediction models for soil properties, so as to improve

the reliability of these models—for which, use of

neural networks is more desirable.

Keywords CBR �Maximum dry density � Optimum

moisture content � Compaction � Liquid limit � Plastic

limit � Prediction � Correlation � Regression � Neural

networks � Fine-grained soils

1 Introduction

Large-scale constructions are taking place all over the

world for which huge quantities of filling/stabilization

materials are required. For this purpose, soils and

industrial by-products such as fly ash, quarry fines etc.

are collected from extensive areas. Such soils/mate-

rials may have large variations in their engineering

properties. Proper estimation of various engineering

properties (such as soaked CBR, MDD, OMC etc.) of

soils/filling materials used for construction work is

essential to ensure satisfactory performance of struc-

tures built over them. To obtain the compaction

characteristics from laboratory tests, considerable

time and effort is required. The soaked CBR test

which is an empirical measure for the evaluation of

sub grade strength of roads and pavements is not only

laborious and time consuming, but also requires costly

equipment. Hence while planning various construc-

tion projects, due to limited resources and time

available, few laboratory tests on soaked CBR and

compaction characteristics of soils are conducted.

Therefore the soil investigation data obtained are quite

insufficient in many cases.

Under these circumstances, if the estimation of the

soaked CBR/compaction characteristics of fine-

grained soils could be developed on the basis of some

laboratory tests—which are simple, speedy and cheap,

it shall be useful to engineers. Thus, for a preliminary

assessment of the suitability of the soils/filling mate-

rial required for an earthwork project, determination of

compaction characteristics/soaked CBR is important.

Even though development of prediction models for

engineering properties of fine-grained soils is benefi-

cial, it is found that researchers differ widely in their

opinion regarding the input parameters to be chosen

for these prediction models. This could be due to the

complex behaviour of soils which, by their very

nature, exhibit extreme variability. However this

disagreement is a matter of concern as it hampers

the use of prediction models. Hence this study focuses

on use of various influential input parameters simul-

taneously, for development of prediction models,

using two analytical tools—neural networks and

multiple regressions.

2 Literature Review

A detailed literature review was conducted prior to the

development of prediction models for engineering

properties of fine-grained soils using regression anal-

ysis and artificial neural network analysis. The review

investigated the current state of knowledge regarding

soaked CBR and compaction characteristics of fine-

grained soils and examined the various correlations

already proposed for these engineering properties of

soils. The suitability of regression and neural networks

for development of prediction models in geotechnical

engineering was analysed. The review also explored

the steps to be taken to improve the performance of the

prediction models and the various criteria to be

adopted for the determination of goodness-of-fit

between the predicted and observed data.

Pandian et al. (1997) proposed a method to predict

the compaction characteristics of fine-grained soils in

terms of the liquid limit. Studies conducted by

Sridharan and Nagaraj (2005) to discover which of

the index properties of fine-grained soils correlate well

with the compaction characteristics proved that that

the compaction characteristics do not correlate well
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with either the liquid limit or the plasticity index of the

soils. However, the plastic limit was found to correlate

well with the compaction characteristics, namely

optimum moisture content and maximum dry unit

weight. Roy and Chattopadhyay (2006) derived a

correlation for predicting OMC and MDD on the basis

of liquid limit of a soil.

Agarwal and Ghanekar (1970) developed a CBR

model considering OMC and liquid limit of cohesive

soils. Roy et al. (2009) derived correlation for CBR of

cohesive soils on the basis of compaction character-

istics. Patel and Desai (2010) proposed a correlation

between plasticity index, MDD and OMC for soaked

CBR of alluvial soils. A study to check the validity of

available correlations between CBR and other prop-

erties of soils was made by Roy et al. (2007) in which

only partial agreement was found between the pre-

dicted and tested values. Datta and Chattopadhyay

(2011) found that predicted values from correlation

given by Patel and Desai (2010) agree with the tested

values particularly for CI soils. But for other soils the

predicted values are much lower than the tested

values.

Studies on applications of artificial neural net-

works in geotechnical engineering by Shahin et al.

(2008) establish that ANNs are well suited to

modelling the complex behaviour of most geotech-

nical engineering materials which, by their very

nature, exhibit extreme variability. ANNs learn from

data examples presented to them in order to capture

the subtle functional relationships among the data

even if the underlying relationships are unknown or

the physical meaning is difficult to explain. This is

in contrast to most traditional empirical and statis-

tical methods which need prior knowledge about the

nature of the relationships among the data (Shahin

et al. 2008).

Shahin et al. (2008) state that the purpose of ANNs

is to non-linearly interpolate (generalize) in high-

dimensional space between the data used for calibra-

tion. Unlike conventional statistical models, ANN

models generally have a large number of model

parameters (connection weights) and can therefore

over fit the training data, especially if the training data

are noisy. In other words, if the number of degrees of

freedom of the model is large compared with the

number of data points used for calibration, the model

might no longer fit the general trend, as desired, but

might learn the idiosyncrasies of the particular data

points used for calibration leading to ‘memorization’

rather than ‘generalization’. As ANNs have difficulty

extrapolating beyond the range of the data used for

calibration, in order to develop the best ANN model,

given the available data, all of the patterns that are

contained in the data need to be included in the

calibration set. For example, if the available data

contain extreme data points that were excluded from

the calibration data set, the model cannot be expected

to perform well, as the validation data will test the

model’s extrapolation ability, and not its interpolation

ability.

In order to ensure that over-fitting does not occur,

Smith (1993) and Amari et al. (1997) suggested that

the data be divided into three sets; training, testing and

validation. The training set is used to adjust the

connection weights. The testing set measures the

ability of the model to generalize and the performance

of the model using this set is checked at many stages of

the training process. Training is stopped when the

error of the testing set starts to increase. The testing set

is also used to determine the optimum number of

hidden layer nodes and the optimum values of the

internal parameters (learning rate, momentum term

and initial weights). The validation set is used to assess

model performance once training has been accom-

plished. According to Taylor et al. (2003) this

approach can also be used to ensure that the network

converged to the global minimum instead of local

minima.

Hecht-Nielsen (1989) provides proof that a single

hidden layer of neurons, operating a sigmoidal acti-

vation function, is sufficient to model any solution

surface of practical interest. To the contrary, Flood

(1991) states that there are many solution surfaces that

are extremely difficult to model using a sigmoidal

network using one hidden layer. In addition, some

researchers (Flood and Kartam 1994; Ripley 1996;

Sarle 1994) state that the use of more than one hidden

layer provides the flexibility needed to model complex

functions in many situations. Lapedes and Farber

(1988) provide more practical proof that two hidden

layers are sufficient, and according to Chester (1990),

the first hidden layer is useful to extract the global

features of the training patterns. However, Masters

(1993) states that using more than one hidden layer

often slows the training process dramatically and

increases the chance of getting trapped in local

minima.
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Table 1 Database for soaked CBR prediction of fine grained soils

Sl.

No.

LL

(%)

PL

(%)

OMC

(%)

MDD

(g/cc)

Soaked

CBR (%)

Sl.

No.

LL

(%)

PL

(%)

OMC

(%)

MDD

(g/cc)

Soaked

CBR (%)

Training data

1 57.0 27.0 23.20 1.652 1.40 49 36.0 19.0 16.00 1.700 5.50

2 66.0 29.0 20.50 1.660 3.80 50 37.0 20.5 16.50 1.710 4.12

3 56.0 24.0 18.80 1.680 4.10 51 37.0 20.0 17.88 1.530 3.00

4 57.0 25.0 18.50 1.690 4.30 52 35.5 21.5 16.50 1.710 2.65

5 61.0 28.0 19.00 1.640 3.00 53 36.0 21.5 17.00 1.750 4.00

6 26.5 12.5 14.00 1.870 7.80 54 43.0 23.0 15.90 1.634 4.98

7 26.5 17.0 13.00 1.826 10.86 55 36.5 20.0 14.90 1.712 4.64

8 38.0 21.0 20.00 1.640 2.50 56 40.5 19.5 17.00 1.650 2.38

9 38.5 20.6 21.00 1.640 2.40 57 46.5 20.0 18.00 1.700 5.64

10 23.5 15.0 14.00 1.768 10.88 58 44.5 23.0 21.90 1.690 4.12

11 25.5 13.5 13.00 1.810 13.00 59 42.0 21.0 20.00 1.640 3.50

12 58.0 26.0 17.50 1.710 4.50 60 38.0 19.0 18.68 1.700 3.00

13 60.0 30.0 17.30 1.500 2.50 61 29.5 17.5 15.00 1.785 6.31

14 65.0 24.0 16.80 1.720 3.90 62 43.0 22.0 19.00 1.680 4.00

15 64.0 27.0 22.00 1.580 1.80 63 47.0 24.0 20.50 1.730 3.20

16 60.0 25.0 19.00 1.670 4.00 64 40.5 18.0 18.80 1.780 4.45

17 26.5 17.0 12.80 1.827 11.50 65 40.0 20.0 17.00 1.710 2.50

18 56.0 28.0 17.00 1.700 4.60 66 45.0 20.0 18.60 1.780 4.45

19 78.0 26.0 24.00 1.607 2.40 67 47.0 21.0 19.00 1.702 2.65

20 28.5 16.5 14.50 1.827 7.30 68 36.5 22.0 16.00 1.700 4.85

21 37.0 17.9 16.50 1.706 3.20 69 41.0 23.0 20.90 1.648 3.91

22 29.0 18.0 13.40 1.761 11.00 70 48.8 20.8 18.70 1.694 3.50

23 41.6 21.0 19.40 1.716 3.90 71 40.4 21.9 18.50 1.651 4.41

24 24.0 14.0 16.50 1.779 7.75 72 48.3 22.5 15.50 1.722 3.90

25 59.0 27.0 21.10 1.500 1.80 73 36.0 21.5 17.00 1.750 4.00

26 27.5 16.5 14.00 1.795 7.27 74 46.0 20.2 16.80 1.660 3.50

27 30.0 16.0 17.60 1.790 6.50 75 25.0 14.0 15.00 1.860 8.50

28 47.5 22.0 19.00 1.700 2.30 76 43.0 18.0 19.00 1.692 3.36

29 37.5 21.0 16.50 1.690 2.50 77 42.0 17.0 17.40 1.690 4.58

30 31.0 17.0 15.60 1.810 8.50 78 39.0 20.0 15.00 1.767 4.50

31 43.0 19.2 17.70 1.620 3.00 79 43.0 22.0 18.00 1.570 2.24

32 25.0 18.0 12.00 1.844 18.30 80 42.5 20.0 19.50 1.680 4.80

33 39.0 20.0 21.10 1.640 2.20 81 48.9 20.5 18.20 1.752 3.25

34 26.0 15.0 14.50 1.780 10.00 82 44.4 22.0 18.60 1.760 3.75

35 33.0 20.0 14.30 1.787 7.30 83 53.0 24.0 13.00 1.740 4.50

36 58.0 28.0 20.00 1.650 2.50 84 53.0 26.0 25.50 1.560 1.69

37 24.5 12.5 14.00 1.853 7.90 85 58.5 25.0 22.00 1.632 2.51

38 38.7 21.0 19.20 1.670 2.80 86 28.0 19.0 13.90 1.832 10.25

39 60.0 28.0 22.00 1.634 2.00 87 59.5 27.0 19.80 1.510 2.00

40 23.0 15.0 11.50 1.890 15.10 88 28.0 18.0 16.80 1.840 7.50

41 59.0 24.0 16.00 1.730 4.70 89 58.0 25.0 15.90 1.750 4.90

42 31.0 12.0 16.50 1.890 7.00 90 63.0 27.0 18.70 1.640 3.20

43 39.0 18.0 19.50 1.830 5.80 91 31.5 17.5 14.50 1.794 5.60
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According to Karsoliya (2012), practically, it is

very difficult to determine a good network topology

just from the number of inputs and outputs. It depends

critically on the number of training examples and the

complexity of the classification trying to learn. There

are problems with one input and one output that

require millions of hidden units, and problems with a

million inputs and a million outputs that require only

one hidden unit, or none at all. However, this is true

fact that by taking suitable number of hidden layers

and the number of neurons in each hidden layer, better

results in less training time can be obtained. Many

researchers develop approach to estimate the number

of neurons and hidden layers requirement for a neural

network but the approximation also get dependable on

the type of the database samples for which the network

is designed. By increasing the number of hidden layers

up to three layer, accuracy can be achieved up to great

extent but complexity of the neural network and

training time is increased many folds. If accuracy is

the main criteria for designing a neural network then

hidden layers can be increased. According to Sarle

(1995) if early stopping method is adopted, it is

essential to use lots of hidden units to avoid bad local

optima. As mentioned in this paper, early stopping

method is used in this case to develop the neural

network models.

The method most commonly used for finding the

optimum weight combination of feed-forward MLP

neural networks is the back-propagation algorithm

(Rumelhart et al. 1986) which is based on first-order

gradient descent. The use of global optimization

methods, such as simulated annealing and genetic

algorithms, have also been proposed (Hassoun 1995).

The advantage of these methods is that they have the

ability to escape local minima in the error surface and,

thus, produce optimal or near optimal solutions.

However, they also have a slow convergence rate.

Ultimately, the model performance criteria, which are

problem specific, will dictate which training algorithm

is most appropriate. Breiman (1994) recommended

that if training speed is not a major concern, there is no

reason why the back-propagation algorithm cannot be

used successfully.

Tang et al. (1991) found that when the number of

input variables increases, the forecasting ability of the

neural network improves. It is likely that more

accurate forecasts are produced when more informa-

tion has been provided by the increased number of

input variables. However, there is a trade-off between

the accuracy of the model and the model complexity in

terms of the number of input variables. To enhance

accuracy of the forecast, the size of the training set

should be relatively large when the number of input

Table 1 continued

Sl.

No.

LL

(%)

PL

(%)

OMC

(%)

MDD

(g/cc)

Soaked

CBR (%)

Sl.

No.

LL

(%)

PL

(%)

OMC

(%)

MDD

(g/cc)

Soaked

CBR (%)

44 38.0 19.0 20.00 1.780 4.00 92 29.0 19.0 14.00 1.810 9.18

45 35.0 18.0 17.60 1.820 6.50 93 65.0 24.0 19.50 1.630 3.50

46 62.0 24.0 20.50 1.610 2.30 94 25.5 14.5 17.90 1.750 6.80

47 27.0 16.0 16.40 1.790 5.90 95 55.5 21.0 20.00 1.633 1.70

48 60.0 29.0 21.00 1.620 2.50

Testing data

1 37.0 20.0 21.00 1.630 3.21 6 59.0 25.0 14.90 1.780 5.10

2 42.0 21.0 19.89 1.520 3.28 7 60.0 25.0 19.00 1.670 4.00

3 42.5 17.0 19.70 1.660 3.00 8 26.5 15.0 18.00 1.710 5.00

4 52.0 26.0 14.60 1.810 5.60 9 37.0 21.5 21.40 1.550 3.14

5 56.0 24.0 14.80 1.790 5.20

Validation data

1 55.0 25.0 15.00 1.795 4.88 5 54.0 26.0 14.10 1.840 5.80

2 63.5 25.5 15.90 1.800 3.52 6 57.0 27.0 15.30 1.760 5.10

3 62.0 30.0 15.70 1.770 3.90 7 39.0 18.5 20.85 1.630 2.40

4 53.0 23.0 14.40 1.820 5.40 8 47.0 25.3 22.60 1.500 2.26
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Table 2 Database for OMC and MDD prediction of fine-grained soils

Sl. No. LL (%) PL (%) OMC (%) MDD (kN/m3) Sl. No. LL (%) PL (%) OMC (%) MDD (kN/m3)

Training data

1 47.5 22.0 19.00 16.6666300 61 39.0 20.0 21.10 16.0783960

2 28.0 18.0 16.80 18.0391760 62 85.0 38.0 28.00 13.1960494

3 73.4 51.9 44.40 11.0980148 63 46.0 20.2 16.80 16.2744740

4 61.0 28.0 19.00 16.0783960 64 46.5 20.0 18.00 16.6666300

5 48.8 20.8 18.70 16.6078066 65 43.0 23.0 15.90 16.0195726

6 42.0 21.0 20.00 16.0783960 66 59.0 24.0 16.00 16.9607470

7 65.0 24.0 16.80 16.8627080 67 42.5 20.0 19.50 16.4705520

8 45.0 26.0 18.00 15.9019258 68 39.0 24.0 19.00 16.4999637

9 23.5 15.0 14.00 17.3332952 69 43.0 22.0 19.00 16.4705520

10 37.5 21.0 16.50 16.5685910 70 35.0 18.0 17.60 17.8430980

11 40.0 20.0 17.00 16.7646690 71 27.0 16.0 16.40 17.5489810

12 23.4 15.1 12.80 19.0979972 72 44.0 24.0 20.00 16.1999644

13 26.5 12.5 14.00 18.3332930 73 36.5 20.0 14.90 16.7842768

14 48.3 22.5 15.50 16.8823158 74 62.0 24.0 20.50 15.7842790

15 58.0 26.0 17.50 16.7646690 75 48.9 20.5 18.20 17.1764328

16 31.5 17.5 14.50 17.5881966 76 57.0 27.0 23.20 16.1960428

17 36.5 22.0 16.00 16.6666300 77 61.0 42.0 29.00 13.4999703

18 58.7 45.2 39.70 12.1960516 78 59.0 27.0 21.10 14.7058500

19 64.0 27.0 22.00 15.4901620 79 59.5 27.0 19.80 14.8038890

20 29.0 19.0 14.00 17.7450590 80 41.6 21.0 19.40 16.8234924

21 38.5 20.6 21.00 16.0783960 81 43.0 18.0 19.00 16.5881988

22 38.0 19.0 18.68 16.6666300 82 42.0 24.0 19.20 16.4999637

23 44.0 24.0 20.00 16.1960428 83 57.0 25.0 18.50 16.5685910

24 41.0 23.0 20.90 16.1568272 84 60.0 29.0 21.00 15.8823180

25 63.0 27.0 18.70 16.0783960 85 66.0 29.0 20.50 16.2744740

26 27.5 16.5 14.00 17.5980005 86 43.0 19.2 17.70 15.8823180

27 25.0 14.0 15.00 18.2352540 87 29.0 15.0 14.57 16.7646690

28 28.2 17.6 13.70 18.3000000 88 47.0 24.0 20.50 16.9607470

29 56.0 28.0 17.00 16.6666300 89 36.0 21.5 17.00 17.1568250

30 44.5 23.0 21.90 16.5685910 90 39.0 20.0 15.00 17.3234913

31 29.5 17.5 15.00 17.4999615 91 71.0 29.7 22.00 14.5195759

32 38.0 19.0 20.00 17.4509420 92 44.4 22.0 18.60 17.2548640

33 39.0 29.5 24.00 15.1960450 93 25.0 18.0 12.00 18.0783916

34 30.0 16.0 17.60 17.5489810 94 56.0 24.0 18.80 16.4705520

35 47.0 21.0 19.00 16.6862378 95 69.0 31.0 24.00 15.6960439

36 36.0 19.0 16.00 16.6666300 96 53.0 26.0 25.50 15.2940840

37 60.0 25.0 19.00 16.4019247 97 28.5 16.5 14.50 17.9117253

38 25.5 14.5 17.90 17.1568250 98 37.0 20.5 16.50 16.7646690

39 58.0 25.0 15.90 17.1568250 99 48.0 21.3 21.20 15.9999648

40 42.0 17.0 17.40 16.5685910 100 23.0 15.0 11.50 18.5293710

41 33.0 20.0 14.30 17.5195693 101 25.5 13.5 13.00 17.7450590

42 31.0 12.0 16.50 18.5293710 102 36.0 24.9 21.00 16.3000000

43 59.8 27.5 20.80 16.7646690 103 55.5 21.0 20.00 16.0097687

44 40.5 18.0 18.80 17.4509420 104 60.0 25.0 19.00 16.3725130
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variables increases. Tang et al. also suggested that the

amount of data can affect the performance of the

forecast technique, and more training data typically

means a more accurate forecast. However, even with a

small amount of time series data as an input, the neural

network can perform reasonably well.

The coefficient of correlation (r), the root mean

square error (RMSE) and the mean absolute error

(MAE) are the main criteria that are often used to

evaluate the prediction performance of ANN models.

The coefficient of correlation is a measure that is used

to determine the relative correlation and the goodness-

of-fit between the predicted and observed data. Smith

(1986) suggested the following guidelines for values

of |r| between 0.0 and 1.0: |r| C 0.8—strong correla-

tion exists between two sets of variables;

0.2 \ |r| \ 0.8—correlation exists between the two

sets of variables and |r| B 0.2—weak correlation

exists between the two sets of variables.

Willmott and Matsuura (2005) examined the rela-

tive abilities of root mean square error (RMSE) and

mean absolute error (MAE)—to describe average

model-performance error. The findings indicated that

MAE is a more natural measure of average error and

Table 2 continued

Sl. No. LL (%) PL (%) OMC (%) MDD (kN/m3) Sl. No. LL (%) PL (%) OMC (%) MDD (kN/m3)

45 60.0 30.0 17.30 14.7058500 105 60.0 28.0 22.00 16.0195726

46 24.5 12.5 14.00 18.1666267 106 26.5 17.0 13.00 17.9019214

47 37.0 18.0 16.20 17.9019214 107 65.0 24.0 19.50 15.9803570

48 39.0 18.0 19.50 17.9411370 108 68.0 49.7 29.40 12.9411480

49 45.0 20.0 18.60 17.4509420 109 26.5 17.0 12.80 17.9117253

50 28.0 19.0 13.90 17.9607448 110 36.0 21.5 17.00 17.1568250

51 43.0 22.0 18.00 15.3921230 111 37.0 20.0 17.88 14.9999670

52 55.0 30.0 21.00 15.9509453 112 58.5 32.1 28.00 14.1960472

53 29.0 18.0 13.40 17.2646679 113 24.0 14.0 16.50 17.4411381

54 40.4 21.9 18.50 16.1862389 114 58.0 28.0 20.00 16.1764350

55 38.7 21.0 19.20 16.3725130 115 78.0 26.0 24.00 15.7548673

56 53.0 24.0 13.00 17.0587860 116 38.0 21.0 20.00 16.0783960

57 28.0 21.0 14.30 17.2000000 117 26.0 15.0 14.50 17.4509420

58 35.5 21.5 16.50 16.7646690 118 112.0 43.0 25.00 14.5195759

59 37.0 17.9 16.50 16.7254534 119 58.5 25.0 22.00 15.9999648

60 40.5 19.5 17.00 16.1764350 120 31.0 17.0 15.60 17.7450590

Testing data

1 56.0 24.0 14.80 17.5490000 9 39.0 18.5 20.85 15.9804000

2 59.0 25.0 14.90 17.4509000 10 37.0 20.0 21.00 15.9804000

3 60.0 25.0 19.00 16.3725000 11 42.0 21.0 19.89 14.9019000

4 89.0 47.0 32.00 14.3000000 12 42.5 17.0 19.70 16.2745000

5 52.0 27.0 17.00 17.6600000 13 35.8 22.5 18.60 16.6623000

6 50.0 18.0 16.04 15.9600000 14 53.0 23.0 14.40 17.8431000

7 32.5 32.5 15.50 18.0392000 15 22.3 16.2 13.80 18.0914000

8 57.0 27.0 15.30 17.2549000

Validation data

1 55.0 25.0 15.00 17.5980000 6 44.0 22.0 17.49 16.2600000

2 54.0 26.0 14.10 18.0392000 7 52.0 26.0 14.60 17.7451000

3 26.5 15.0 18.00 16.7647000 8 63.3 51.5 30.53 13.7255000

4 37.2 24.1 17.80 16.5838000 9 32.8 19.2 20.19 16.5686000

5 100.0 27.0 34.00 13.5980000 10 28.1 15.7 13.80 18.1385000
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(unlike RMSE) is unambiguous. Dimensioned evalu-

ations and inter-comparisons of average model-per-

formance error, therefore, should be based on MAE.

3 Methodology

The analytical tools used for the study include

statistical method such as Regression Analysis and

Artificial Intelligence method such as Artificial Neural

Network Analysis. EXCEL, the spreadsheet program

in Microsoft’s popular Office software package, has

been used to perform Regression Analysis. Artificial

Neural Network Analysis has been performed using

the software package MATLAB. The recommenda-

tions of researchers referred in the literature review are

also taken to consideration to develop prediction

models for CBR and compaction characteristics of

fine-grained soils. The fine-grained soil databases used

for prediction of soaked CBR, MDD and OMC,

collected from various published literatures are given

in Table 1 and 2.

The parameters potentially influential to CBR/

compaction characteristics of fine grained soils found

using simple regression, that can also be determined

easily by simple laboratory tests are chosen for

prediction. Initially prediction models are developed

using only the most effective input parameters—
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Fig. 1 a Optimum Moisture Content versus soaked CBR, b Maximum Dry Density versus soaked CBR, c Liquid Limit versus soaked

CBR, d Plastic Limit versus soaked CBR
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determined by means of simple regression. Later other

predication models are developed employing less

effective input parameters also-along with more

effective parameters. The performance of prediction

models are closely observed to derive a conclusion

regarding the strength and reliability of the two tools.

3.1 Prediction of Soaked CBR of Fine-Grained

Soils Using Regression and Neural Networks

The input parameters OMC, MDD, PL and LL are

chosen to develop prediction models for CBR of fine-

grained soils using regression analysis and artificial

neural network analysis.

3.1.1 Simple Regression Analysis

Simple regression analysis was performed prior to

multiple regression analysis and neural network

analysis in order to identify useful input parameters

and to avoid irrelevant/weakly correlated input param-

eters so as to reduce the chance of neural networks

being caught in local minima. To determine the

relationship between soaked CBR of fine grained soils
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and their respective OMC, MDD, plastic limit (PL)

and liquid limit (LL) simple regression analysis was

used. For soaked CBR, the results of simple regression

analyses shown in Fig 1a–d) indicate that in the case

of fine-grained soils, MDD and OMC are stronger

parameters on soaked CBR than other parameters such

as LL and PL. The results of simple regression

analyses for compaction characteristics, shown in

Fig 2a–d) indicate that in the case of fine-grained soils,

the PL bears better correlation with the compaction

characteristics than LL. The equations for soaked

CBR, MDD and OMC derived using simple regression

analyses are given in Table 3.

3.1.2 Multiple Regression Analysis

The simple regression analyses of LL, PL, OMC and

MDD with soaked CBR of fine grained soils indicate

that, among these four parameters, MDD and OMC

are the most effective parameters on soaked CBR of

fine grained soils. Based on the results of simple

regression analyses, four variables, namely (1/(LL1.34),

(1/(PL1.4), (1/(OMC2.74) and (EXP(5.072*MDD)) were

used to predict the soaked CBR of fine grained soils

(due to the combined effect of various parameters in the

multiple regression model, minor modification in the

parameter (1/(PL1.81)—obtained using simple regres-

sion analysis, was found necessary. When multiple

regression analysis was carried out, the performance of

the multiple regression model with parameter (1/(PL1.4)

was found to be much better than that with parameter

(1/(PL1.81) and hence the same was adopted). The

summary output is shown in Table 4.

In this case the correlation coefficient (Multiple R)

is 0.914, coefficient of determination R2 is 0.835 and

adjusted R2 is 0.827. Hence the four independent

variables together explain 83.5 % of total variation in

dependent variable CBR (df-degree of freedom,

Table 3 Equations derived using simple regression analysis

Predicted

engineering

properties of

fine-grained

soils (y)

Input

Data (x)

Simple Regression

Equations

Soaked CBR (%) OMC (%) Y = 10815x-2.744

MDD (g/cc) Y = 0.0007e5.0727x

PL (%) Y = 1019.3x-1.8144

LL (%) Y = 623.05x-1.3436

OMC (%) PL (%) Y = 0.568x ? 5.809

LL (%) Y = 0.1979x ? 9.7935

MDD(kN/m3) PL (%) Y = -0.0163x ? 2.0548

LL (%) Y = -0.006x ? 1.9542

Table 4 Summary output of multiple regression analysis using 4 variables

Multiple R 0.91370265

R Square 0.83485253

Adjusted R Square 0.82751264

Standard Error 1.27651724

Observations 95

df SS MS F Significance F

ANOVA

Regression 4 741.3678158 185.342 113.7419 2.45735E 9 10-34

Residual 90 146.6546642 1.6295

Total 94 888.02248

Coefficients Standard error t stat P value Lower 95 % Upper 95 %

Intercept -1.1885529 0.479827848 -2.477 0.015116 -2.141814608 -0.23529

1/LL1.3 423.847882 103.0954142 4.11122 8.68E 9 10-05 219.0308522 628.6649

1/PL1.4 -130.72343 62.48999634 -2.0919 0.039263 -254.8707156 -6.57615

1/OMC2.74 6708.64064 1024.497395 6.54823 3.51E 9 10-09 4673.297789 8743.983

EXP(5.072*MDD) 0.00030813 8.61066E 9 10-05 3.57842 0.000559 0.00013706 0.000479
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SS-sum of squares, ms-mean square error). However

when degrees of freedom lost are also taken into

consideration, the four independent variables together

explain only 82.75 % of total variation in dependent

variable. Thus, truly speaking, adjusted R2 indicate the

adequacy of the model as it takes into account the

deviations as well as degrees of freedom. If adjusted

R2 is fairly close to 1, the overall model can be

considered adequate to fit the data. But it does not

mean that there are no insignificant parameters in it.

The residual plots of the four variables shown in Fig. 3

indicate that there is no obvious correlation between

the residuals and each independent variable. However,

the fact that the residuals look random and that there is

no obvious correlation with the variable does not

necessarily mean by itself that the model is adequate.

More tests are needed.

The overall significance test of the regression

model is tested by F-statistic. The column F gives

the overall F-test of H0: coefficients = 0 versus Ha: at

least one of the coefficients is not equal to zero. Excel

computes F as F = [Regression SS/(k-1)]/[Residual

SS/(n-k)], where k is the number of regressors

including the intercept. The decision rule is when the

computed F is greater than critical F, reject the null

hypothesis. The computed F (113.7419) in this case is

greater than the critical F (3.01—at 0.01 significance

level). The closer the significance level is to 0 %, the

stronger is the evidence against the null hypothesis and

hence the null hypothesis may be rejected. The value

of Significance F in ANOVA output is 2.457E 9

10-34. Thus the significance F value is much less than

0.01 (hence we reject H0 at significance level 0.01).

The corresponding level of confidence is 0.9999.

Therefore at least one of coefficients -1.1886, 423.85,

-130.72, 6708.641 and 0.00031 is significant for the

model. The statistical significance of independent

variables and intercept in the multiple regression

model is then ascertained by computed t values. This t

value of each coefficient is obtained by dividing

estimated coefficient by its standard error under the

null hypothesis that the coefficient is zero. The

computed t static value of all the variables and

intercept are greater than critical t value (2), at 0.05

Fig. 3 Residual Plots of

four input variables for

prediction of soaked CBR

Table 5 Equations for prediction of engineering properties of fine-grained soils using multiple regression analysis

Predicted engineering

properties of fine-grained soils

Input data Equations derived using multiple regression analysis

Soaked CBR (%) OMC and MDD (g/cc) CBR = -1.4501 ? 8907.3739 9 (1/OMC2.74)

? 0.000384 9 (EXP(5.072*MDD))

LL, PL, OMC and MDD(g/cc) CBR = -1.1886 ? 423.85 9 (1/LL1.34)-130.72

9 (1/PL1.4) ? 6708.641 9 (1/OMC2.74)

? 0.00031 9 (EXP(5.072 9 MDD))

OMC (%) PL OMC = 5.809 ? 0.5680 9 PL

PL and LL OMC = 5.9257 ? 0.6134 9 PL-0.0255 9 LL

MDD(kN/m3) PL MDD = 20.145-0.1597 9 PL

PL and LL MDD = 20.159-0.157 9 PL-0.0013 9 LL
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level of significance. This implies that all the variables

and intercept in the multiple regression model are

statistically significant at 0.05 level of confidence.

The P value approach is also used for evaluating the

contribution of individual independent variables. The

P value in the regression output indicates the

significance of individual coefficient in the

regression model. The regression output indicate that

Pintercept = 0.0151, which corresponds to fairly high

confidence level, 1 - 0.0151 = 0.9849. This suggests

that the parameter -1.1886 is significant. The

regression output also indicates that confidence levels

for other parameters are high, which means that they

are also significant. For the regression model, the

lower and upper 95 % limits for intercept and

variables do not include zero. This agrees with the

previous conclusions made about their significance.

Hence the multiple regression model obtained, soaked

CBR = -1.1886 ? 423.85 9 (1/LL1.34) - 130.72 9

(1/PL1.4) ? 6708.641 9 (1/OMC2.74) ? 0.00031 9 (EXP

(5.072 9 MDD)) is adequate to fit the experimental

data. Various prediction models for engineering prop-

erties of fine-grained soils thus derived using Multiple

Regression Analysis are given in Table 5.

3.1.3 Artificial Neural Network Analysis

The chosen data is divided into three groups, for

training, testing and validation, so that the generaliza-

tion capacity of network could be checked after

training phase. The training set is the largest set and is

used by neural network to learn patterns present in the

data. The testing set is used to evaluate the general-

ization ability of a supposedly trained network. A final

check on the performance of the trained network is

made using validation set. Mean Absolute Error

(MAE) is used as a measure of error made by the

network.

For prediction of soaked CBR using Artificial

Neural Network Analysis the four input variables used

are the OMC expressed in percentage, MDD

expressed in g/cc, PL expressed in percentage and

LL expressed in percentage. Hence the input layer has

four neurons. The only output is the soaked CBR of

Fig. 4 Error plot of Testing and Validation data of soaked CBR

prediction in ANN Analysis

Table 6 Artificial neural network analysis

Predicted

engineering

properties of

fine-grained soils

Input data Artificial neural network analysis using feed forward back propagation neural network

Network

structure

Activation

function

Learning

rate

Epochs MAE-

Testing

Data

MAE-

Validation

Data

Soaked

CBR (%)

OMC and

MDD (g/cc)

2-81-81-1 logsig-logsig-logsig-logsig 0.005 10000 1.0446 1.0697

LL, PL, OMC and

MDD (g/cc)

((G/CC(g/cc)

4-100-100-1 logsig-logsig-logsig-logsig 0.005 3500 0.3634 0.5006

OMC (%) PL 1-120-1 logsig-logsig-logsig 0.005 10000 3.5135 4.1038

PL and LL 2-100-50-1 logsig-logsig-logsig-logsig 0.005 35000 1.9455 1.7297

MDD (kN/m3) PL 1-50-1 logsig-logsig -logsig 0.005 2000 1.1691 1.2661

PL and LL 2-100-50-1 logsig-logsig –logsig-logsig 0.005 8500 0.8577 0.8471
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Table 7 Prediction of properties of fine-grained soils using multiple regression analysis and artificial neural network analysis—

Comparison between the experimental and predicted values

Sl

No.

LL

(%)

PL

(%)

OMC

(%)

MDD

(g/cc)

Soaked

CBR (%)

(experimental)

Multiple regression analysis Artificial neural network analysis

Soaked CBR (%)

(predicted using

2 variables)

Absolute

error

Soaked CBR (%)

(predicted using

2 variables)

Absolute

error

(i) Prediction of soaked CBR of fine-grained soils using 2 variables

1 55.0 25.0 15.00 1.795 4.88 7.3399 2.4599 4.9742 0.0942

2 63.5 25.5 15.90 1.800 3.52 6.6411 3.1211 4.3866 0.8666

3 62.0 30.0 15.70 1.770 3.90 6.3017 2.4017 4.3473 0.4473

4 53.0 23.0 14.40 1.820 5.40 8.4383 3.0383 6.5519 1.1519

5 54.0 26.0 14.10 1.840 5.80 9.2113 3.4113 8.0835 2.2835

6 57.0 27.0 15.30 1.760 5.10 6.4963 1.3963 4.4954 0.6046

7 39.0 18.5 20.85 1.630 2.40 2.2102 0.1898 3.8910 1.4910

8 47.0 25.3 22.60 1.500 2.26 1.0591 1.2009 3.8781 1.6181

Mean absolute error (MAE) 2.1524 1.0697

Correlation coefficient (r) 0.93 0.79

Sl

No.

LL

(%)

PL

(%)

OMC

(%)

MDD

(g/cc)

Soaked

CBR (%)

(experimental)

Multiple regression analysis Artificial neural network analysis

Soaked CBR (%)

(predicted using

4 variables)

Absolute

error

Soaked CBR (%)

(predicted using

4 variables)

Absolute

error

(ii) Prediction of soaked CBR of fine-grained soils using 4 variables—liquid limit, plastic limit, maximum dry density and optimum

moisture content

1 55.0 25.0 15.00 1.795 4.88 6.1319 1.2519 4.7505 0.1295

2 63.5 25.5 15.90 1.800 3.52 5.3038 1.7838 4.3337 0.8137

3 62.0 30.0 15.70 1.770 3.90 5.3621 1.4621 4.0992 0.1992

4 53.0 23.0 14.40 1.820 5.40 6.9039 1.5039 5.6181 0.2181

5 54.0 26.0 14.10 1.840 5.80 7.7111 1.9111 5.7186 0.0814

6 57.0 27.0 15.30 1.760 5.10 5.5240 0.4240 4.2969 0.8031

7 39.0 18.5 20.85 1.630 2.40 2.5698 0.1698 3.2343 0.8343

8 47.0 25.3 22.60 1.500 2.26 1.7559 0.5041 3.1855 0.9255

Mean absolute error (MAE) 1.1263 0.5006

Correlation coefficient (r) 0.95 0.93

Sl

No.

LL

(%)

PL

(%)

OMC

(%)

MDD

(kN/m3)

Multiple regression analysis Artificial neural network analysis

Predicted

OMC (%)

Absolute

error

Predicted

OMC (%)

Absolute

error

(iii) Prediction of OMC using 1 variable—plastic limit

1 55.00 25.00 15.00 17.5980 20.0096 5.0096 20.0207 5.0207

2 54.00 26.00 14.10 18.0392 20.5776 6.4776 20.5848 6.4848

3 26.50 15.00 18.00 16.7647 14.3294 3.6706 15.6398 2.3602

4 37.20 24.10 17.80 16.5838 19.4984 1.6984 19.5093 1.7093

5 100.00 27.00 34.00 13.5980 21.1457 12.8543 21.1325 12.8675

6 44.00 22.00 17.49 16.2600 18.3055 0.8155 18.3549 0.8649

7 52.00 26.00 14.60 17.7451 20.5776 5.9776 20.5848 5.9848

8 63.30 51.50 30.53 13.7255 35.0622 4.5322 29.9707 0.5593

9 32.80 19.20 20.19 16.5686 16.7151 3.4749 17.0273 3.1627
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Table 7 continued

Sl

No.

LL

(%)

PL

(%)

OMC

(%)

MDD

(kN/m3)

Multiple regression analysis Artificial neural network analysis

Predicted

OMC (%)

Absolute

error

Predicted

OMC (%)

Absolute

error

10 28.10 15.70 13.80 18.1385 14.7270 0.9270 15.8235 2.0235

Mean absolute error (MAE) 4.5438 4.1038

Correlation coefficient (r) 0.59 0.59

(iv) Prediction of OMC using 2 variables—plastic limit and liquid limit

1 55.00 25.00 15.00 17.5980 19.8563 4.8563 13.7481 1.2519

2 54.00 26.00 14.10 18.0392 20.4953 6.3953 13.7647 0.3353

3 26.50 15.00 18.00 16.7647 14.4502 3.5498 17.7837 0.2163

4 37.20 24.10 17.80 16.5838 19.7591 1.9591 17.1725 0.6275

5 100.00 27.00 34.00 13.5980 19.9332 14.0668 30.5504 3.4496

6 44.00 22.00 17.49 16.2600 18.2971 0.8071 16.7561 0.7339

7 52.00 26.00 14.60 17.7451 20.5464 5.9464 13.8311 0.7689

8 63.30 51.50 30.53 13.7255 35.9006 5.3706 27.1030 3.4270

9 32.80 19.20 20.19 16.5686 16.8657 3.3243 17.6886 2.5014

10 28.10 15.70 13.80 18.1385 14.8387 1.0387 17.7849 3.9849

Mean absolute error (MAE) 4.7315 1.7297

Correlation coefficient (r)ß 0.55 0.97

Sl

No.

LL

(%)

PL

(%)

OMC

(%)

MDD

(kN/m3)

Multiple regression analysis Artificial neural network analysis

Predicted

MMD (kN/m3)

Absolute

error

Predicted

MMD (kN/m3)

Absolute

error

(v) Prediction of maximum dry density using 1 variables—plastic limit

1 55.00 25.00 15.00 17.5980 16.1515 1.4465 16.3144 1.2836

2 54.00 26.00 14.10 18.0392 15.9918 2.0474 16.1898 1.8494

3 26.50 15.00 18.00 16.7647 17.7489 0.9842 17.3753 0.6106

4 37.20 24.10 17.80 16.5838 16.2953 0.2885 16.4268 0.1570

5 100.00 27.00 34.00 13.5980 15.8320 2.2340 16.0671 2.4691

6 44.00 22.00 17.49 16.2600 16.6307 0.3707 16.6840 0.4240

7 52.00 26.00 14.60 17.7451 15.9918 1.7533 16.1898 1.5553

8 63.30 51.50 30.53 13.7255 11.9185 1.8070 10.6612 3.0643

9 32.80 19.20 20.19 16.5686 17.0780 0.5094 16.9987 0.4301

10 28.10 15.70 13.80 18.1385 17.6371 0.5014 17.3213 0.8172

Mean absolute error (MAE) 1.1942 1.2661

Correlation coefficient (r) 0.63 0.63

(vi) Prediction of maximum dry density using 2 variables—plastic limit and liquid limit

1 55.00 25.00 15.00 17.5980 16.1437 1.4543 16.2394 1.3586

2 54.00 26.00 14.10 18.0392 15.9876 2.0516 16.2258 1.8134

3 26.50 15.00 18.00 16.7647 17.7551 0.9904 18.9431 2.1784

4 37.20 24.10 17.80 16.5838 16.3086 0.2752 16.3955 0.1883

5 100.00 27.00 34.00 13.5980 15.7700 2.1720 13.0438 0.5542

6 44.00 22.00 17.49 16.2600 16.6303 0.3703 16.3777 0.1177

7 52.00 26.00 14.60 17.7451 15.9902 1.7549 16.2473 1.4978

8 63.30 51.50 30.53 13.7255 11.9614 1.7641 13.9807 0.2552
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soil and therefore the output layer has only one neuron.

In this study, a feed forward back propagation neural

network with two hidden layers (with hundred neurons

each) gave good results. Logistic sigmoid transfer

function is used for all the layers and only the output is

normalized to get desired results. Since Logistic

sigmoid transfer function (often called squashing

functions) compress the infinite input range to finite

output range normalization of inputs was not found

necessary. Learning rate of 0.005 is found to be

suitable for good performance. Training goal for the

networks is set to 10-4. The networks are trained for

fixed number of epochs.

During the training phase, the system adjusts its

connection/weight strengths in favour of the inputs

that are most effective in determining a specific

output. It is possible that repeated training iterations

successively improve performance of the network on

training data by memorizing training samples. Never-

theless, the resulting network may perform poorly on

test data. The use of validation set in the study is an

important guard against this overtraining or over

fitting network. To avoid overtraining, the error

(maximum absolute error and/or mean absolute error)

on the test set is monitored. Training is continued as

long as the error on the test set decreased. It is

terminated when the error on the test set started

increasing again. Thus the training is halted when the

error on testing dataset is lowest (early stopping

method) even though the error on training dataset is

found to decrease further as training is continued. As

early stopping method is adopted, in order to escape

local minima—large numbers of hidden nodes are

used. The Mean Absolute Errors of testing and

validation data of the model are 0.3634 and 0.5006,

respectively. The error plot of testing and validation

data is given in Fig. 4. Table 6 indicates different

prediction models thus derived for soaked CBR, MDD

and OMC using Artificial Neural Network Analysis.

3.2 Comparison of Results of Multiple Regression

Analysis and Neural Network Analysis

To study how well the analytical values ‘‘fit’’ the

experimental values, the mean absolute errors (MAE)

and correlation coefficients (r) of the predicted values

are determined. The results of prediction of CBR and

compaction characteristics using multiple regression

analysis and neural network analysis are shown in

Table 7. To evaluate the performances of multiple

regression models and ANN models, both MAE and

correlation coefficient are taken to consideration.

Figure 5a, b illustrate the neural network-multiple

regression error plots for prediction of soaked CBR of

fine-grained soils using 2 variables (MDD, OMC) and

4 variables (MDD, OMC, PL and LL). Similar error

plots for prediction of OMC and MDD of fine-grained

soils using 1 variable (PL) and 2 variables (PL and LL)

are shown in Fig. 6a–d). The performances of both

neural network models and multiple regression models

used for prediction of soaked California Bearing Ratio

(CBR)/Compaction characteristics of fine-grained

soils are summarized in Table 8.

The study show that for prediction of soaked CBR

of fine-grained soils, using 4 variables—MDD, OMC,

PL and LL, though the predicted and the experimental

values strongly agree for neural network models as

well as multiple regression models the predictions

using neural network models are more accurate. Also,

fairly good predictions on soaked CBR could be made

using the two strong parameters—MDD and OMC

alone, in which case also neural network models are

more accurate (though the mean absolute errors of

ANN models for the prediction of soaked CBR of fine-

Table 7 continued

Sl

No.

LL

(%)

PL

(%)

OMC

(%)

MDD

(kN/m3)

Multiple regression analysis Artificial neural network analysis

Predicted

MMD (kN/m3)

Absolute

error

Predicted

MMD (kN/m3)

Absolute

error

9 32.80 19.20 20.19 16.5686 17.0857 0.5171 16.7045 0.1359

10 28.10 15.70 13.80 18.1385 17.6428 0.4957 18.5102 0.3717

Mean absolute error (MAE) 1.1846 0.8471

Correlation coefficient (r) 0.63 0.77
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grained soils using 4 input variables and 2 input

variables are lesser than the corresponding multiple

regression models, the correlation coefficients of

multiple regression models are higher than ANN

models -this could at times happen due to smaller

sample size and presence of outliers). In the case of

prediction of compaction characteristics using two

variables PL and LL, neural network models are far

more accurate than multiple regression models. The

results thus prove that neural network analysis has

more potential as a forecasting tool than multiple

regression analysis.

The results also indicate that, when the input

parameters PL and LL are used along with the two

strong parameters OMC and MDD—the accuracy of

prediction of soaked CBR increases significantly in

the case of neural network analysis while moderate

improvement in accuracy is observed for prediction of

soaked CBR using multiple regression model. In the

case of prediction of OMC, with the use of additional

input parameter LL along with PL the accuracy of

prediction of neural network model increase consid-

erably while the use of additional input parameter

affects the multiple regression model adversely. The

additional input parameter—LL also improves the

accuracy of prediction of MDD using neural network

model notably, while the increase in accuracy of

prediction of multiple regression model with the use of

additional parameter is negligible. The superior per-

formance in the case of neural network models—with

more number of influential parameters—is obvious in

individual results of validation data depicted in the

error plots.

It can be inferred from the results that in the case of

neural network analysis, the use of relatively less

influential input parameters along with stronger

parameters is definitely beneficial, unlike conven-

tional statistical methods—for which, this approach is

risky—with either damaging effect or less benefit. The

various input parameters used for prediction of

dependent variable need not have strong and equal

influence on the dependent variable, for ANN to

develop a good model. But in the case of multiple

regression models, this approach need not always

produce positive results. With the addition of more

input parameters, the information available to neural

networks increase, which in turn improves the perfor-

mance of neural networks. ANN models are capable of

extracting even the subtle relationship of the depen-

dent variable to the weak independent variables in a

better manner than multiple regression models. Only

very weak parameters need to be avoided in the case of

neural network analysis. However use of less influen-

tial parameters alone in ANN models is not likely to

give favorable results. The behaviors of soils as such

are very complicated and hence to safeguard the

dependability of prediction models for soil properties

it is always preferable to use more number of

influential parameters—which can be done safely

only using neural networks. Those parameters which

can be easily determined using simple laboratory

tests—having moderate correlation with predicted

variable can also be included in neural network

analysis to improve the prediction results.

On comparing the predictions of engineering prop-

erties of fine-grained soils made using regression

analysis and neural network analysis it is understood

Soaked CBR prediction (2 variables) 
Multiple regression vs Neural networks - Error plot
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Fig. 5 a Soaked CBR prediction (2 variables) Multiple

regression versus Neural networks—Error plot, b Soaked

CBR prediction (4 variables) Multiple regression versus Neural

networks—Error plot
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that with a uniformly representative database and

sufficient number of input variables, ANN is capable

of making more accurate predictions. To get most

accurate predictions, the database used for fine-

grained soils should be well representative which

includes soils belonging to different groups such as

CH, CI and CL as well as MH, MI and ML. In this

study, the database (inclusive of testing and validation

data) used for the predictions of CBR values of fine-

grained soils included 112 soil samples while the

database used for the predictions of compaction

characteristics of fine-grained soils consisted of 145

soil samples. Though these databases cannot be

claimed as perfect uniformly representative large

databases, representing all possible cases, the results

indicate that reasonably accurate predictions can be

made even with lesser data. The performances of

artificial neural networks will definitely improve with

a larger and more representative database and suffi-

cient number of input variables. However, neural

network analysis lacks transparency—the output is

obtained as numerical values. No information can be

gathered about the effect of each input variable on the

predicted variable. Neural networks may even be

termed as ‘‘black boxes’’ for this inability. For

regression analysis, the output obtained in the form

of equations/trend lines gives an overall idea about the

influence of each input variable on the predicted
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12

17

22

27

32

37

12 17 22 27 32 37

Actual OMC (%)

P
re

d
ic

te
d

 O
M

C
 (

%
)

EqualityLine

10%Error

-10%Error

20%Error

- 20%Error

 Regn OMC

ANN OMC

OMC prediction (2 variables) 
Multiple regression vs Neural networks - Error plot

12

17

22

27

32

37

12 17 22 27 32 37

Actual OMC (%)

P
re

d
ic

te
d

 O
M

C
 (

%
)

EqualityLine

10%Error

-10%Error

20%Error

- 20%Error

 Regn OMC

ANN OMC

MDD prediction (1 Variable) 
Multiple regression vs Neural networks - Error plot

10

15

20

10 15 20

Actual MDD (kN/m3)

P
re

d
ic

te
d

 M
D

D
 (

kN
/m

3 )

MDD prediction (2 Variables) 
Multiple regression vs Neural networks - Error plot

10

15

20

10 15 20

Actual MDD (kN/m3)

P
re

d
ic

te
d

 M
D

D
 (

kN
/m

3
)

EqualityLine

10%Error

-10%Error

20%Error

- 20%Error

 Regn MDD

ANN MDD

EqualityLine

10%Error

-10%Error

20%Error

- 20%Error

 Regn MDD

ANN MDD

(a)

(b) (d)

(c)

Fig. 6 a OMC prediction (1 variable) Multiple regression

versus Neural networks—Error plot, b OMC prediction

(2 variables) Multiple regression versus Neural networks—

Error plot, c MDD prediction (1 variable) Multiple regression

versus Neural networks—Error plot, d MDD prediction (2

variables) Multiple regression versus Neural networks—Error

plot
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variable. While the training time/processing time

required for obtaining the best neural network model

can vary, the regression analysis take definite time.

4 Summary

Predictions of engineering properties (namely soaked

CBR, MDD and OMC) of fine-grained soils using

neural network models are better than those using

regression models. Accurate predictions on CBR of

fine-grained soils can be obtained using neural net-

works with four numbers of influential input param-

eters namely OMC, MDD, PL and LL. Also precise

predictions on compaction characteristics of fine-

grained soils can be achieved with two numbers of

influential input parameters namely PL and LL. In the

case of neural network analysis, the use of relatively

less influential input parameters along with stronger

parameters is definitely beneficial, unlike conventional

statistical methods—for which, this approach need not

always return positive/favourable results. The various

input parameters used for prediction of dependent

variable should not necessarily have strong and equal

influence on the dependent variable, for ANN to

develop a good model. The behaviours of soils as such

are very complicated and hence to safeguard the

dependability of prediction models for soil properties it

is always preferable to use more number of influential

parameters—which can be done securely only using

neural networks. However, ANN models give less

insight into the underlying physical relationship

between each input variable and predicted variable.

5 Conclusions

• Predictions on soaked CBR and compaction char-

acteristics of fine-grained soils using neural net-

work models are better than those using regression

models.

• Accurate predictions on soaked CBR of fine-

grained soils can be obtained using neural net-

works with four numbers of influential input

parameters namely OMC, MDD, PL and LL. Also

precise predictions on compaction characteristics

of fine-grained soils can be achieved with two

numbers of influential input parameters namely PL

and LL.

• The performance of neural networks improves as

the number of input parameters increase. Thus for

neural network analysis, the use of relatively less

influential input parameters along with stronger

parameters is definitely beneficial, unlike multiple

regression—for which, this approach is sometimes

not so advantageous. In other words, in the case of

neural network analysis, it is more effective to use

all influential parameters—which can be deter-

mined easily by simpler laboratory tests—simul-

taneously, while this approach need not always

give better results for conventional statistical

methods. With the addition of more input param-

eters, the information available to neural networks

increase, which in turn improves the performance

of neural networks. The various input parameters

used for prediction of dependent variable need not

have strong and equal influence on the dependent

variable, for ANN to develop a good model. Hence

Table 8 Performance evaluation of multiple regression analysis and artificial neural network analysis

Predicted

engineering

properties of

fine-grained soils

Input data Multiple regression analysis Artificial neural network analysis

Correlation

coefficient (r) of

validation data

Mean absolute

error (mae) of

validation data

Correlation

coefficient (r) of

validation data

Mean absolute error (MAE)

Testing

data

Validation

data

Soaked CBR (%) OMC and MDD (g/cc) 0.93 2.1524 0.79 1.0446 1.0697

LL, PL, OMC

and MDD (g/cc)

0.95 1.1263 0.93 0.3634 0.5006

OMC (%) PL 0.59 4.5438 0.59 3.5135 4.1038

PL and LL 0.55 4.7315 0.97 1.9455 1.7297

MDD (kN/m3) PL 0.63 1.1942 0.63 1.1691 1.2661

PL and LL 0.63 1.1846 0.77 0.8577 0.8471
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very weak input parameters alone need to be

avoided in neural network analysis.

• The behaviours of soils as such are very compli-

cated and hence to safeguard the dependability of

prediction models for soil properties it is always

preferable to use more number of influential

parameters in the prediction models—which can

be done safely only using neural networks.
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