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Abstract Uniaxial Compressive Strength (UCS) is

considered as one of the most important parameters in

designing rock structures. Determination of this

parameter requires preparation of rock samples which

is costly and time consuming. Moreover discrepancy

of laboratory test results is often observed. To

overcome the drawbacks of traditional method of

UCS measurement, in this paper, predictive models

based on neuro-genetic approach and multivariable

regression analysis have been developed for predicting

compressive strength of different type of rocks.

Coefficient of determinatoin (R2) and the Mean

Square Error (MSE) were calculated for comparison

of the models’ efficiency. It was observed that

accuracy of the neuro-genetic model is significantly

better than regression model. For the neuro-genetic

and regression models, R2 and MSE were equal to

95.89 % and 0.0045 and 77.4 % and 1.61, respec-

tively. According to sensitivity analysis for neuro-

genetic model, Schmidt rebound number is the most

effective parameter in predicting UCS.

Keywords Uniaxial compressive strength �
Neuro-genetic approach � Prediction

1 Introduction

Uniaxial compressive strength of rocks is a competent

parameter for designing surface and underground rock

structures (Bieniawski 1974). Direct determination of

this parameter in the laboratory is carried out accord-

ing to standards of the American Society for Testing

and Materials (ASTM) and the International Society

for Rock Mechanics (ISRM). To do so, rock samples

have to be prepared, which is expensive and time

consuming. Furthermore, in some cases of weak rocks,

sampling is almost impossible. To overcome problems

with direct laboratory determination of UCS, indirect

methods have been developed (e.g. empirical models

and artificial intelligence (AI) based models). In the

empirical models, predictive functions are usually

derived from simple tests such as Schmidt rebound

number, point load tests, impact strength, and sound

velocity using traditional regression analysis (Fener

et al. 2005; Singh et al. 2001). In the past investiga-

tions these models have been employed by many

researchers. However, accuracy of such models is

rather low which may be attributed to linearity
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assumptions (Singh et al. 1983; Haramy and DeMarco

1985; O’Rourke 1989; Garret 1994; Huang and

Wanstedt 1998). In view of the above shortcomings

of the empirical methods, artificial neural network

(ANN) models, a subsystem of artificial intelligence,

may properly be used for predicting UCS. This method

has been used in the field of rock mechanics and

mining sciences and particularly for predicting UCS

by many investigators (Nie and Zhang 1994; Huang

1999; Cevik et al. 2011; Atici 2011).

In this study, a new ANN model was developed to

predict UCS. Specialty of this new so-called neuro-

genetic model is optimizing the network parameters

(number of neurons in hidden layers, learning rate and

momentum) with the help of genetic algorithm. It

should be mentioned that this is the first application of

this kind for predicting UCS.

2 UCS of Rocks: Measurement and Prediction

Methods

UCS is regarded as the highest stress that a rock

specimen can carry when a stress is applied in an axial

direction to the ends of a cylindrical specimen. The

UCS test allows comparisons to be made between

rocks and affords some indication of rock behavior

under more complex stress systems (Bell, 2005). As

previously mentioned, ASTM and ISRM specifica-

tions are direct methods for measurement of this

parameter in the laboratory. Measurements of UCS

can be time-consuming and expensive and requires

carefully prepared rock samples. Therefore, several

different ways to predict UCS, including the point load

test, Schmidt hammer test, shore hardness test,

porosity, sonic velocity, etc. have been recently

employed by various researchers. There are a vast

agreement of published empirical relationships

between point load index and UCS. Broch and

Franklin (1972) reported that UCS is about 24 times

the point load index. Bienawski (1975) proposed this

coefficient to be approximately 23. ISRM (1985)

suggested this value as 20–25. In a laboratory study,

Kahraman (2001) presented a comprehensive list of

such relationships. Isik Yilmaz (2009) applied core

strangle test (CST) instead of point load index to

estimate UCS for different types of rocks. This

research indicated that CST will be more efficient

than point load index test for estimation of UCS.

Besides, Kayabali and Selcuk (2010) offered a new

and practical index test method, nail penetration Test

(NPT), to estimate intact rocks’ UCS, as well as an

alternative to the point load test (PLT). Further studies

have been done by Russell and Wood (2009), Basu and

Kamr (2010).

The shore hardness test is also reported for eval-

uating and comparing the hardness of rocks. These

reports showed that the relations between shore

hardness and UCS are weaker than those obtained

from the Schmidt hammer (Yasar and Erdogan 2004;

Altindag and Guney 2005). Another method applied

for UCS estimation is block punch index (BPI) test.

However, this test is only performed on very thin

specimens, which is considered as a deficiency for this

method (Ulusay et al. 2001).

Many researchers have used ultrasonic velocity

index to predict rock strength by measurement of

ultrasonic velocities in directions parallel and perpen-

dicular to weakness planes of anisotropic rocks

(Vasconcelos et al. 2007; Sharma and Singh 2008;

Vasconcelos et al. 2008; Khaksar et al. 2009; Mora-

dian and Behnia 2009; Vishnu et al. 2010; Kelessidis

2011, Rigopoulos et al. 2011). Shalabi et al. (2007)

proved that the relationships from this test were

weaker than the results obtained by Schmidt hammer

and shore tests.

Some researchers have studied the effect of petro-

graphic characteristics (e.g. grain size, grain shape,

type and amount of cement, and packing density) on

compressive strength of concrete and rocks (Ulusay

et al. 1994; Hale and Shakoor, 2003). Meddah et al.

(2010) revealed that compressive strength of concrete

increases with maximum size of coarse aggregate.

Zhang et al. (2011) studied the scale effect on intact

rock strength using particle flow modeling.

According to Demirdag et al. (2010) physical

properties of rock materials such as porosity, unit

volume weight, and Schmidt hardness have more

significant effects on the dynamic mechanical behav-

ior of the rock samples. For both the quasi-static and

dynamic loading conditions, the compressive strength

of the rock samples increased with increase in their

unit volume weight and Schmidt hardness values

while it increased with decrease of their porosity.

Moreover, Bell (1978) concluded that the strength

of sandstone increases as packing density increases.

Doberenier and De Freitas (1986), also, confirmed that

a low packing density generally characterized weak
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sandstones. Porosity has an important effect on

mechanical properties of rocks. The researches by

Dube and Singh (1972) showed that strength proper-

ties decrease as porosity increases.

Schmidt rebound number (SRN) has widely been

employed for prediction of UCS. Schmidt hammer is a

portable test tool which imparts a known amount of

energy to the rock through a spring-loaded plunger.

Two type hammers are used for SRN, L-type and

N-type. The studies have been confirmed that the

N-type should be used for rocks with UCS [ 20 MPa

(Sheorey et al. 1984). However, the previous studies

show that both types have been employed to predict

the strength of various rock types (Katz et al. 2000;

Kahraman et al. 2002; Aydin and Basu 2005; Porto

and Hurlimann 2009).

Moh’d (2009) pointed out that compressive

strength of the studied samples has positive relation-

ships with density and sonic velocity and inverse

relationships with permeability, modified saturation,

total and other porosity types. According to Moh’d

(2009) studies, dry density, as the easiest parameter to

measure in laboratory or field, can be used for

predicting compressive strength of rocks.

Considering mentioned methods for measuring and

predicting of UCS, Schmidt rebound number, porosity

and density, convenient and inexpensive tests could be

preferably used to estimate the UCS of various rock

types. For this goal, in this study, a neural network

optimized by genetic algorithm is employed using the

mentioned parameters as input. The majority of

models used for prediction of UCS in literature have

been developed based on a simple or multivariate

linear or nonlinear regression analysis using a limited

number of data and parameters. If new available data

are different from the original ones then the form of

obtained equation is necessary to be update. On the

contrary, a trained ANN can conveniently re-train and

adapt to new data (Lee 2003). Atici (2011) used a

backpropagation neural network with levenberg–mar-

quardt algorithm (considering blast-furnace slag,

mixed age, rebound number, and ultrasonic pulse

velocity as input parameters and UCS as output

parameter) to predict strength of the mineral admix-

ture concrete. The results showed a high accuracy of

ANN model rather than multivariable regression

analysis. Selver et al. (2008) predicted brecciated

rock specimens UCS using neural networks and

different learning models. Also, Cevik et al. (2011)

used neural network modeling to predict UCS of some

clay-bearing rocks. These studies showed the superi-

ority of ANN compared to traditional prediction

models. It is worth to mention that the architectural

parameters of all these networks (number of neurons

in hidden layers, learning rate, and momentum coef-

ficient) are obtained by trial and error process and in

this paper these parameters are calculated by genetic

algorithm optimization process.

3 Neuro-Genetic Hybridization

3.1 ANN

Artificial neural network can be defined as an infor-

mation-processing system that is identical to biolog-

ical neural networks. This type of network was first

introduced by Mc Culloch and Pitts (1988). ANN

structure is fundamentally composed of several fully

interconnected layers; input layer, output layer and

hidden layer(s). The number of hidden layers is

determined on the basis of problem complexity. To

increase prediction capability, it is normally recom-

mended to utilize two hidden layers for more complex

problems. Each layer contains a number of simple

information processing units called neurons. The

number of input and output neurons is simply equal

to the number of input and output problem variables.

However, the number of neurons in the hidden

layer(s) is dependent to the unknown interrelationship

among the input–output variables. The neurons in each

layer are connected to the neurons of the subsequent

layer through weighted connections. By this way, each

connection weight multiplies into the signal transmit-

ted from the preceding layer. In the neural networks,

with the exception of the input layer, all the other

neurons are associated with a bias neuron and a

transfer function. A bias vector which is referred to as

the temperature of a neuron is similar to a weight with

a constant value of 1. The biases are applied in the

transfer functions to distinguish between neurons. The

purpose of a particular neural network determines

the type of transfer function is to be used. Activation of

the neurons is performed using simple step transfer

functions which are usually nonlinear. Through acti-

vation process, sum of weighted net input signals and

their corresponding biases for each and every neuron

is filtered to determine its output signal.
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In training of the neural networks different types of

algorithms can be applied. Back-propagation algo-

rithm provides the most efficient learning procedure.

This technique is especially suitable for solving

predicting problems. During training process a suffi-

cient number of sample datasets are required to reach

pretend results. For each dataset, input and corre-

sponding output or training pairs, processing starts

from the input layer and lasts to the output layer

(Feedforward). At this point, the output is compared to

the measured actual values. The calculated difference

or error is back propagated through the network (Back

propagation) updating the weights and the biases. The

above mentioned process is repeated for all the

training pairs. Convergence of the network error to a

minimum threshold which is usually determined by a

cost function—known as Mean Square Error (MSE)—

is the end of training process.

It is hereby mentioned that efficiency of the ANN

model is considerably influenced by its topology,

learning rate, and momentum. During training pro-

cess, lack of sufficient number of neurons in the hidden

layer(s) can cause this stage not performed properly,

means that relationship between the input and output

variables is not recognized. On the other hand, if the

neurons are too high, model training time and

computations is increased and also memorization

due to over fitting may be occurred. Therefore,

maximum efforts should be incurred to create as

possible as simple network topology with tolerable

errors. Too small learning rates or weights adjustment

velocity would cause elongation of training and

keeping them too large may result in lack of conver-

gence. Finally, an unsuitable momentum can cause the

model to be trapped in a local minima and inaccuracy

of the network.

In a routine ANN network all of the aforesaid

parameters are determined on the basis of trial and

error approach, which is tedious and time consuming

process in which supreme optimized model may not be

acquired. To overcome the shortcomings encountered

in application of ANN, genetic algorithm in combi-

nation with neural networks, so-called neuro-genetic

network, can be effectively utilized.

3.2 GA

Holland (1975) developed the first GA for optimizing

problems using Charles Darwin theory of natural

evolution in the origin of species. This approach can

efficiently be used when the exploration space is

extensive. The basic of GAs is as follows:

At first a population or set of chromosomes

(sequence of genes) is randomly initialized. A chro-

mosome itself is one of the possible problem solutions

not necessarily being the best one. Normally, genes of

each chromosome are a set of bits with a binary

formation (genotype). In the second step, fitness of

each decoded (phenotype) chromosome in the initial

random population is evaluated using an objective

function. To initialize a new evolved population, an

optimization process known as reproduction with

genetic operators such as ‘‘selection’’, ‘‘crossover’’

(recombination), and ‘‘mutation’’ is applied. In the

‘‘selection’’ process, two parent chromosomes are

randomly selected using Roulette wheel method,

Tournament method, etc. The criterion behind selec-

tion is conformity of each chromosome, which is

determined on the basis of a fitness function such as

Mean Square Error (MSE). The more the fitness is the

higher the chance of selection of a chromosome. In the

‘‘crossover’’, the parent chromosomes from selection

step are used to probabilistically produce new chro-

mosomes by a swapping mechanism. Probabilistic

crossover is conducted aiming to generate better

chromosomes from parts of the parents. This process

is applied to describe how often crossover would be

performed. If no probability is considered, new

generation is made from exact copies of chromosomes

from old population. This does not mean that the new

generation is the same. On the other hand, if proba-

bility of 100 % is employed, then all of the old

population would be changed. But, it is better to let

some part of the old population to be survived for the

next generation. Finally, in the ‘‘mutation’’, new

versions of some of the chromosomes (individuals) are

produced. In fact, mutation prevents the GA from

falling into local optima. In the mutation process,

randomly bits of genes existed in the original

chromosomes are flipped to form a new string.

Mutation is probabilistically performed for selecting

the number of bits to be mutated. In a similar fashion to

the crossover, mutation probability determines how

often parts of chromosome is to be mutated. If

mutation of 0 % is selected nothing would be changed

and offspring is generated immediately after cross-

over. On the other hand, if mutation probability is

100 % the whole chromosome would be changed.
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Mutation should not occur very often because the GA

convergence would be very difficult or even impos-

sible. The reproduction process continues until a

particular selected stopping criterion such as maxi-

mum generations and maximum evolution time is

satisfied. For example, number of generated popula-

tions can be considered to stop the process. To obtain

more accurate results, sufficient number of genera-

tions should be applied. In the last stage, the best

solution which is a chromosome with maximum

fitness is introduced by the GA (Goldberg 1989;

Sivanandam and Deepa 2008).

3.3 Combination of ANN and GA

The GA can be utilized to design and construct an

optimum neural network, a combination of GA and

ANN so-called neuro-genetic. In the first step, an

initial population of neural networks with their own

individual parameters (number of neurons in hidden

layers, learning rate, and momentum) is randomly

created. In the second step, each of the networks is

trained and evaluated to determine its fitness. In the

third step, to create a new evolved population, the

operators ‘‘selection’’, ‘‘crossover’’, and ‘‘mutation’’

are applied. The new processed population is again

evaluated in the same manner. This process is repeated

until the maximum generations or maximum evolution

time is reached. Figure 1 illustrates the process of

optimizing neural network parameters using GA

applied in this study. Many investigators (Fogel

et al. 1990; Bornholdt and Graudenz 1992) used this

technique to train feedforward networks. Regular

neural networks were optimized by applying evolu-

tionary algorithms. Same applications were reported

for generalized regression neural network (Hansem

and Meservy 1996) and Hopfield neural networks (Lin

et al. 1995).

4 Datasets

In this study, 93 samples of different rock types

including sandstone, limestone, dolomite, granite,

chalk, gneiss, siltstone, tuff, gypsum, olivine, grano-

diorite, slate, schist, conglomerate, quartzite, gabbro,

and amphibolite were collected and tested for deter-

mination of parameters density, porosity, Schmidt

rebound number and UCS. N-type Schmidt hammer

was selected and applied according to methods

proposed by ISRM (1981). In all carried out tests,

the hammer was held vertically downwards. It must be

added that the tests can be conducted in the field if

ISRM suggested methods is followed (Kahraman et al.

2002). Finally, a universal testing machine was

implemented for determination of UCS. In this study,

density, porosity, and Schmidt rebound number was

considered as input parameters to predict UCS as

output parameter. A summary of the laboratory test

results are given in Table 1.

5 Regression Analysis

Regression analysis can be applied to establish a

mathematical model for realizing the relation-

ships between independent and dependent variables

(Jennrich 1995). Multivariable regression analysis

gives more realistic results where number of variables

is too high. Application of this particular method in the

Training the network by BPNN and evaluating 
the fitness of each chromosome (MSE) 

Start

End

Generation of 
new population

Initializing random population 
(Chromosomes containing neural network parameters)

Stopping 
criterion is 
satisfied?

“Selection”

“Crossover”

No

Yes

“Mutation”

Genetic operators

Network parameters are optimized and 
outputs are predicted with highest accuracy 

Fig. 1 Combination of genetic algorithm and neural network
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mining related problems has been reported by many

researchers (Alveraz Grima and Babuska 1999).

Applying the statistical software SPSS16 and using

the prepared database collected from the laboratory,

an arithmetical model (Eq. 1) was developed to

predict UCS using new input parameters.

UCS ¼ 0:801 Schmidtþ 0:423 Density

� 0:172 Porosity� 0:246: ð1Þ

From this equation, correlation of determination

(R2) and mean square error (MSE) were calculated as

0.774 and 1.61, respectively.

6 Neuro-Genetic Based Analysis

Implementing GA, the parameters of ANN was

determined to find the optimal architecture of neural

network. Here, the process of optimizing ANN is

performed by ‘‘NeuroSolution’’ for Excel Release

5.05 software package, produced by Neuro Dimen-

sion, Inc. To apply this software, the concerned data

should be normalized to keep the values within the

range (0, 1). Data normalization is fulfilled using Eq.

(2):

Varn ¼
Vari � Varmin

Varmax � Varmin

ð2Þ

where, Varn is normalized value, Vari is the real value,

Varmin and Varmax are the minimum and the maximum

real values, respectively.

In the next step, the database was randomly divided

into three groups, i.e. training (60 %), cross validation

(15 %), and (25 %) testing. In this study, a feedfor-

ward backpropagation neural network with two hidden

layers was identified to be suitable. This network was

trained using GA. In the training process of the ANN,

initial population is generated. The chromosomes of

each population contain three genes (i.e. the number of

neurons in the hidden layers, the momentum and the

learning rates). The number of hidden neurons and

training parameters were represented by haploid

chromosomes consisting of ‘‘genes’’ of binary num-

bers. The genes themselves have also a few numbers of

bits which determine the length of the chromosomes.

The process of determination of the chromosomes

lengths is automatically made by the NeuroSolution

package. For generation of the initial population a

boundary limit should be defined for chromosomes’

components of this population. The boundary limits

for number of the hidden neurons, the learning rate,

and the momentum were set as (1, 30), (0, 1) and (0, 1),

respectively. After the limits are set, for each compo-

nents, the software randomly select a value from the

defined limits and then automatically produce the

initial population.

Network performance is evaluated using Mean

Square Error (MSE) as defined in Eq. (3). The errors of

training datasets were computed and network with the

smallest MSE was considered to be optimum (Nicule-

scu 2003).

MSE ¼ 1

n

Xn

i¼1

ðOi � TiÞ2 ð3Þ

where Oi is the desired output for training data or cross

validation data i, Ti is the network output for training

data or cross validation data i, and n is the number of

data.

To start working with GA, setting the concerned

parameters (population size, stopping criterion,

‘‘Selection’’, ‘‘Crossover’’, and ‘‘Mutation’’) is essen-

tial. Normally, trial and error mechanism and/or

previous experiences are applied for selecting the

parameters. Following this procedure, population size

and stopping criterion were considered to be 40 and

30, respectively. Reproduction of the new chromo-

somes is commenced with ‘‘selection’’ which was

performed using Roulette wheel ranking algorithm-

based method. In this way, chromosomes are arranged

according to their relative fitness. The chromosome

with the lowest fitness is received ranking 0 and

accordingly the worst chromosome is assigned rank-

ing 1. After ranking is finished, the chromosomes are

placed into the intermediate population (Kim et al.

2004). In continuation of reproduction process the

crossover and mutation operators are applied for the

intermediate population. For this study, two point

crossover and uniform mutation were used and

Table 1 Summary of the laboratory test results

Input and output Maximum Minimum Average

Density (g/cm3) 3.8 1.65 2.58

Porosity (%) 33.5 1 7.20

SRN 71.33 25.25 54.35

UCS (MPa) 301 28.6 160.59
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accordingly their probabilities were determined to be

0.7 and 0.01, respectively (Table 2). The process of

creating new generations is repeated until the stopping

criterion is satisfied. Figure 2 shows average and best

improving MSE for new generations. Finally, the best

chromosome available in the last generation is

considered to be the problem optimum solution.

Table 3 shows the details of the Generation No. 23

which is considered the best solution. As a result, it

was revealed that the optimum number of neurons,

which was obtained by GA, in first and second hidden

layers, is 9 and 5, respectively. Furthermore, the other

network parameters, learning rate and momentum,

also optimized by the GA, were equal to 0.66 and 0.53,

respectively (Fig. 3).

Performance of the proposed model was evaluated

using selected datasets considered for testing the

model. Coefficient of determination for measured and

predicted UCS was computed 0.96 which shows

superiority of the neuro-genetic network over con-

ventional statistical method (Fig. 4).

7 Sensitivity Analysis

Sensitivity analysis is a method for extracting the

cause and effect relationship between the inputs and

outputs of the network. The network learning is

disabled during this operation such that the network

weights are not affected. The basic idea is that the

inputs to the network are shifted slightly and the

corresponding change in the output is reported either

as a percentage or a raw difference. Figure 5 illustrates

the sensitivity analysis results.

8 Conclusion

In this paper, a hybrid neuro-genetic network was

implemented to predict uniaxial compressive strength

of rocks. In this regard, neural network parameters

including number of neurons in hidden layers, learning

rate, and momentum coefficient were optimized by

genetic algorithm. For this study, two point crossover

and uniform mutation were used and accordingly their

probabilities were determined to be 0.7 and 0.01,

respectively. Determination of the optimum model

with this method as compared with the classic

networks (based on trial and error process) is faster

and more convenient. In optimization process by GA,

the optimum number of neurons obtained 9 in first and

5 in second hidden layers. Also, learning rate and

momentum were equal to 0.66 and 0.53, respectively.

The results showed the robustness of this hybrid

network for estimation of UCS, a time consuming and

costly test, with easily-attained parameters Schmidt

Table 2 GA parameters used for optimization of ANN

GA parameters Value/type

Number of population 40

Number of generation 30

Selection method Roulette wheel

Genetic operators

(probability)

Crossover (0.7), mutation

(0.01)

Fitness function MSE

Fig. 2 Average fitness (MSE) versus generation (a) best fitness

(MSE) versus generation (b)

Table 3 Optimization summary by GA

Optimization summary Best fitness Average fitness

Generation 23 28

Minimum MSE 0.00447 0.00461

Final MSE 0.00447 0.00478
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rebound number, density, and porosity. Competency

of the method over conventional regression analysis

was also confirmed. To compare neuro-genetic net-

work results and statistical analysis, R2 and MSE were

calculated. Significant efficiency of neuro-genetic

model was proved with R2 and MSE, 0.9589 and

0.0045, respectively. For regression model R2 and

MSE were calculated 0.774 and 1.61, respectively.

Rather poor performance of this method may be

attributed to applying linearity assumption. Finally,

sensitivity analysis revealed that the most sensitive

parameter on the predicting UCS is Schmidt rebound

number, which is consistent with the previous

experiences.
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