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Abstract The paper refers the reader to a blast data

base developed in a previous study. The data base

consists of blast design parameters, explosive param-

eters, modulus of elasticity and in situ block size. A

hierarchical cluster analysis was used to separate the

blast data into two different groups of similarity based

on the intact rock stiffness. The group memberships

were confirmed by the discriminant analysis. A part of

this blast data was used to train a single-hidden layer

back propagation neural network model to predict

mean particle size resulting from blast fragmentation

for each of the obtained similarity groups. The mean

particle size was considered to be a function of seven

independent parameters. An extensive analysis was

performed to estimate the optimum value for the

number of units for the hidden layer for each of the

obtained similarity groups. The blast data that were

not used for training were used to validate the trained

neural network models. For the same two similarity

groups, multivariate regression models were also

developed to predict mean particle size. Capability

of the developed neural network models as well as

multivariate regression models was determined by

comparing predictions with measured mean particle

size values and predictions based on one of the most

applied fragmentation prediction models appearing in

the blasting literature. Prediction capability of the

trained neural network models as well as multivariate

regression models was found to be strong and better

than the existing most applied fragmentation predic-

tion model. Diversity of the blasts data used is one of

the most important aspects of the developed models.

Keywords Rock mass � Blast fragmentation �
Cluster analysis � Discriminant analysis �
Neural networks � Multivariate regression analysis

1 Introduction

Control of the particle size distribution of a muckpile

after blasting is always an important subject for mining

industry. Blasting has a significant impact on down-

stream processes of mining such as loading, crushing

and grinding. Improvement of blasting results provides

P. H. S. W. Kulatilake (&)

Geological Engineering Program, Department

of Materials Science and Engineering,

University of Arizona, Tucson, AZ 85721, USA

e-mail: kulatila@u.arizona.edu

T. Hudaverdi

Department of Mining Engineering, Istanbul Technical

University, Maslak, 34469 Istanbul, Turkey

T. Hudaverdi � Q. Wu

Geological Engineering Program, University of Arizona,

Tucson, AZ 85721, USA

Q. Wu

Faculty of Engineering, China University of Geosciences,

Wuhan 430074, China

123

Geotech Geol Eng (2012) 30:665–684

DOI 10.1007/s10706-012-9496-3



increase in loader and excavator productivity due to

increased diggability capacity, and increased bucket

and truck fill factors. Suitable and uniform particle size

distribution results increase in crusher and mill

throughput and decrease in energy consumption in

size reduction process. Mckenzie (1966) found, in the

studies at Quebec Cartier Mines, that the efficiency of

all the subsystems of mining is dependent on the

fragmentation (Chakraborty et al. 2004). Today,

researchers suggest ‘mine to mill’ blasting approach

that is defined as optimization of the blast design to

maximize the overall profitability rather than individ-

ual operations (Kanchibotla et al. 1999; Grundstrom

et al. 2001). Additionally, uniform particle size distri-

bution also eliminates the need of the secondary

blasting of the big boulders.

Several studies have been conducted on blastability

and prediction of fragmentation. The term blastability

refers to the ease with which a rock mass can be

fragmented by blasting and is closely related to

fragmentation. The parameters that determine frag-

mentation by blasting may be divided into four groups:

(a) Blast design parameters; (b) Explosive parameters;

(c) Rock mass structure parameters; (d) Intact rock and

discontinuity physical and mechanical properties.

Burden, spacing between boreholes, bench height,

drill-hole diameter, hole length, charge depth, stem

height, subdrilling, drilling pattern (square or stag-

gered), hole inclination (vertical or inclined), blasting

direction and blasting sequence (instantaneous or

delayed) are all blast design parameters. All these

parameters are controllable. Figure 1 shows most of

the blast design parameters used in a bench blast. The

diameter of the drill hole is the most important

parameter for any blast design. It influences the

selection of all other parameters. The hole is generally

drilled slightly below the floor level to obtain a clean

breakage. This total length of the hole is known as hole

length. The extra length of the hole below the floor or

the grade level is called the sub-drilling. The part of

the drill hole at the top which is not filled with

explosives is known as stemming height. Some inert

material, such as drill cuttings, sand, crushed stone,

etc., are used as stemming to contain the explosive

gases in the hole for a slightly longer time to increase

rock fracturing. The second group consists of explo-

sive parameters. Explosive type (Anfo, water gel,

emulsion or dynamite), its density (changes between

0.80 and 1.60 g/cm3), strength, resistivity and specific

charge (kg Anfo/m3) are explosive parameters. All

these parameters are also controllable. The third group

consists of rock mass structure parameters. Number of

discontinuity sets, orientation, size, spacing and

intensity distributions of each discontinuity set belong

to the third group. Physical and mechanical properties

of the intact rock and discontinuities belong to the

fourth group. Density, dynamic compressive strength,

dynamic tensile strength, shear strength, dynamic

elastic properties, hardness, durability, mineral com-

position and grain size of intact rock, and strength,

deformability, roughness and infilling material prop-

erties of discontinuities belong to the fourth group.

The parameters of the third and fourth groups are

uncontrollable.

The parameters of the aforementioned 4 groups

should be considered together to explain fragmentation

process. Because a large number of parameters influ-

ence fragmentation distribution, it is obvious that the

fragmentation process is extremely complex and thus it

is an extremely challenging task to develop models to

predict fragmentation distribution. Therefore, even

though some of the fragmentation prediction models

that appear in the literature have contributed to

improving the state-of-the-art on the subject, none of

them include all the important parameters. In some of

the available prediction models crude, highly simpli-

fied or inappropriate procedures have been used in

estimating rock mass fracture geometry parameters.

Inappropriate distributions have been used to represent

joint orientation. Corrections for sampling biases have

not been applied in modeling joint size, joint orienta-

tion and joint intensity. Estimation of fracture spacing

has been described in a highly vague manner. It is

important to note that spacing of a fracture set changes

with the direction and the correct spacing is obtained in

the direction perpendicular to the fracture plane. In

some of the blast fragmentation papers, RQD is used as

a parameter. It is important to note that RQD changes

with the direction and thus many values within a wide

range exist for RQD for the same rock mass. In situ

block size estimation has not been done in a compre-

hensive manner. Therefore, it is important to use better

and accurate procedures in estimating rock mass

fracture geometry parameters in developing rock blast

fragmentation data bases in the future. Such quality

data bases should then be used to improve the existing

models or to develop new models to predict rock blast

fragmentation distribution.

666 Geotech Geol Eng (2012) 30:665–684

123



Because the blast fragmentation distribution depends

on many parameters, and the process is highly

complex due to the heterogeneity and anisotropy of a

discontinuous rock mass system, it is impossible to

derive an equation for fragmentation distribution

purely from theoretical and mechanistic reasoning.

In such situations, empirical approaches are used

incorporating case history data along with statistical

based procedures in developing prediction equations

for complex geotechnical processes. Multivariate

regression analysis has been used to develop frag-

mentation prediction models (Chakraborty et al.

2004; Hudaverdi et al. 2011). However, capturing of

high non-linearity incorporating many parameters is

a difficult task even with multivariate regression

analysis.

Due to its excellent ability of non-linear pattern

recognition, generalization, self-organization and self-

learning, the Artificial Neural Network Approach

(ANNA) has been proved to be of widespread utility in

engineering and is steadily advancing into diverse

areas as material sciences (Li et al. 2006), voice

recognition, loan-risk assessment, stock market anal-

ysis, box office revenue forecasting (Zhang et al.

2009) and military target discrimination. In geosci-

ences and geo-engineering, neural networks have been

applied in rock mechanics and rock engineering

(Zhang et al. 1991; Ghaboussi 1992; Lee and Sterling

1992), soil engineering (Kung et al. 2007), well-log

and well-test interpretation (Rogers et al. 1992; Al-

Kaabl and Lee 1993), seismic and satellite image

processing (de Groot 1993; Penn et al. 1993),

groundwater characterization and remediation (Rizzo

and Doughery 1994; Rogers and Dowla 1994),

earthquake intensity prediction (Tung et al. 1994),

oil reservoir prediction (Yu et al. 2008) and conduc-

tive fracture identification (Thomas and La Pointe

1995). Neural network approach (NNA) is highly

suitable for systems with highly non-linear complex

relations between input and output parameters that are

difficult to develop through physical reasoning and

mathematical modeling. Linking between the rock

Fig. 1 Blast design parameter terminology (Ash 1973)
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blast mean fragment size and the blast design param-

eters, explosive parameters, rock mass structure

parameters, and intact rock and discontinuity physical

and mechanical properties is a very complex, non

linear process. Therefore, NNA will be highly suitable

to relate the mean fragment size to the aforementioned

blast related parameters belonging to the four groups.

Application of NNA to predict rock blast mean

fragmentation size was dealt with in a previous paper

(Kulatilake et al. 2010). A summarize account of it is

given in this paper. Needed future research to improve

the currently existing models are discussed in the

paper.

2 Literature Review

A previous paper (Kulatilake et al. 2010) has covered

the literature on the topic to an extensive level by

referring to the following papers: Ghosh et al. (1990),

Mojtabai et al. (1990), Ouchterlony et al. (1990),

Chakraborty et al. (1994), Pal Roy (1995),Hagan

(1995), Aler et al. (1996), Ozcelik (1998), Jhanwar

et al. (2000), Castro et al. (1998), Latham and Lu

(1999), Hamdi and Du Mouza (2005), Hall and

Brunton (2002), Latham et al. (2003), Sanchidrian

et al. (2007), Gheibie et al. (2009), and Rustan (1998).

Kuznetsov (1973) has suggested the following empir-

ical equation to predict the mean fragmentation size

resulting from rock blasting:

X50 ¼ AðV=QÞ0:8Q0:167 ð1Þ

In Eq. 1: X50 is the mean fragment size (cm); ‘A’ is a

rock factor (7 for medium rock, 10 for hard highly

fissured rock, and 13 for hard weakly fissured rocks);

V is the rock volume (m3); Q is the mass of explosive

per blast hole (kg). Kuznetsov also has suggested to

use Rosin–Rammler equation (Rosin and Rammler

1933) given below to estimate the complete fragmen-

tation distribution resulting from rock blasting:

Y ¼ expðX=XcÞr ð2Þ

In Eq. 2, Y = Proportion of the material larger than X,

Xc = characteristic size = X50 and r = uniformity

exponent. Even though Schumann Distribution

(Schuhmann 1959) and Swebrec equation (Nie and

Rustan 1987) are also suggested in the literature to

predict the complete fragmentation distribution,

Rosin–Rammler equation seems to be the most

popular one.

It was experienced by many that the rock mass

categories defined by Kuznetsov (1973) are very wide

and need more precision (Chakraborty et al. 2004).

Cunningham (1983, 1987) modified the Kuznetsov’s

equation to estimate the mean fragment size and used

the Rosin–Rammler distribution to describe the entire

size distribution. The uniformity exponent of Rosin–

Rammler distribution was estimated as a function of

blast design parameters. Rock factor ‘‘A’’ in Kuznet-

sov’s equation was estimated incorporating Lilly’s

blasting index, BI (1986). The final equation suggested

by Cunningham, known as Kuz-Ram model, can be

given as follows:

X50 ¼ A� ðV=QÞ0:8 � Q0:167 � ðE=115Þ�0:633 ð3Þ

where

A ¼ 0:06� BI ð4Þ

and

BI ¼ 0:5� ðRMDþ JPSþ JPOþ RDIþ SÞ ð5Þ

In Eq. 3, E is relative weight strength of explosive

(Anfo = 100) and V = BSH where B = burden (m),

S = blast hole spacing (m) and H = bench height

(m). In Eq. 5: RMD is rock mass description (powdery

or friable = 10, blocky = 20 and massive = 50); JPS

is joint plane spacing (close \ 0.1 m = 10, 0.1

- 1.0 = 20, [ 1.0 = 50); JPO is joint plane orienta-

tion (horizontal = 10, dip out face = 20, strike nor-

mal to face = 30, dip into face = 40) and RDI is rock

density influence equal to 25d-50, where d is density

and S is rock strength, equal to 0.05 UCS, where UCS

is uniaxial compressive strength. Even though a few

other equations such as SveDefo’s fragmentation

model (Hjelmberg 1983) and Kou and Rustan’s model

(1993) are also available in the literature to estimate

mean fragmentation size, Kuz-Ram model seems to be

the most popular one.

Research at the JKMRC, Australia and elsewhere

has demonstrated that the Kuz-Ram model underes-

timates the contribution of fines in the fragment size

distribution. Hall and Brunton (2002) claim that the

JKMRC model provides better prediction than Kuz-

Ram model due to improved estimation of the fines to

intermediate size (\ 100 mm) of the fragmentation

distribution (Chakraborty et al. 2004). The JKMRC
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model calculates the coarse and fines distributions

independently. JKMRC uses Kuz-Ram model to

calculate the course fraction.

3 Used Blast Database and Scope of Study

In a previous study conducted by the second and first

authors of this paper (Hudaverdi et al. 2011), many

blasts performed in different parts of the world and

reported in the literature were carefully analyzed and

put together to create a blast data base to develop

fragmentation prediction models. A total of 109 blasts

were used in this study. Ninety-seven blasts were used

for model development and twelve blasts were used

for model validation. For details of this blast data base,

the reader is referred to Hudaverdi et al. (2011).

Five main blast design parameters are used in the

developed multivariate and neural network models.

They are the Burden (B, m), Spacing (S, m), Bench

height (H, m), Stemming (T, m) and Hole diameter

(D, m). Several blasting researchers have considered

blast design parameters as ratios. In the conducted

studies by the authors of this paper, the blast design

parameters of all the blast data are also used as

ratios. The ratio of bench height to drilled burden

(H/B), ratio of spacing to burden (S/B), ratio of

burden to hole diameter (B/D) and ratio of stem-

ming to burden (T/B) are the blast design param-

eters used. All blasts in the database were performed

using Anfo. Therefore, there was no need to use any

parameter related to explosive type. The Powder

factor (Pf) has been considered as an explosive

parameter. The ratio of spacing to burden is

determined based on energy coverage of the bench.

For square pattern, S/B ratio is 1. The mean S/B

ratio of the used blast data is 1.20. Generally, the

ratio of stemming to burden applied is around 1. For

the used data, the mean T/B ratio is 1.27 with a

standard deviation of 0.69. Low T/B ratio may cause

premature release of explosive gases and result in

fly-rock and inefficient fragmentation. Conversely,

excessive stemming length means low specific

charge and may cause large boulders. Most of the

blast design calculations start with burden determi-

nation. If the burden is too small, detonation gases

escape to the atmosphere. Escape of the detonation

gases cause noise and airblast. That means less

energy is used for fragmentation. If the burden is

too large, confined gases may cause ground vibra-

tions and back-break. The particle size of the

muckpile may be coarser than expected under such

a situation. The ratio of burden to hole diameter (B/

D) is one of the most important parameters. Ash

(1973) suggested the ratio of burden to hole

diameter (B/D) as 30 for average conditions. The

B/D ratio is equal to 25 for low density explosives

such as Anfo. For the used data, the mean B/D ratio

is 27.21 with a standard deviation of 4.77. In this

study, the ratio of the bench height to burden (H/B)

is used instead of the ratio of hole length to burden

(L/B) used by Ash. The ratio of bench height to

burden indicates the stiffness of the rock beam

under blast induced stress. Hustrulid (1999) indi-

cated that the H/B ratio is 1.6 or more for most of

the open-pit operations. The mean H/B ratio of the

data used is 3.44 with a standard deviation of 1.64.

Because the data base was large and diverse, it

turned out to be a difficult assignment to find common

intact rock and rock mass parameters for all the

selected blast data to use in developing fragmentation

distribution models. On the other hand, it was possible

to find in situ block size for all the blasts in the data

base. Therefore, in situ block size which is accepted as

one of the key parameters of the fragmentation process

was used to represent rock mass structure in the data

base. With respect to intact rock, the modulus of

elasticity turned out to be the most common parameter

available for all the blasts and was used to represent

intact rock properties in the data base. Thus seven

parameters were used to establish fragmentation

prediction models based on multivariate analysis and

NNA and incorporating the blast design parameters,

powder factor, modulus of elasticity (E, GPa) and in

situ block size (XB, m). Table 1 shows the descriptive

statistics of the parameters that were used to develop

multivariate analysis and neural network based frag-

mentation prediction models.

The cluster analysis was performed on this data to

separate the blast data into two different similarity

groups. The main difference between the two groups

was found to be the modulus of elasticity value. The

data belonging to the two groups are given in Tables 1

and 2 in Hudaverdi et al. (2011), respectively. The

mean elastic modulus values are 51.14 and 17.99 for

Groups 1 and 2, respectively. Group memberships

were then analyzed and confirmed by the discriminant

analysis. A part of the blast data was used to train
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neural network models for each of the obtained

similarity groups. The blast data that were not used

for training were used to validate the trained neural

network models. Also, multivariate regression analy-

sis was performed for each of the obtained similarity

groups to develop prediction models for mean particle

size.

4 Application of Multivariate Analysis

The cluster analysis which is also called segmentation

analysis or taxonomy analysis is used to create

relatively homogeneous groups of variables or cases.

The cluster analysis identifies a set of groups that

minimize within group variation and maximize

between-group variation. Several clustering tech-

niques are available: the hierarchical clustering, Kmin

clustering, two step clustering and fuzzy clustering

(Kaufman and Rousseeuw 1990). The hierarchical

clustering technique is the most common clustering

technique that is applied in earth science. This

technique creates relatively homogeneous groups of

cases or objects (the blasts in the conducted research)

based on selected variables or characteristics. Each

object is identified as a separate cluster and then the

clusters are combined until only one is left.

As the first step of the hierarchical cluster analysis,

a data matrix (proximity matrix) is formed. If there are

‘n’ objects having ‘m’ measurable variables, ‘n 9 m’

data matrix, X, is formed as shown in Eq. 6:

X ¼

x11 . . . x1j . . . x1m

. . . . . . . . . . . . . . .
xi1 . . . xij . . . xim

. . . . . . . . . . . . . . .
xn1 . . . xnj . . . xnm

2
66664

3
77775

ð6Þ

In matrix X, each row represents an object and each

column shows data for a different variable (Kaufman

and Rousseeuw 1990). For the conducted study, a data

matrix of 97 blast data was formed. In the matrix, the

objects are the blasts and the measurable variables are

the 7 blast design and rock mass parameters.

In the data matrix, usually a standardization process

is applied to weigh each measurable variable equally

and to remove the effects of different units of

measurement across the different variables. Each

variable in the data matrix, xij, was standardized by

subtracting the column mean, xj, and dividing by the

column standard deviation, dxj
, as shown in Eq. (7):

Zij ¼
xij � xj

dxj

ð7Þ

The above operation is also called z-score standard-

ization and it produces the Z matrix given in Eq. 8.

Z ¼

z11 . . . z1j . . . z1m

. . . . . . . . . . . . . . .
zi1 . . . zij . . . zim

. . . . . . . . . . . . . . .
zn1 . . . znj . . . znm

2
66664

3
77775

ð8Þ

Several hierarchical clustering methods exist: the

median clustering, Ward’s method, nearest neighbor,

Table 1 Descriptive statistics of the input parameters used to develop fragmentation prediction models

Minimum Maximum Mean Coefficient. of variation

S/B 1.00 1.75 1.20 0.091

H/B 1.33 6.82 3.44 0.477

B/D 17.98 39.47 27.21 0.175

T/B 0.50 4.67 1.27 0.542

Pf (kg/m3) 0.22 1.26 0.53 0.449

XB (m) 0.02 2.35 1.17 0.409

E (GPa) 9.57 60.00 30.74 0.576

S spacing, B burden, H hole depth, D drill hole diameter, T stemming height, Pf powder factor, XB mean block size, E elastic modulus

Table 2 Summary of discriminant analysis

Function Eigenvalue % of Variance Cumulative % Canonical correlation coefficient

1 18.095 100.0 100.0 0.973
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furthest neighbor, average linkage. The cluster method

defines the rules for cluster objects. The basic criterion

for any hierarchical clustering is the distance. The

similarity between objects is determined based on the

distance between each other. A small distance indi-

cates the two objects are similar, whereas a large

distance indicates dissimilarity. The objects that are

similar should belong to the same cluster, and objects

that are dissimilar should belong to different clusters.

The distance (similarity) between two objects is some

function of their measurable variables.

The distance between clusters may be computed

using several functions: the Euclidian distance; Pear-

son correlation distance; Minkowski distance; Block

distance; and Chebychev distance (SPSS 2008). The

Pearson correlation distance (Pd) was used in this

study to determine the distance between clusters. The

Pearson correlation coefficient was calculated using

z- score values given in matrix Z. The Pearson

correlation coefficient between any two series of

numbers (vectors) za = {za1, … zaj, … zam} and

zb = {zb1, … zbj, …, zbm} is defined as:

rzazb
¼ 1

m

Xm

j¼1

zaj�za

dza

� �
zbj�zb

dzb

� �
ð9Þ

where zaj indicates the z-score of jth variable for object

‘a’; zbj indicates the z-score of jth variable for object

‘b’; ‘m’ is the number of measured variables on each

object. za is the average of the values in vector za; zb is

the average of the values in vector zb; dza
is the

standard deviation of the values in vector za and dzb
is

the standard deviation of the values in vector zb and

rzazb
is the correlation coefficient between the vectors

za and zb. In this study, objects ‘a’ and ‘b’ are the blasts

(for example, blasts Rc6 and Mg1). The vectors

za = {za1, … zaj, … zam} and zb = {zb1, … zbj, …,

zbm} are the z-scores of the blast design and rock mass

parameters that belong to blasts ‘a’ and ‘b’, respec-

tively. The Pearson correlation distance was computed

as Pd = 1 - r and varies between 0 (when correlation

coefficient is ?1) and 2 (when correlation coefficient

is -1). A small distance indicates the two objects are

similar, whereas a large distance indicates dissimilar-

ity (Garson 2009).

Computation of a similarity measurement using the

pearson distance between all possible pairs of objects

produces an n 9 n symmetrical matrix M. Each

coefficient mzazb
in the matrix indicates the similarity

level between the objects ‘a’ and ‘b’. Next, the objects

are arranged into a hierarchy so that objects with the

highest mutual similarity are placed together to form

clusters. Then the groups having closest similarity to

other groups are connected together until all of the

objects are placed into a hierarchical tree diagram

known as a Dendrogram (Kulatilake et al. 2007).

In this study, the average clustering technique was

used to form the clusters. The linkage function that

determines the distance between two clusters is

computed as the distance between average values of

the two clusters (Everitt 1993). Figure 2 shows the

basic logic behind the average clustering technique. In

Fig. 2, the clusters X and Y contain the blasts Rc6 and

Mg6, and Mg1, Mg2, Mg3, respectively. ‘dn’ is the

distance between individual blasts. The distance

between the clusters X and Y (Dxy) is defined as the

average of the distances between all pairs of individual

blasts: Dxy = (d1 ? d2 ? d3 ? d4 ? d5 ? d6)/6.

The dendrogram resulting from the performed

hierarchical cluster analysis (SPSS 2008) is shown in

Fig. 3. The dendrogram shows the relative size of the

calculated distance coefficients at which the blasts and

clusters were combined. The blasts that have smaller

distance coefficients are combined. The X axis shows

the blasts. The Y axis shows the rescaled version of the

calculated distance. The blasts with low distance

coefficient (high similarity) are close together.

As seen in the Dendrogram, the blasts are divided

into two main clusters (groups) between rescaled

distances of 22 and 25. The first group that appears on

the right side of the dendrogram graphic is given in

Table 1 in Hudaverdi et al. (2011). The second group

of blasts that appears on the left side of the dendrogram

is given in Table 2 in Hudaverdi et al. (2011). Group 1

contains 35 blasts and Group 2 contains 62 blasts.

Fig. 2 Distances between blasts belonging to two clusters to

calculate average distance between the two clusters

Geotech Geol Eng (2012) 30:665–684 671

123



The mean variable vectors of the groups may be

examined to understand which parameters are effec-

tive on the occurrence of two different groups. Figure 4

shows the mean variable vectors of Groups 1 and 2 that

are shown in Tables 1 and 2 of Hudaverdi et al. (2011),

respectively. As seen in Fig. 4, the main difference

between the two groups is the modulus of elasticity

value. The mean elastic modulus values are 51.14 and

17.22 for Groups 1 and 2, respectively. Also, Pf and

H/B values have some differences between the two

groups. The mean Pf values for Groups 1 and 2 are

respectively, 0.41 and 0.60. The mean H/B values for

Groups 1 and 2 are respectively, 2.44 and 3.85.

The discriminant analysis technique was applied to

make sure that the blasts are grouped (clustered)

correctly. Also, the discriminant analysis enables one to

investigate the differences between Groups 1 and 2 more

precisely. The discriminant function used to classify the

blasts can be presented based on the unstandardized

discriminant function coefficients as SPSS (2008):

L ¼ 4:467ðS=BÞ � 0:551ðH=BÞ � 0:123ðB=DÞ
þ 1:642ðT=BÞ � 3:005ðPfÞ þ 0:309ðXBÞ
þ 0:208ðEÞ þ 3:577 ð10Þ

The discriminant score is the value resulting from apply-

ing the discriminant function formula (Eq. 10) to the

data belonging to a given blast. The histograms shown in

Fig. 5 display the discriminant scores for the blasts of

the Groups 1 and 2. The sharp difference between the

discriminant scores of the two groups indicates strong

discrimination of the discriminant function and the

Fig. 3 Dendrogram of the hierarchical classification for the examined blasts

Fig. 4 Mean vector variables for the two groups
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accuracy of the classification of the blasts into two

groups. If there is a hesitation about group membership

of a prospective blast, it is possible to assign the blast to

Group 1 or 2 by the discriminant function.

A summary of the discriminant analysis is shown in

Table 2. The second column in Table 2 shows the

eigenvalue. Only one eigenvalue exists for each

discriminant function. The eigenvalue, also called

the characteristic root of each discriminant function,

reflects the ratio of importance of the dimensions

which classify objects (blasts) of the dependent variable

(Garson 2009). The larger the eigenvalue, higher the

variance in the dependent variable explained by

the discriminant function. The third column displays

the percent of variance explained by each function. The

fourth column is the cumulative percent of variance

explained. Thus a more general version of Table 2 can

be used to understand the relative importance of

discriminant functions if more than one function exists.

Since we sorted the blasts into only two groups, only

one discriminant function exists for the conducted

study. Thus, the canonical correlation coefficient is the

only important indicator in Table 2 for the conducted

discriminant analysis. The canonical correlation is a

measure of the association between the groups formed

by the dependent variable and the given discriminant

function. When the canonical correlation coefficient is

zero, there is no relation between the groups and the

function. When the canonical correlation is close to 1,

there is a high correlation between the discriminant

function and the groups. The canonical correlation is

used to state to what extent the discrimination function is

useful in determining group differences. For the conducted

study, a canonical correlation of 0.973 was obtained. This

indicates a highly successful discrimination.

Table 3 shows the tests of equality of group means.

The tests of equality of group means measure each

independent variable’s potential before the model is

developed. Each test displays the results of a one-way

analysis of variance (ANOVA) for the independent

variable using the grouping variable as the factor. If the

significance value (which is obtained through the F

statistic, and the two degrees of freedom, df1 and df2,

values) is larger than 0.10, it indicates that the

parameter is not effective on occurrence of group

(SPSS 2008). Accordingly, the S/B has no effect on

occurrence of the groups. This finding agrees with the

results appearing on Fig. 4. The effect of a parameter

Fig. 5 The discriminant scores of the blasts belonging to the two groups

Table 3 Results of tests of equality of group means

Wilks’ lambda F df1 df2 Sig.

S/B 0.988 0.97 1 88 0.280

H/B 0.826 16.55 1 88 0.000

B/D 0.965 2.51 1 88 0.068

T/B 0.972 3.69 1 88 0.103

Pf 0.841 15.17 1 88 0.000

XB 0.932 10.59 1 88 0.010

E 0.161 540.77 1 88 0.000

Geotech Geol Eng (2012) 30:665–684 673

123



on the occurrence of the groups indicates only the

discrimination ability of the selected parameter in

cluster and discriminant analysis. It does not indicate

the effect of the parameter on the fragmentation

process. The discrimination ability of a parameter is

highly related to its variance. For example, in our

analysis, the range of the S/B parameter is relatively

tight. On the other hand, the S/B is an important

parameter for blasting and site engineers are very

meticulous in selecting the value for the S/B parameter.

Wilks’ lambda is another measure of a variable’s

potential. Wilks’ lambda is a test statistic used in

multivariate analysis of variance. It tests whether there

are differences between the means of the groups of the

subjects on a combination of dependent variables (Everitt

and Dunn 1991; Huberty and Olejnik 2006). Smaller

values indicate the variable is better at discriminating

between groups. Wilks’ lambda test results show that the

parameter that has a dominant effect on the occurrence of

the two groups is the modulus of elasticity.

5 Application of Artificial Neural Network

Approach (ANNA)

5.1 Setting Up and Training of ANNA

The back-propagation (BP) network, a multilayer feed-

forward ANNA, is perhaps the most popular network

architecture today as it contains the highlights of the

neural network theory, simple in structure and clear in

mathematical meaning. It has been proved that any

continuous function can be uniformly approximated by

BP network model with only one hidden layer (Cybenko

1989). So a single-hidden layer BP network is used in

this paper to predict the mean particle size of rock frag-

mentation resulting from blasting. As stated previously,

the mean particle size X50 is considered to be a function

of seven independent parameters. Consequently, the

parameters S/B, H/B, B/D, T/B, Pf, XB and E are used as

inputs and X50 as the output in the BP network model. In

the literature different opinions are expressed with

respect to designing the neural network structure with

respect to the number of nodes and the weights to obtain

accurate performance from a trained network for a given

number of training samples. This aspect was discussed

in detail in Kulatilake et al. (2010). Research conducted

in the past has shown that the number of hidden units has

a great impact on the ANNA prediction results (John

et al. 1995; Maier and Dandy 1998). Figure 6 shows the

BP network configuration used in this study assuming

the optimum number of hidden units as N. Section 5.2

deals with estimation of N in great detail.

Kulatilake et al. (2010) covered in detail the

equations associated with the information transfer

between the input layer and the hidden layer as well as

between the hidden layer and the output layer. In

addition, the same paper covered in detail the equa-

tions associated with the training of the network.

As stated before, the blasting data have been divided

into two groups by the value of elastic modulus. To

increase the prediction precision, BP neural network

was applied separately to each group. For group 1,

thirty-five sets of data given in Table 1 were used to

train the network and the five sets of data given in

Table 4 were used to predict and validate the network.

For group 2, sixty-two sets of data given in Table 2 were

used to train the network and the seven sets of data given

in Table 5 were used to predict and validate the network.

As their orders of magnitude are different, before

running the neural networks, the original data were

normalized using Eq. 11 given below:

yi ¼
xi � xmin

xmax � xmin

ð11Þ

In Eq. 11, x is the vector before normalization; y is the

vector after normalization; xi and yi are respectively

the element of vector x and vector y; xmax and xmin are

respectively, the maximum and minimum element of

vector x.

S/B

H/B

B/D

T/B

Pf

XB

E

X50

Input Layer
(7 neurons)

Hidden Layer
(N neurons)

Output Layer
(1 neuron)

Fig. 6 The structure of a 7-N-1 BP neural network
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Several algorithms are available in the literature to

train a neural network. Each of them has its advantages

and disadvantages. For a given problem, it is difficult to

say which one works best. It depends on several factors,

such as the complexity of the problem, the number of

training samples, the structure of the network, error

target and so on. The information flows through the

network from the input layer to the output layer via the

hidden layer. The objective of the training is to adjust the

weights and thresholds that exist between the input layer

and the hidden layer, and the hidden layer and the output

layer to develop and estimate a complicated non-linear

function between the output and input variables. The

objective function given in Eq. 12 is used to obtain an

optimized trained network.

mse ¼ 1

T

XT

t¼1

ðyt � CtÞ2 ð12Þ

In Eq. 12, yt is the expected output and Ct is the

calculated output; T is the number of data sets used in

the training sample. The weights and thresholds are

adjusted using the gradient decreased learning method

to minimize the objective function value given by

Eq. 12 and thus to arrive at an optimized trained

network. In a previous paper (Kulatilake et al. 2010),

the best training method was decided by trying

different methods and observing the performance of

each method on a plot between mean square error

(mse) value and number of training cycles. The

training of the network was stopped after it has been

trained for many cycles to reach a stable mse value.

Four training methods were used to train the same

selected network. The LM algorithm showed the

highest stability among the four training algorithms.

Also it reached the global minimum with the lowest

number of training cycles. Therefore, only the LM

algorithm was used for further modeling work with

neural networks.

5.2 Procedure to Estimate Number of Units

for the Hidden Layer

Choosing an appropriate number for the units in the

hidden layer is not a straightforward task (Maier and

Table 4 Prediction results of the 8 simulations for Group 1 (for N = 9)

Blast no. X50 (m) X50R (m) X50K (m) X50N (BP Neural Network) (m)

1 2 3 4 5 6 7 8 l d

En13 0.47 0.39 0.44 0.39 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.0255

RU7 0.64 0.51 0.65 0.96 0.96 0.38 0.23 0.38 0.96 0.96 0.24 0.63 0.5571

Mg8 0.44 0.40 0.39 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.0000

Mg9 0.25 0.24 0.30 0.26 0.27 0.27 0.27 0.30 0.28 0.28 0.28 0.28 0.0430

Rc1 0.46 0.52 0.72 0.48 0.31 0.41 0.47 0.48 0.36 0.47 0.49 0.43 0.1544

X50 measured mean particle size (m), X50K mean particle size based on Kuznetsov’s equation (m), X50N predicted mean particle size

based on neural network model (m), X50R mean particle size based on developed regression model (m)

Table 5 Prediction results of the 8 simulations for Group 2 (for N = 7)

Blast no. X50 (m) X50R (m) X50K (m) X50N (BP neural network) (m)

1 2 3 4 5 6 7 8 l d

Mr12 0.20 0.16 0.24 0.12 0.32 0.12 0.17 0.22 0.12 0.22 0.12 0.18 0.4093

Db10 0.35 0.16 0.08 0.17 0.28 0.16 0.17 0.20 0.74 0.20 0.74 0.33 0.7621

Sm8 0.18 0.19 0.35 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.0000

Oz8 0.23 0.17 0.20 0.18 0.14 0.14 0.12 0.13 0.15 0.13 0.15 0.14 0.1268

Oz9 0.17 0.16 0.23 0.19 0.19 0.18 0.22 0.19 0.17 0.19 0.17 0.19 0.0853

Ad23 0.21 0.18 0.11 0.22 0.19 0.23 0.17 0.22 0.22 0.22 0.22 0.21 0.0919

Ad24 0.20 0.14 0.13 0.19 0.21 0.19 0.17 0.25 0.23 0.25 0.23 0.22 0.1332

X50 measured mean particle size (m), X50K mean particle size based on Kuznetsov’s equation (m), X50N predicted mean particle size

based on neural network model (m), X50K mean particle size based on developed regression model (m)
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Dandy 1998). The number of input parameters,

number of output parameters, number of data sets

available and the characteristics of the functional

relation between the output and the input parameters

may affect the optimum number for the units in the

hidden layer. At present, the authors are not aware of

any accepted procedure or formula available to

determine the aforesaid optimum number. This opti-

mum number may even change with different run

(simulation) numbers for the same problem. Two

empirical formulae available in the literature were

used in Kulatilake et al. (2010) to estimate the

optimum number for the hidden layer units.

Based on Kolmogorov’s theorem, Hecht-Nelson

(1987) has suggested that 2n ? 1 (where n is the

number of input parameters) should be used as the

upper bound for the number of hidden units for a one-

hidden-layer back-propagation network. Because in

our study n = 7, the number of hidden units for both

Groups1 and 2 should be B15 according to Hecht-

Nelson’s suggestion. According to the second empir-

ical formula (Ge and Sun 2007), the number of hidden

units, N, should satisfy the following inequality:

Xn

i¼0

Ci
N [ k ð13aÞ

where

Ci
N ¼

N!

i!ðN� iÞ! ð13bÞ

In inequality Eq. 13a, n is the number of input

parameters and k is the number of data sets used.

Note that If i [ N, Ci
N ¼ 0. Application of inequality

Eq. 13a to group 1 (n = 7, k = 35) and group 2

(n = 7, k = 62) results in N C 6 for both groups.

Therefore, use of the aforementioned two empirical

criteria results in 6 B N B 15 for both Groups 1 and 2.

Accuracy of the network was considered to deter-

mine the optimum value for N. To evaluate the

accuracy of the network for each N, two parameters

were used. The Root Mean Square Error, RMSE, was

used as the first parameter and it was defined by the

following equation:

RMSEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1 error2

ij

J

s
ð14aÞ

where

errorij ¼ eij � rij

�� �� ð14bÞ

In Eq. 14b, eij denotes the prediction result of the ith

network under a certain N for the jth blast number, rij

denotes the corresponding actual value for the same

blast number. In Eq. 14a, J is the number of blast data

used for prediction for a certain group. The correlation

coefficient between the predicted value and the

measured value for the aforementioned J blast data

was used as the second parameter to evaluate the

accuracy of each ith network under a certain N value.

In evaluating the accuracy, several random simula-

tions were performed for each ith network under a

certain N value.

5.3 Results, Prediction and Validation

For group 1, five blasts were used for the prediction

and validation. Note that under each N value, 8

simulations were made. As an example, the prediction

obtained for each blast under N = 9 for each of the

simulations made is shown in Table 4. En13 blast has

the same values of S/B, H/B, B/D, T/B, Pf, XB and E as

for En4 blast. Therefore, the prediction result of X50

for En13 blast is almost the same as the value for En4

blast. For RU7 & RU1, all the blasting parameter

values are the same apart from the value for T/B. That

has led to a large variation of the predicted value with

respect to the simulation number. Table 4 also

provides the predicted mean, l, and coefficient of

variation, d, obtained for each blast from the 8

simulations.

The RMSE values and the coefficient of variations

obtained for Group 1 for different N values are given

in Table 6. High correlation coefficient values indicate

predictions close to the measured values. The consis-

tency of the correlation coefficient values shows high

homogeneity of the Group 1 samples. N = 9 has

resulted in the lowest RMSE and the highest correla-

tion coefficient. That means for group 1, N = 9 is the

optimum value. Table 4 shows a comparison between

neural network predictions, measured values and

predictions based on the Kuznetsov’s equation. All

the blast data were examined carefully and the rock

factor ‘A’ was estimated for each blast to apply the

Kuznetsov’s equation. For all 5 blasts, neural network

predictions are close to the measured values. This can

be also seen from the regression analysis results given

in Fig. 7a. For 4 out of the 5 blasts, predictions based
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on Kuznetsov’s equation are close to the measured

values. This can be also seen from the regression

analysis results given in Fig. 7b. Note that Group 1

blast data come from hard rocks that have high elastic

modulus values.

For Group 2, seven blasts were used for the

prediction and validation. Note that under each N

value, 8 simulations were made. As an example, the

prediction obtained for each blast under N = 7 for

each of the simulations made is shown in Table 5. The

same table also provides the predicted mean, l, and

coefficient of variation, d, obtained for each blast from

the 8 simulations. The RMSE values and the coeffi-

cient of variations obtained for Group 2 for different N

values are given in Table 7. The results show high

fluctuation of correlation coefficient values for Group

2 data. This shows that the homogeneity of Group 2 is

weaker than that of Group 1. N = 7 has resulted in the

lowest RMSE value and the highest correlation

coefficient. That means for Group 2, N = 7 is the

optimum value. Table 5 shows a comparison between

neural network predictions, measured values and

Table 6 Prediction results of mean particle size from ANNA for Group 1 (for N = 6–15)

Blast no En13 RU7 Mg8 Mg9 Rc1 Correlation

coefficient (with X50)

RMSE

X50 (m) 0.47 0.64 0.44 0.25 0.46 1.00

N = 6

l 0.42 0.86 0.37 0.27 0.40 0.90 0.1093

d 0.0169 0.1595 0.0079 0.0479 0.3480

N = 7

l 0.42 0.56 0.37 0.27 0.54 0.88 0.0642

d 0.0275 0.5837 0.0127 0.0410 0.4018

N = 8

l 0.42 0.74 0.37 0.28 0.51 0.93 0.0645

d 0.0000 0.4460 0.0056 0.0698 0.3098

N = 9

l 0.42 0.63 0.37 0.28 0.43 0.96 0.0429

d 0.0284 0.5553 0.0071 0.0275 0.1549

N = 10

l 0.42 0.64 0.37 0.27 0.58 0.87 0.0666

d 0.0003 0.5480 0.0031 0.0249 0.2648

N = 11

l 0.42 0.78 0.37 0.28 0.60 0.89 0.0974

d 0.0146 0.4193 0.0036 0.0272 0.1477

N = 12

l 0.42 0.61 0.37 0.28 0.39 0.94 0.0531

d 0.0000 0.5691 0.0069 0.0584 0.2199

N = 13

l 0.42 0.67 0.37 0.28 0.46 0.95 0.0431

d 0.0000 0.5472 0.0065 0.0488 0.3262

N = 14

l 0.42 0.60 0.37 0.27 0.55 0.77 0.0592

d 0.0000 0.5611 0.0019 0.0420 0.1954

N = 15

l 0.42 0.74 0.37 0.26 0.54 0.93 0.0691

d 0.0000 0.4175 0.0000 0.0602 0.2556

X50 measured mean particle size (m)
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Fig. 7 Predicted mean particle size (m) versus measured mean particle size (m): a based on neural network models; b based on

Kuznetsov’s equation; c based on developed regression models
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predictions based on the Kuznetsov’s equation. For all

7 blasts, neural network predictions are close to the

measured values. This can be also seen from the

regression analysis results given in Fig. 7a. Only for

about 50% of the blasts, predictions based on

Kuznetsov’s equation are close to the measured

values. This can be also seen from the regression

analysis results given in Fig. 7b. Note that group 2

blast data come from rocks that have relatively low

elastic modulus values.

Figure 7a shows the linear regression analysis

performed between the predictions obtained from the

neural network models developed for Groups 1 and 2

and the measured mean particle size. Figure 7b shows

the linear regression analysis performed between the

predictions based on Kuznetsov’s equation for Groups

1 and 2 and the measured mean particle size. In

Fig. 7a, the prediction line has an intercept close to

zero and a slope close to 1.0 with a R2 value of 0.9407

(which indicates a strong regression fit). These results

Table 7 Prediction results of mean particle size from ANNA for Group 2 (for N = 6–15)

Blast no Mr12 Db10 Sm8 Oz8 Oz9 Ad23 Ad24 Correlation

coefficient (with X50)

RMSE

X50 (m) 0.20 0.35 0.18 0.23 0.17 0.21 0.20 1.00

N = 6

l 0.19 0.19 0.18 0.14 0.17 0.20 0.19 0.11 0.0834

d 0.5159 0.5700 0.1365 0.1059 0.1287 0.2082 0.1551

N = 7

l 0.18 0.33 0.19 0.14 0.19 0.21 0.22 0.81 0.0425

d 0.4093 0.7621 0.0000 0.1268 0.0853 0.0919 0.1332

N = 8

l 0.28 0.30 0.19 0.14 0.21 0.25 0.20 0.49 0.0640

d 0.8467 0.8615 0.0005 0.0322 0.3374 0.3733 0.0956

N = 9

l 0.41 0.43 0.19 0.14 0.20 0.29 0.20 0.59 0.1136

d 0.6653 0.6185 0.0000 0.0495 0.0832 0.6729 0.0409

N = 10

l 0.33 0.33 0.19 0.14 0.19 0.26 0.20 0.52 0.0767

d 0.7884 0.7237 0.0000 0.0089 0.3196 0.3535 0.1177

N = 11

l 0.31 0.35 0.17 0.13 0.16 0.19 0.19 0.68 0.0671

d 0.7188 0.7518 0.1878 0.0681 0.1654 0.2405 0.2480

N = 12

l 0.31 0.45 0.19 0.14 0.18 0.29 0.22 0.78 0.0865

d 0.7063 0.6182 0.0000 0.0060 0.1346 0.4057 0.1344

N = 13

l 0.39 0.36 0.19 0.14 0.17 0.23 0.20 0.49 0.0951

d 0.7322 0.6801 0.0000 0.0050 0.1009 0.1552 0.0909

N = 14

l 0.39 0.38 0.18 0.14 0.16 0.21 0.19 0.57 0.0955

d 0.6019 0.7096 0.1361 0.0714 0.1654 0.2076 0.1746

N = 15

l 0.21 0.30 0.18 0.14 0.17 0.20 0.19 0.79 0.0484

d 0.6902 0.6597 0.1365 0.0545 0.1518 0.1937 0.1562

X50 measured mean particle size (m)
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indicate that the matching between the neural network

predictions and the measured values is very strong. In

Fig. 7b, even though the prediction line has an

intercept close to zero and a slope close to 1.0, the

R2 value is only 0.5697 (which indicates only a

moderate level regression fit). In addition, the 95%

confidence band in Fig. 7a is much narrower than that

in Fig. 7b. These results clearly show that the neural

network predictions are better than the predictions

based on Kuznetsov’s equation.

6 Prediction of Mean Particle Size Based

on Multivariate Regression Analysis

The multiple regression analysis (Draper and Smith

1981) was applied to develop a prediction equation for

each group. The dependent variable of the multiple

regression analysis is the mean particle size (x50R) and

the independent variables are the all blast design

parameters, elastic modulus and in situ block size.

Equation 15 given below was developed for Group

1 that has high Young’s modulus values. Table 8

shows the obtained regression statistics.

X50 ¼ 208ðS=BÞ2:788ðH=BÞ0:112ðB=DÞ0:027

� ðT=BÞ�0:321ðPfÞ�0:360ðXBÞ0:233ðEÞ�1:802

ð15Þ

R, the multiple correlation coefficient, is the linear

correlation between the observed and model-predicted

values of the dependent variable. Its large value (close

to 1) indicates a strong relation. R2, the coefficient of

determination, is the squared value of the multiple

correlation coefficient. R2 is the percent of variance in

the dependent variable explained collectively by all of

the independent variables. R2 value close to 1 also

indicates importance of regression. The regression row

in Tables 8 and 9 provide information about the

variation accounted by the regression model. The

residual row displays information about the variation

that is not explained by the regression model (Draper

and Smith 1981; Montgomery et al. 2006). For

example, the sum of squares values given in Table 8

show that over seventy percent of the variance in the

mean particle size (x50R) is explained by the regression

model. The F test is applied to test the significance of

the regression model. If the significance value of the F

statistic is less than 0.05, it means that the variation

Table 8 Regression statistics obtained for Eq. 15

R R2 Adjusted R2 Standard error Observations

Model summary

0.841 0.708 0.632 0.0916 35

Sum of squares df Mean square F Significance

Analysis of variance (ANOVA)

Regression 0.551 7 0.079 9.356 0.000

Residual 0.227 27 0.008

Total 0.778 34

Table 9 Regression statistics obtained for Eq. 16

R R2 Adjusted R2 Standard error Observations

Model summary

0.859 0.739 0.705 0.1119 62

Sum of squares df Mean square F Significance

Analysis of variance (ANOVA)

Regression 2.178 7 0.311 22.808 0.000

Residual 0.770 54 0.014

Total 2.948 61
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explained by the model is not due to chance. In other

words, the null hypothesis of no linear relationship of

x50R to the 7 independent variables is rejected. Table 8

shows a significance value of very close to zero based

on the F and the degrees of freedom (df) value

calculated. That indicates the importance of the

developed regression equation for Group 1.

The equation given below was developed for Group

2 that has low elastic modulus values. Table 9 shows

the regression statistics obtained for Eq. 16. Again a

significance value of very close to zero was obtained

under ANOVA results. All these values indicate that

the regression is important and strong for Group 2.

X50 ¼ 0:60ðS=BÞ0:547ðH=BÞ0:535ðB=DÞ0:427

� ðT=BÞ�0:101ðPfÞ�0:115ðXBÞ0:434ðEÞ�1:202

ð16Þ

In Eqs. (15) and (16), the exponents obtained for S/B,

B/D and XB are positive. That means, the mean

particle size increases with increasing S/B, B/D and

XB. The exponents obtained for T/B and PF are

negative. That means, the mean particle size decreases

with increasing T/B and PF. These results can be

reasoned out easily intuitively. For both rock groups,

the obtained exponent value for S/B is high in the

regression models. It indicates that S/B is an important

parameter for mean particle size prediction models.

For the high modulus rock group, it has turned out to

be the most important parameter. For the low modulus

rock group, it has turned out to be the second most

important parameter The coefficients associated with

the modulus of elasticity are negative in Eqs. (15) and

(16). This means increase of the elastic modulus

results in decrease of the mean particle size. The

modulus of elasticity is an indicator of rock stiffness.

In the developed models, if the stiffness of rock

increases the fragmentability of rock increases. The

energy transmission velocity increases with increasing

Young’s modulus. This in turn increases the frag-

mentability and results in lowering the mean particle

size. In the developed model, H/B is positively

correlated to mean particle size. This result may be

explained as follows. H/B can be increased by

increasing the H value and keeping the B value

constant. The energy transmitted volume can be

expected to increase with increasing H. If the same

total energy is used under increasing H, it will result in

decreasing the energy transmitted per unit volume.

This will result in less fragmentability and higher

mean particle size.

Equations 15 and 16 were applied respectively, to

the 5 blasts shown in Table 4 and the 7 blasts shown in

Table 5 to predict mean particle size based on the

developed regression equations. The values obtained

are shown in Tables 4 and 5, respectively. For all 5

blasts belonging to Group 1, the regression based

predictions are close to the measured values. For the 7

blasts belonging to Group 2, apart from DB10, for the

rest, the regression based predictions are close to the

measured values. Figure 7c shows the regression

analysis performed between the predictions based on

the regression equation and the measured mean

particle size. Even though the intercept of the predic-

tion line is almost zero, the slope (equal to 0.86) is

slightly off from 1.0. However, the R2 value of 0.82

indicates a strong regression fit and the 95% confi-

dence band is much tighter than the one appears in

Fig. 7b. Comparison of Fig. 7b, c shows that the

regression based predictions have better reliability

than the predictions based on Kuznetsov’s equation.

Comparison of Fig. 7a, c shows that the neural

network predictions are better than the predictions

based on developed multivariate regression models.

7 Discussion

Note that even though both the multivariate regression

models and neural network models are non-linear

models, the neural network models can be considered

as more advanced non-linear models than multivariate

regression models. It is important to note that neural

network results do not provide a unique answer. The

results depend on the factors such as network geom-

etry, internal parameters of the learning algorithm and

the simulation number. The deviation associated with

the simulation number can be reduced by computing

the mean value coming out of several simulations as

done in this paper. For engineering and science

problems, it is a difficult task to find large data bases

that are suitable to use in neural network modeling.

Therefore, as shown in this paper, attempts should be

made to find the optimum network geometry and the

best learning algorithm to obtain the best possible

results for problems having a limited number of data.

Best learning algorithms can be obtained as shown in

the paper through numerical experimentation to
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minimize the mse between the predicted value and the

expected value and to maximize the training speed and

the stability of the calculated mse with number of

training cycles. There is no universally accepted

theoretical basis for choosing the network geometry.

Therefore, in practical use, it should be obtained

through numerical experimentation as shown in the

paper to minimize the RMSE obtained between the

prediction and the measured value. This will increase

the workload when using the neural network approach.

The learning and memory ability of a neural network

depend on the training samples used. Therefore, if new

data become available, to obtain accurate predictions,

the network has to be rebuilt again from the very

beginning.

Researchers use different procedures in estimating

in situ block size. A wide variation is possible for the

determination technique of the in situ block size. In the

future, attempts should be made to provide uniformity

in estimating the in situ block size to increase

accuracy. At present, the developed models incorpo-

rate elastic modulus to represent the intact rock. In the

future, attempts should be made to determine addi-

tional intact rock parameters such as uniaxial com-

pressive strength, tensile strength, alteration and

density, and discontinuity geometry parameters of

the rock mass that would be subjected to blasting. It

would be interesting to study whether the similarity

groups emerging from the results of cluster and

discriminant analyses change due to incorporation of

additional parameters in the modeling procedure. This

paper has looked into only the mean particle size

resulting from blasting. In a future research, it is

important to extend this research to cover the particle

size distribution.

8 Summary and Conclusions

In a previous paper (Hudaverdi et al. 2011), many

blasts performed in different parts of the world and

reported in the literature were put together to create a

blast data base to develop fragmentation distribution

models. A hierarchical cluster analysis was used to

separate the blasts data into two different groups of

similarity based on the intact rock stiffness. The group

memberships obtained from cluster analysis was

confirmed by a discriminant analysis. A part of this

blast data was used in another study (Kulatilake et al.

2010) to train a single-hidden layer back propagation

neural network model to predict mean particle size

resulting from blast fragmentation for each of the

obtained similarity groups. The mean particle size was

considered to be a function of seven independent

parameters. It turned out to be a difficult assignment to

find common intact rock and rock mass parameters for

all the selected blast data to use in developing

fragmentation distribution models. On the other hand,

it was possible to find in situ block size for all the

blasts in the data base. Therefore, in situ block size was

used to represent rock mass structure in the developed

models. With respect to intact rock, the modulus of

elasticity turned out to be the most common parameter

available for all the blasts and was used to represent

intact rock properties in the developed models. It was

possible to incorporate most of the important blast

design parameters in the developed models.

Capability of the developed neural network models

was determined by comparing neural network predic-

tions with measured mean particle size and the

predictions based on one of the most applied frag-

mentation prediction models appearing in the blasting

literature. Prediction capability of the trained neural

network models was found to be strong and better than

the most applied fragmentation prediction model. For

the same two similarity groups, multivariate regres-

sion models were also developed to predict mean

particle size. The prediction capability of the multi-

variate regression models was also found to be strong

and better than the most applied fragmentation

prediction model. The prediction capability of the

neural network models seems to be superior to that of

multivariate regression models for the used data. No

other study reported in the literature has used a large

data base as that used in this study. Therefore, the

diversity of the blasts data base is one of the strongest

features of the developed models. The variety of the

blasts is also an important element that increases the

versatility and reliability of the developed models.

The developed neural network models as well as

multivariate regression models are not complex and

are suitable for practical use at mines. As a result of

this study, two different neural network models and

two different multivariate regression models were

developed to predict mean particle size resulting from

blasting. This provides an opportunity to use a

different prediction model in accordance with the

value of modulus of elasticity of intact rock.
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Application of the developed prediction models to

new blasts will test the reliability of them. Attempts

should be made to enlarge the blast database that will

be used to develop fragmentation prediction models

presented in this study. Neural network and multivar-

iate statistical modeling procedures used in this paper

have shown the capability of developing new frag-

mentation prediction models.
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