
Abstract A 1 km square regular grid system

created on the Universal Transverse Mercator

zone 54 projected coordinate system is used to

work with volcanism related data for Sengan re-

gion. The following geologic variables were

determined as the most important for identifying

volcanism: geothermal gradient, groundwater

temperature, heat discharge, groundwater pH

value, presence of volcanic rocks and presence of

hydrothermal alteration. Data available for each

of these important geologic variables were used

to perform directional variogram modeling and

kriging to estimate geologic variable vectors at

each of the 23949 centers of the chosen 1 km cell

grid system. Cluster analysis was performed on

the 23949 complete variable vectors to classify

each center of 1 km cell into one of five different

statistically homogeneous groups with respect to

potential volcanism spanning from lowest possi-

ble volcanism to highest possible volcanism with

increasing group number. A discriminant analysis

incorporating Bayes’ theorem was performed to

construct maps showing the probability of group

membership for each of the volcanism groups.

The said maps showed good comparisons with the

recorded locations of volcanism within the Sen-

gan region. No volcanic data were found to exist

in the group 1 region. The high probability areas

within group 1 have the chance of being the no

volcanism region. Entropy of classification is cal-

culated to assess the uncertainty of the allocation

process of each 1 km cell center location based on

the calculated probabilities. The recorded volca-

nism data are also plotted on the entropy map to

examine the uncertainty level of the estimations

at the locations where volcanism exists. The vol-

canic data cell locations that are in the high vol-

canism regions (groups 4 and 5) showed relatively

low mapping estimation uncertainty. On the other

hand, the volcanic data cell locations that are in

the low volcanism region (group 2) showed rela-

tively high mapping estimation uncertainty. The

volcanic data cell locations that are in the medium

volcanism region (group 3) showed relatively

moderate mapping estimation uncertainty. Areas

of high uncertainty provide locations where

additional site characterization resources can be

spent most effectively. The new data collected

can be added to the existing database to perform

P. H. S. W. Kulatilake (&)
Geological Engineering Program, Department of
Materials Science & Engineering, University of
Arizona, Tucson, AZ 85721, USA
e-mail: kulatila@u.arizona.edu

J. Park Æ P. Balasingam
Department of Mining & Geological Engineering,
University of Arizona, Tucson, AZ 85721, USA

S. A. Mckenna
Geohydrology Department, Sandia National
Laboratories, 5800 MS 0735, Albuquerque, NM
87185, USA

Geotech Geol Eng (2007) 25:79–102

DOI 10.1007/s10706-006-0008-1

123

ORIGINAL PAPER

Hierarchical probabilistic regionalization of volcanism for
Sengan region, Japan

Pinnaduwa H. S. W. Kulatilake Æ Jinyong Park Æ
Pirahas Balasingam Æ Sean A. Mckenna

Received: 28 April 2005 / Accepted: 18 April 2006 / Published online: 5 October 2006
� Springer Science+Business Media B.V. 2006



future regionalized mapping and reduce the

uncertainty level of the existing estimations.

Keywords Cluster analysis Æ Discriminant
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Regionalized mapping Æ Sengan Æ Variogram
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Introduction

Nuclear Waste Management Organization of Ja-

pan (NUMO) is responsible for developing ap-

proaches to screen and locate a long-term site for

a high-level nuclear waste repository in Japan.

Any site chosen must meet the requirement that

it is a location free from potential disruption from

volcanic and fault activities. The ultimate goal is

to screen the entire country of Japan to identify

those areas that should be excluded from con-

sideration for hosting a repository. In this paper,

multivariate statistical techniques and geo-statis-

tical interpolation techniques are applied on

geologic variable data that are linked to volca-

nism to perform hierarchical probabilistic

regionalized mapping of volcanism for Sengan

region, Japan. The Sengan region was chosen as a

test case because of the availability of geologic

data and the multiple volcanic centers.

Many problems in geo-engineering and earth

sciences involve an attempt to discretize the

physical space into regions that are relatively

homogeneous in a statistical sense with regard to

some set of variables measured within them.

Regionalized classification is a technique that

provides a quantitative means of transferring a

multivariate classification of a set of observations

onto the physical, geographic space from which the

observations were taken (Bohling et al. 1990;

Harff and Davis 1990). Figure 1 illustrates the

basic idea of regionalized classification. Two vari-

ables, A and B, are measured at a number of sta-

tions distributed throughout a study area (Fig. 1a).

These observations can be plotted in variable

space and classified into statistically homogeneous

sets by multivariate statistical techniques such as

cluster analysis (Anderberg 1973; Anderson 1984;

Everitt 1993; Davis 2002). This process, referred to

as typification, might be used to identify, say, three

groups of interest (Fig. 1b). The groups identified

contain observations that are simultaneously as

similar as possible to other observations in the

same group and as distinct as possible from

observations in other groups.

After the groups are defined, each observation

can be assigned a probability of membership in

each group, which is essentially a transformation

of the distance from each observation to a given

group mean, or centroid, in variable space. This

can be accomplished by using discriminant anal-

ysis (McLachlan 1992; Davis 2002) along with

Bayes’ theorem in probability. Each observation

is then assigned to the group that produced the

highest probability. These probabilities are then

used to construct a probability of membership

map for each group obtained at the typification

step. These maps automatically delineate bound-

aries between different groups in the physical

space. These spatial mapping steps are the

essential features of regionalization step (Fig. 1c).

The concepts of regionalized classification have

been applied to the determination of the spatial

distribution of formation thickness (Harff and

Davis 1990), groundwater chemistry (Bohling

et al. 1990), petroleum (Harff and Davis 1990), oil

(Harff et al. 1989, 1990, 1993), gas (Harff et al.

1990, 1993), mineral resources (Harff et al. 1991),

electrofacies properties (Moline and Bahr 1995)

and grain size properties (Fernandez et al. 1997).

In Section ‘Selected coordinate system and the

grid system to show volcanic and geologic variable

data for Sengan region’ of the paper describes the

Fig. 1 Schematic diagram of regionalized classification
(from Bohling et al. 1990)
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coordinate system and the regular grid system

selected to work with the volcanism data and the

geologic variable data (linked to volcanism) for

Sengan region. The regionalized classification

procedure used for hierarchical regionalization of

volcanism in Sengan region, Japan consists of

three steps: (1) variable selection, (2) typification

and (3) regionalization. The variable selection step

deals with identifying the most important geologic

variables from all the available geologic variables

that relate to volcanic risk, This step is covered in

Section ‘Available data for volcanism and geo-

logic variables strongly linked to volcanism in

Sengan region’ of the paper.

Data on the most important geologic variables

for Sengan region, Japan were obtained from

NUMO. As is expected in a situation where the

different data sets have been collected by differ-

ent organizations for different purposes and at

different times, the available data for geologic

variables are not necessarily sampled at the same

locations. In other words, for a given location, the

geologic variable vectors were incomplete. How-

ever, complete variable vectors are required to

perform multivariate statistical analyses. The

following three options were considered to over-

come the problem of incomplete vectors: (1) to

perform multivariate statistical analyses on a

minimum number of complete variable vectors

coming from the sampling stations; (2) to use

variogram modeling and kriging (Matheron 1971;

Journel and Huijbregts 1978; Isaaks and Srivast-

ava 1989; Deutsch and Journel 1998) to interpo-

late all variables to all sampling stations and then

to use complete variable vectors to perform

multivariate statistical analyses; (3) to use vario-

gram modeling and kriging to interpolate all

variables to a set of selected locations (points in a

regular grid system) and then to use these com-

plete variable vectors to perform multivariate

statistical analyses. Because of the irregularity of

the locations and the large differences of the

available numbers of the data for different geo-

logic variables, the third option was used to con-

struct complete variable vectors. Section

‘Geostatistical analysis’ reports the variogram

modeling and kriging performed for the selected

important geologic variables to construct the

complete variable vectors for Sengan region.

The constructed complete geologic variable

vector data are classified into different groups of

volcanism in Section ‘Multivariate classification

(typification) of volcanism for Sengan region’

through cluster analysis in the typification step.

The procedures stated before for the regionali-

zation step are performed in Section ‘Regional-

ized mapping of volcanism for Sengan region’ to

produce probability of membership maps of the

identified volcanism groups for Sengan region.

Entropy of classification is suggested to assess the

uncertainty of the allocation process of the se-

lected grid point locations based on the calculated

posterior probabilities. The spatial distribution of

calculated entropy in the Sengan region is shown

in Section ‘Regionalized mapping of volcanism

for Sengan region.’ Maps obtained in Section

‘Regionalized mapping of volcanism for Sengan

region’ are compared with locations of recorded

volcanism in Sengan region to evaluate the rea-

sonableness of the predictions and to determine

the locations where future data collection is nee-

ded to improve reliability of the predictions.

Selected coordinate system and the grid system to

show volcanic and geologic variable data for

Sengan region

The Universal Transverse Mercator (UTM) pro-

jection coordinate system (PCS) available in

ArcGIS 8.x software package is used in the paper

to work with volcanic and geologic variable data

available for Sengan region. The mid point of the

Sengan region has a longitude close to 141 de-

grees and latitude close to 40 degrees. The Sengan

region is within UTM zone 54 (138–144 degrees

longitude). UTM zone 54 has the following

properties: Ellipsoid: GRD 80; Central meridian:

141.00000; Reference longitude; 0.00000; Scale

factor: 0.99960; False easting: 500000.00000; False

northing: 0.00000.

As the study area, longitudes between 139.667

and 142.0844 degrees and latitudes between

39.333 and 40.667 degrees have been used with

Greenwich as the prime longitude to cover Sen-

gan region. The aforementioned region covers

209 km in the E–W direction and 149 km in N–S

direction. Table 1 shows the starting and ending
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X and Y coordinates of the study area according

to the UTM zone 54 PCS. This study area was

divided into 1 km square cells as shown in Fig. 2.

The total number of 1 km cells in the study area

turned out to be 31141. Out of that total number,

23949 one km cells (76.9 percent) occupied the

land portion. The rest of the 1 km cells are lo-

cated in the oceanic portion. All of the geologic

data provided by NUMO use a geographic coor-

dinate system (GCS) to specify the locations.

Data of all the geologic variables considered in

this study have been converted from a GCS to

UTM zone 54 PCS with the datum GRD 80.

Available data for volcanism and geologic
variables strongly linked to volcanism in Sengan

region

Recorded volcanism in Sengan region

The available data on observed volcanism can be

separated into three groups as follows: ‘edifice by

vent’=80 points; ‘edifice by topography’=5 points;

‘volcano center by topography’=30 points. Fig-

ure 3 shows the locations for the aforesaid ob-

served volcanism in the study area. It is noted that

these observations of volcanism are not used in

the classification and mapping process, but are

only used afterwards as a check on the results.

Table 1 X and Y Coordinates of the study area according
to the UTM zone 54 PCS

Starting (km) Ending (km) Difference (km)

X-coordinate 385.086 594.086 209
Y-coordinate 4,354.616 4,503.616 149

Fig. 2 One km square grid system on UTM zone 54 PCS for the Sengan region
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Geologic variables most important to

volcanism

A volcanism workshop held to discuss on con-

ceptual models of volcanic activity (Arnold et al.

2003) identified the following geologic variables

as the most important variables related to volca-

nism: geothermal gradient, geothermal heat flow,

groundwater temperature, presence of quaternary

volcanic rocks, presence of hydrothermal alter-

ation and groundwater pH value. Seismicity

(shallow), magnetic, teleseismic, radar interfer-

ometry, spectral satellite, gravity, horizontal shear

strain, groundwater chemistry, elevation, slope

magnitude, and slope orientation were identified

as variables of secondary importance in evaluat-

ing volcanic risk at the regional scale.

The map obtained for the volcanism in Sengan

region (Fig. 3) was visually compared to the map

obtained for each of the aforesaid most important

as well as secondary important geologic variables

to determine whether the considered geologic

variable is strongly correlated to volcanic activity.

This comparison confirmed that the aforesaid

most important geologic variables are strongly

correlated and the rest of the geologic variables

are either poorly or weekly correlated to volca-

nism. Therefore, the geostatistical and multivari-

ate statistical analyses reported in Section

‘Geostatistical analysis’ were conducted only for

the geologic variables that were labeled as most

important to volcanism. The data available for

these most important geologic variables are given

below in rest of this Section.

Groundwater temperature

Groundwater temperature data were obtained

through the following sources: groundwater da-

tabases; hot spring databases; fumaroles and

geothermal wells. In these databases, several

temperature values were sometimes available for

one horizontal location at different depths. The

average of the available data with depth was used

to represent the groundwater temperature at the

considered horizontal location in such a situation.

Figure 4 shows the constructed data base avail-

able for groundwater temperature on UTM zone

Fig. 3 Available volcanic activity data for Sengan region
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54 PCS. A few 1 km square cells have more than

one data point and many cells do not have a single

data point. In Fig. 4, the groundwater tempera-

ture data are separated into five arbitrary groups

according to the level of temperature. Note that

the higher the groundwater temperature, the

higher the chance of volcanism. Also note that

there is a large area in the southeastern region of

the study area with a few or no data.

Groundwater pH value

Note that even though temperature values are

available from the groundwater databases, hot

spring databases, fumaroles and geothermal wells,

pH values are only available from the ground-

water databases. Figure 5 shows the available pH

values for the study area on UTM zone 54 PCS. A

few 1 km square cells have more than one data

point and many cells do not have a single data

point. In Fig. 5, pH data are separated into five

arbitrary groups based on the level of pH value.

Note that the lower the groundwater pH, the

higher the chance of volcanism. Also note that

there is a large area in the southeastern region of

the study area with a few or no data.

Geothermal gradient

Figure 6 shows the available geothermal gradient

values for the study area on UTM zone 54 PCS in

units of C�/km. A few 1 km square cells have

more than one data point and many cells do not

have a single data point. In Fig. 6, the geothermal

gradient data are separated into five arbitrary

groups as for the groundwater temperature. Note

Fig. 4 Available groundwater temperature data for Sengan region
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that the higher the geothermal gradient, the

higher the chance of volcanism. Also note that

there is a large area in the eastern region of the

study area with no data.

Heat discharge

Heat discharge data available through hot springs

on a raster image were converted to a 1 km

square grid system using UTM zone 54 PCS. The

obtained map is shown in Fig. 7. Numbers given

in the map are the logarithms of the heat dis-

charge in units of log10(lWm–2). In Fig. 7, the

heat discharge data are separated into five arbi-

trary groups as for the groundwater temperature.

Note that the higher the heat discharge, the

higher the chance of volcanism. Also note that

there is a large area in the southeastern region of

the study area with a few or no data.

Presence of quaternary volcanic rocks

Available images of the distribution of quaternary

volcanic rocks were used in arriving at the polyg-

onal coverage shown in Fig. 8 to represent the

distribution of volcanic rocks in the study area.

Presence of hydrothermal alteration

Available images of the distribution of hydro-

thermal alteration were used in arriving at the

polygonal coverage shown in Fig. 9 to represent

the distribution of hydrothermal alteration for the

study area.

Fig. 5 Available groundwater pH data for Sengan region
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Geostatistical analysis

The previous section provided maps for available

data on UTM zone 54 PCS for the following

geologic variables: groundwater temperature,

groundwater pH value, geothermal gradient, heat

discharge, presence of volcanic rocks and presence

of hydrothermal alteration. Each map was shown

on a 1 km square grid system. Each 1 km cell can

be considered as a sampling station for geologic

variables. When all of the 6 geologic variables are

taken together at any one location, the existing

data vector is incomplete. However, complete

geologic variable vectors are required to perform

multivariate statistical analysis. Spatial variation

of a geologic variable including the anisotropy for

the study area on the two-dimensional horizontal

plane can be studied by constructing the vario-

gram surface and directional variograms. Vario-

gram modeling then can be performed to capture

the essential properties depicted by the directional

variograms. The variogram model then can be

used along with the kriging technique to estimate

the geologic variable value at the center of each

1 km cell where no data are available for the

considered geologic variable. In addition, kriging

can be applied to refine the geologic variable value

at a center of a cell where data are available for

the considered geological variable. This procedure

was applied to each of the first four of the six

geologic variables to complete the geologic vari-

able vector for the said four variables in the study

area. Variogram modeling was performed using

the computer program VARIOWIN version 2.2

(Pannatier 1996). The study area was extended by

50 km to both north and south to use available

data beyond the boundary of the study area to

better estimate the geologic variable values at the

cells located at the north and south boundaries of

the study region.

Fig. 6 Available geothermal gradient data for Sengan region
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ArcGIS Geostatistical Analyst (Johnston et al.

2001) was used to perform kriging. For the last

two variables, a more simple re-mapping analysis

was done to estimate the geologic variable value

for each 1 km cell in the study area. Through this

way, geologic variable value estimation was

completed for all 23949 one km cells in the study

area for each of the six geologic variables. The

results obtained for groundwater temperature

and presence of volcanic rocks are given below to

illustrate the two different procedures.

Groundwater temperature

In the extended data base region, groundwater

temperature data were available for 999 one km

square cells. These data were used to obtain the

variogram surface shown in Fig. 10. The vario-

gram surface plot shows that the major axis

direction for correlation distance is around N 5–

15� W. Figure 11a shows the variogram (1 km lag

spacing) calculated for groundwater temperature

assuming isotropic spatial variation (omni direc-

tional) in the considered region. Directional

variograms were calculated at every 15� counter-

clockwise starting at 0� (East) using a lag spacing

of 1 km (Fig. 11b through m). The following

directional parameters were used in calculating

the directional variograms: angular toler-

ance = 22.5� and maximum bandwidth = 3· lag

spacing (Pannatier 1996).

Directional variograms clearly show the pres-

ence of anisotropy. Exponential, spherical,

Gaussian and power functions were considered in

fitting the directional variograms. An exponential

function turned out to be the best fit according to

Fig. 7 Available heat discharge data for Sengan region on a 1 km square grid using UTM zone 54 PCS
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Fig. 8 Polygonal coverage of available volcanic rock areas in Sengan region from two different sources

Fig. 9 Polygonal coverage of available hydrothermal alteration areas in Sengan region from two different sources
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the goodness of fit test results. The obtained

variogram models for directional variograms are

shown in Figs. 11b through m. Note that the

nugget and partial sill values for the variograms

were found to be 120 and 600, respectively. Cor-

relation distances were found to vary with the

direction.

The correlation distance obtained for every 15-

degree is plotted on a polar coordinate system in

Fig. 12. The least square elliptical fit obtained for

the directional correlation distance is also shown

in the same figure. Note that the fit is quite close

to the calculated directional correlation distances.

The figure also shows the correlation distance

obtained through the assumption of isotropic

spatial variation (through omni directional vari-

ogram). This figure clearly shows that anisotropy

cannot be neglected in modeling the spatial var-

iation of groundwater temperature. Major axis

direction, and semi-major and semi-minor axis

lengths obtained for the correlation distance

model are also given in the figure.

The variogram model was used to perform

kriging. Figure 13 shows the map obtained for the

predicted values of groundwater temperature.

The map obtained for the standard error (the

square root of the kriging variance) of the pre-

diction is shown in Fig. 14. Note that the standard

error (uncertainty) increases in areas with a lack

of data.

Presence of volcanic rocks

To express the presence of volcanic rocks in the

1 km square grid system, the 1 km grid mesh was

superimposed on the combined map obtained in

Section ‘Presence of quaternary volcanic rocks.’

For each 1 km cell that was fully within the vol-

canic rock area, a value of one was assigned to the

cell. For each 1 km cell that was fully out of the

volcanic rock area, a value of 0 was assigned to

the cell. If only a portion of 1 km cell fell within

the volcanic rock area, the cell was assigned a

value between 0 and 1 according to the propor-

tional coverage of the cell area by the volcanic

rock area. This final map obtained is shown in

Figure 15.

Multivariate classification (typification)
of volcanism for Sengan region

General features of cluster analysis (CA)

Cluster analysis is a technique designed to per-

form classification by assigning observations to

groups or ‘‘clusters’’ so each group is more or less

homogeneous and distinct from other groups. CA

procedures can be separated into four general

types (Sneath and Sokal 1973; Gordon 1999): (1)

Partitioning methods, (2) Arbitrary origin meth-

Fig. 10 Variogram surface plots of groundwater temperature at different lag spacings and number of lags. Note: the black
triangle shown on the color legend indicates the total variance value
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Fig. 11 (a) Omni directional variogram and (b–m) directional variograms for groundwater temperature at 1 km lag spacing
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ods, (3) Mutual similarity procedures and (4)

Hierarchical clustering. The hierarchical cluster-

ing technique is the most popular technique in

earth sciences. Therefore, some details of this

technique are given below.

Consider n objects having m measurable

characteristics. The observations will form an n·
m data matrix, X. Some measure of resem-

blance or similarity is computed between every

pair of objects; that is, between every pair of

rows of the data matrix. A popular similarity

measure between objects is a standardized m-

space Euclidean distance, dij. This is computed

by

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pm
k¼1 ðXik �XjkÞ2

m

s

ð1Þ

where, Xik denotes the kth variable measured

on object i and Xjk is the kth variable measured

on object j. In all, m variables are measured on

each object, and dij is the distance between

Fig. 11 continued
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object i and object j. A small distance indicates

the two objects are similar, whereas a large

distance indicates dissimilarity. Usually, to

weigh each variable equally and to remove the

effects of different units of measurement across

the different variables, each element in the data

matrix X is standardized by subtracting the

column means and dividing by the column

standard deviations prior to computing dij. In

other words, each value in the data matrix is

expressed as a deviation from the mean in

terms of a rational number of standard

deviations.

Computation of a similarity measurement

using the Euclidean distance between all possible

pairs of objects produces an n · n symmetrical

matrix, C. Each coefficient cij in the matrix

indicates the resemblance between objects i and j.

Next, the objects are arranged into a hierarchy so

that objects with the highest mutual similarity are

placed together to form groups or clusters. Then

the groups having closest resemblance to other

groups are connected together until all of the

objects are placed into a classification scheme

named as a dendrogram. Different procedures are

available in the literature to form these groups or

clusters (Sneath and Sokal 1973; Backer 1995;

Gordon 1999).

Although several measures of similarity have

been proposed in the literature, only two are

widely used: the Euclidean distance and the cor-

relation coefficient in performing cluster analysis.

If the raw data are standardized as explained

above prior to computing the similarity coeffi-

cient, the correlation coefficient and Euclidean

distance can be directly transformed from one to

another. Dendrograms constructed from the two

measures generally are similar (Davis 2002).

However, the Euclidean distance is not con-

strained within the range plus or minus one as is

the correlation coefficient, so it may produce

more effective dendrograms if a few of the objects

are very dissimilar from the other as in the case of

volcanism range.

Fig. 12 Variation of correlation distance with direction for groundwater temperature
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Multivariate classification of volcanism for the

Sengan region through CA

The land area of Sengan is divided into 23949

one km square cells (see Section ‘Selected

coordinate system and the grid system to show

volcanic and geologic variable data for Sengan

region’). In Section ‘Geostatistical analysis,’ at

the center of each cell, values were calculated

for each of the following geologic variables:

groundwater temperature, geothermal gradient,

heat discharge, groundwater pH value, presence

of volcanic rock and presence of hydrothermal

alteration. These variables were identified as the

variables most important to volcanism. This

means that to perform cluster analysis a com-

plete vector of values for six geologic variables

at 23949 one km cell center locations (i.e. cases

or objects) are available. The Tree clustering

method available in STATISTICA software

package (StatSoft 1997) cannot be used for

more than 300 cases. However, the K-Mean

clustering method available in SAS (2002) can

be used to perform cluster analyses for 23949

cases. Therefore, first the K-Mean clustering

method was performed to reduce 23949 cases to

300 groups. A complete variable mean vector

was obtained for each group. Then these 300

groups were treated as cases and Tree clustering

was performed using the STATISTICA software

package. Figure 16 shows the dendrogram ob-

tained for the final 50 groups. Figure 16 shows

clearly that the number of groups selected can be

lowered by increasing the value chosen for the

Euclidean distance. As an example, it is possible to

reduce 23949 cases to five groups by selecting a

value of about 2.65 for the Euclidean distance. If

needed, the number of groups can be reduced

further to three by selecting a value slightly lower

than 3.0 for the Euclidean distance (Fig. 16). This

Fig. 13 Estimated values of groundwater temperature from kriging for the study area
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means the analyst or the decision maker has the

flexibility to select any number of groups as he/she

desires in performing the regionalized mapping.

The mean values obtained for the geologic variable

vector for the five groups selected are shown in

Fig. 17. The same figure provides the number of

cases obtained for each group. Note that in Fig. 17,

the cluster numbers are arranged such that the

volcanism level moves from a lowest possible vol-

canic disruption (Cluster 1) to a highest possibility

of volcanic disruption (Cluster 5).

Regionalized mapping of volcanism for Sengan
region

Concepts of regionalized mapping

The discussion in this section is a summary of

Bohling (1997). Let us say that the number of

most important geologic variables used in the CA

is v. These v variables form the variable vector x

for a sample. Let us assume that the number of

classes or groups defined at the end of the typi-

fication step is g. Then the geologic variable data

coming from a 1 km cell center location can be

assumed to come from one of the g different

groups, each having a specific probability density

function, fi(x), where i stands for the group

number. If the probability of sampling from the

ith group is qi, then
P

g

i¼1

qi ¼ 1. Note that qi is the

prior probability (probability of occurrence based

on prior knowledge). If x is known or given for

the sample, then according to Bayes’ theorem, the

posterior probability of the sample coming from

ith group is given by

pðijxÞ ¼ qifiðxÞ
P

g

j¼1

qjfjðxÞ
ð2Þ

Fig. 14 Predicted standard error values of average groundwater temperature from kriging for the study area
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The p(i|x) should be calculated for each group.

The sample is then allocated to the group with the

highest p(i|x) value. To calculate p(i|x) it is nec-

essary to know all fi(x) and qi values. A number of

parametric or non-parametric methods are avail-

able to model fi(x) (Mclachlan 1992; SAS 1989).

However, usually the discriminant analysis as-

sumes that the groups follow multivariate normal

distributions. If the mean vector and the covari-

ance matrix for group i are denoted by li and Si,

fi(x) can be given as

fiðxÞ ¼ ð2pÞ�p=2jRij�1=2 exp �0:5d2
i ðxÞ

� �

ð3Þ

where

d2
i ðxÞ ¼ ðx� liÞ

0R�1
i ðx� liÞ ð4Þ

is the squared Mahalanobis distance from x to li.

Substituting Eqs. (3) into (2) and canceling the

constant factor (2p)–p/2 yields

pðijxÞ ¼
qijRij�1=2 exp �0:5d2

i ðxÞ
� �

P

g

j¼1

qjjRjj�1=2 exp �0:5d2
i ðxÞ

� �

ð5Þ

¼
exp �0:5D2

i ðxÞ
� �

P

g

j¼1

exp �0:5D2
j ðxÞ

� �

ð6Þ

where

D2
i ðxÞ ¼ d2

i ðxÞ þ ln jRij�2 lnqi ð7Þ

is the generalized squared distance from x to

group i following the usage of SAS (1989). Thus

the sample may be allocated to the proper group

either on the basis of maximum posterior proba-

Fig. 15 Available quaternary volcanic rock data for Sengan region on 1 km square grid using UTM zone 54 PCS
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bility or minimum generalized squared distance,

yielding equivalent results.

Results of the typification step allocate the

total number of 1 km cell center locations with

complete variable vectors to a finite number of

distinct groups. This information can be used to

estimate qi values according to Eq. (8) given

below:

Fig. 16 Dendrogram obtained for the final 50 groups

Fig. 17 Mean variable vector for each cluster for the 5 group clustering
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qi ¼
ni

P

g

j¼1

ni

ð8Þ

where ni is the number of samples belonging to

group i. The geologic variable data available for

each group defined at the end of the typification

step can be used in Eqs. (9) and (10) to esti-

mate li and Si, respectively.

l̂i ¼
1

ni

X

ni

k¼1

xk ð9Þ

and

R̂i ¼
1

ni � 1

X

ni

i¼1

ðxk � l̂iÞðxk �l̂iÞ
0 ð10Þ

When the group covariance matrices are not

assumed to be equal (i.e. different Si values) and

qi is calculated according to Eq. (8), the analysis

performed through Eqs. (6) and (7) is termed

quadratic discriminant analysis.

If it can be assumed that the prior probabilities

are equal, qi=1/g, and that the groups have a

common covariance matrix, Si=S, then Eqs. (4)

and (5) reduce to Eqs. (11) and (12) given below,

respectively.

d2
i ðxÞ ¼ ðx� liÞ

0R�1ðx� liÞ ð11Þ

pðijxÞ ¼
exp �0:5d2

i ðxÞ
� �

P

g

j¼1

exp �0:5d2
j ðxÞ

� �

ð12Þ

The implication of Eqs. (11) and (12) is the

sample allocation for this case can be done based

only on the Mahalanobis distance. The discrimi-

nant analysis under the case of common covari-

ance matrix is known as the linear discriminant

analysis. For linear discriminant analysis, S is

estimated by the pooled within-groups covariance

matrix given as

R̂ ¼ 1

n� g

X

g

i¼1

ðni � 1ÞR̂i ð13Þ

where n is the total number of data. Statistical

tests for equality of covariance matrices given in

Anderson (1984) and McLachlan (1992) can be

used to determine which discriminant method is

most appropriate for the available data. Even if

the results of the statistical test indicate quadratic

discriminant analysis is the appropriate method,

use of linear discriminant analysis has been shown

to produce equally acceptable results (Bohling

et al. 1990). In addition, with respect to deviations

from normality, linear discriminant analysis tends

to be more robust than the quadratic discriminant

analysis.

Results of regionalized mapping for the

Sengan region

In Section ‘Multivariate classification (typifica-

tion) of volcanism for Sengan region,’ a typifica-

tion was performed for five groups. Both the

quadratic and linear discriminant analyses were

performed using these five groups. Negligible

differences were found between the quadratic and

linear discriminant analysis results. Values of qi

calculated based on Eq. (8) and used for the

quadratic discriminant analysis are given in Ta-

ble 2. Probability membership maps obtained for

the five groups are shown in Fig. 18a through e.

The higher probability a location has in these

maps, the higher confidence in that location

belonging to the allocated group. The locations

with lowest probabilities in each map indicate

that those locations have almost a similar chance

of belonging to the adjacent regionalized group

having either lower or higher level of volcanism.

In addition, the locations with lowest probabilities

indicate demarcation boundaries among the dif-

ferent volcanism groups. Figure 19 shows the

predicted regions for the five groups of volcanism

Table 2 Values of qi used for quadratic discriminant
analysis for 5 group clustering

Group number Number
of data

Prior
probability

1 4254 0.1776
2 8952 0.3738
3 6376 0.2662
4 3192 0.1333
5 1175 0.0491
Total 23949 1.000
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on one plot along with the recorded volcano data

for comparison for Sengan region. In some cells

more than one volcanic event appears. In such a

situation, it is difficult to see more than one data

point appearing in a cell. Table 3 shows the dis-

tribution of recorded volcanic data among the 5

different groups of volcanism. This table provides

the volcanic data information under two different

Fig. 18 (a) Regionalized membership probability distri-
bution for group 1 of 5 clusters. (b) Regionalized
membership probability distribution for group 2 of 5
clusters. (c) Regionalized membership probability distri-

bution for group 3 of 5 clusters. (d) Regionalized
membership probability distribution for group 4 of 5
clusters. (e) Regionalized membership probability distri-
bution for group 5 of 5 clusters
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rows: (a) number of data and (b) number of cells.

The differences in values between the two rows

provide the information on overlapping data that

appear within certain cells that are difficult to

distinguish on the shown figures. Note that none

of the recorded volcanic data are located in the

lowest volcanic susceptibility region (group 1).

Sixty seven cells out of a total of 73 cells are lo-

cated in high and moderate volcanic susceptibility

regions (groups 3, 4 and 5). The number of re-

corded volcanoes increases as the probability of

volcanism increases with group, as would be ex-

pected. Note that the volcano locations were not

used in the definition of the multivariate classes

or in the mapping. These locations are used solely

for verification purposes. The aforementioned

observations show that the regionalized mapping

technique used for estimation of volcanism sus-

ceptibility has worked very well. For each

regionalized volcanism group, the mean proba-

bility of a volcanic event taking place may be

estimated by dividing the total number of volca-

nic events that have occurred in the considered

regionalized group by the total monitoring time

of the volcanic activities. The reciprocal of this

said probability provides the return period for a

volcanic activity for each regionalized group.

Uncertainty evaluations of regionalized

mapping

The entropy of classification given by Eq. (14) has

been suggested in the literature (Jaynes 1957;

Kitanidis 1994) to assess the uncertainty of the

allocation process of the sample based on the

calculated posterior probabilities.

H ¼ �
X

g

k¼1

pk ln pk

 !

= ln g ð14Þ

Fig. 19 Predicted regions for the 5 groups of volcanism along with the recorded volcanoes for the Sengan region

Table 3 Distribution of volcanic data locations among the
five different groups

Volcanic
data

Group 1 Group 2 Group 3 Group 4 Group 5

# of points 0 11 18 24 60
# of cells 0 6 11 16 40
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In Eq. (14), H fi 0 when pk fi 1 for any k

and H reaches its maximum value of one when

all the posterior probabilities are equal. There-

fore, H ranges between 0 and 1 with larger

values indicating greater uncertainty. The en-

tropy measure accounts for the entire set of

posterior probabilities as given by Eq. (14).

Mapping the entropy as calculated in Eq. (14)

can be used to improve the spatial definition of

group boundaries (Bohling 1997; Olea 1999).

The obtained results for entropy are shown in

Fig. 20. Each recorded volcanic location along

with the volcanic activity group it belongs to is

also shown in the same figure. The histogram gi-

ven in Fig. 21 shows the uncertainty level of the

group estimations at different locations where

volcanic data are available for each group. Fig-

ures 20 and 21 show that the uncertainty of the

mapping estimations is relatively low on the

average for volcanic data cell locations that are in

the high volcanism regions (groups 4 and 5). The

same two figures show that the uncertainty of the

mapping estimations is relatively high on the

average for volcanic data cell locations that are in

the low volcanism region (group 2). Note that no

volcanic data exist in the lowest volcanism region

(group 1). Figures 20 and 21 also show that the

uncertainty of the mapping estimations is rela-

tively moderate on the average for volcanic data

cell locations that are in the moderate volcanism

region (group 3). It is recommended to collect

more geologic data in the regions where the

uncertainty level is high. The new data collected

can be added to the old database to perform fu-

ture regionalized mapping to reduce the uncer-

tainty level of the estimations.

Summary and conclusions

This paper provides the procedures used and re-

sults obtained for the study on hierarchical

probabilistic regionalization of volcanism for

Sengan region in Japan. The summary of the steps

used along with the results obtained and the

conclusions arrived at are given below:

Fig. 20 Regionalized distribution of entropy for 5 group clustering along with the available volcanism data located in
different clustering groups
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(1) UTM zone 54 projected coordinate system

and a 1 km square regular grid system were

selected to show the available volcanism and

geologic data for Sengan region using Arc-

GIS 8.x software package.

(2) The map obtained for each geological vari-

able was visually compared with the map of

recorded volcanism to determine the geo-

logic variables that are strongly correlated to

volcanism. The variables: geothermal gradi-

ent, groundwater temperature, heat dis-

charge, groundwater pH value, presence of

volcanic activity and presence of hydro-

thermal alteration were labeled as the most

important variables for volcanism.

(3) For each of the most important geologic

variables connected with volcanism, direc-

tional variogram modeling and kriging were

performed on available data to estimate

values at the centers of 23949 one km square

cells. These estimated values formed 23949

cases of complete variable vectors.

(4) Cluster analysis was performed on the 23949

complete variable vectors to classify them to

five groups of potential volcanism spanning

from lowest possible volcanism to highest

possible volcanism with increasing group

number.

(5) Volcanism group results obtained through

cluster analysis were used with Bayes’ the-

orem and discriminant analysis to construct

maps showing the probability of group

membership for each of the volcanism

groups obtained in step four. These maps

show good comparisons with recorded

volcanism of the Sengan region. Note that

no volcanic data exist in the group 1 region.

The high probability areas (i.e the lowest

uncertainty) within group 1 have the chance

of being the no volcanism region.

(6) An entropy map was constructed to ex-

press uncertainty levels of the regionalized

mapping estimations. The recorded volca-

nism data are also plotted on the same

map to see the uncertainty level of the

estimations at the locations where volca-

nism exists. The volcanic data cell loca-

tions that are in the high volcanism regions

(groups 4 and 5) show on the average

relatively low mapping estimation uncer-

tainty. On the other hand, the volcanic

data cell locations that are in the low

volcanism region (group 2) show on the

average relatively high mapping estimation

uncertainty. The volcanic data cell loca-

tions that are in the medium volcanism

region (group 3) show on the average rel-

atively moderate mapping estimation

uncertainty. It is recommended to collect

more geologic data in regions where the

uncertainty level is high. The new data

collected can be added to the old database

to perform future regionalized mapping to

reduce the uncertainty level of the esti-

mations.
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