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Abstract. A reliability based method was used to design and analyse shallow foundations
using first-order Taylor series approximation. The computer program Mathcad was used to

facilitate all mathematical and computional efforts. This method is an effective tool to assist
the foundation designers and analyists to investigate how reliable their designs or analyses are
in relation to the ultimate bearing capacity of the foundations. The approach presented in this
paper provides a reliable alternative for design and analysis of shallow foundations, rather

than the conventional design methods, which employs the assumptions of a specified saftey
factor. Several examples were presented for design and analysis of strip footings embedded in
sandy soil, and rectangular and square footings analysis embedded in clayey soils. The pro-

gram input and output of each example are also presented and discussed.
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1. Introduction

Reliability based design (RBD) has been an important subject for the last two decades.

The reliability based methods to design shallow foundations are becoming accepted as

powerful tools to assist designers investigate how reliable their designs are. The lack of

use of these methods is due to the pre-requirements of knowledge in the fields of

statistics and probability, which most designers are not familiar with. Preparing ready

design charts or computer software for this purpose increases the widespread use of

such methods. The simplicity of Mathcad’s input/output interface allaws the designer

to easily check the probability of failure or the reliability of his/her design.

The application of reliability analysis to bearing capacity problems started in the

early 1970s. Simple examples were presented in several publications (e.g. Ang and

Tang, 1975; Harr, 1977). The variability of soil properties was studied extensively

even earlier. Lumb (1974) published one of the most comprehensive reviews in 1974.

This paper presented a collection of variability of some basic soil properties that

affect the bearing capacity.
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Because of the variability and randomness of soil properties, it is expected that the

ultimate bearing capacity (qult) of a footing will be a random variable. The

probabilistic methods that may be used to determine the distribution of qult and

consequently the reliability of the chosen factor of safety falls into four categories:

1. Point estimation methods (PEM, Rosenblueth method).

2. First- and second-order approximation methods usually making use of Taylor’s

series expansion.

3. Monte Carlo methods.

4. The exact methods. (e.g., Cherubini, 1990; Easa, 1992).

The first and the second categories are simple and may yield reasonably accurate

results in practice. The Monte Carlo method is best used when studying the effect of

variability of different properties on the ultimate bearing capacity, If a general

solution is required by this category the computer time will be relatively higher. By

‘‘exact methods’’ reference is made to methods consisting of mathematical deter-

mination of the distribution function of qult depending on the inverse distribution

functions of the independent variables such as the angle of internal friction (/), the
cohesion (c), and the unit weight (c) of the soil.

Although the latter method (exact methods) is more rigorous due to the compli-

cated relation of the bearing capacity with many parameters, this makes obtaining

the derivatives of the different parameters with respect to the ultimate bearing

capacity extremely difficult. As these derivatives are necessary for the determination

of the distribution function of the ultimate bearing capacity from the inverse dis-

tributions. Approximate modified bearing capacity equations (see e.g., Krizek, 1965)

have been adopted, but still the problem is difficult to solve analytically.

In this paper, Taylor’s series is used to expand the distribution function of the

ultimate bearing capacity. The method is supported by several authors, (Kapur and

Lamberson, 1977; Harr, 1977; Basheer and Najjar, 1998; Duncan, 2000).

2. The ultimate bearing capacity equation

Many modifications have been published since the original bearing capacity equa-

tion presented by Terzaghi (1943), In this paper, the following equation and factors

will be adopted.

For a strip footing, the ultimate bearing capacity may be taken as

qult ¼ cNc þ �qNq þ
1

2
cBNc ð1Þ

where B is the width of the footing, c the cohesion intercept of the soil,�q is the soil

effective overburden pressure at the foundation base level =cDf with Df denoting

depth of the footing Nc, Nq and Nc are the bearing capacity factors and are functions

of / as follows, see Vesic (1973):
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Nq ¼ tan2ð45� þ /Þ � ep tan/

Nc ¼ ðNq � 1Þ cot/ ð2Þ

Nc ¼ 2ðNq þ 1Þ � tan/

It may be noticed that no problems may occur when calculating these factors for any

values of / except in the case where /=0, Nq=1 and Nc=0 but Nc yields no definite

number. Usually Nc for /=0 is taken as the limit, 5.14. In this paper and for

computer input a value of /=0.001� (1.74533 · 10)3) will be used instead of zero,

this will give Nc=5.14182, Nq=1.00009, and Nc=0.00007. To distinguish the case of

/=0, an if statement will be used in the program.

For other shapes of the foundation, each term in Equation (1) is multiplied by a

shape factor

qult ¼ cNcSc þ �qNqSq þ 0:5cBNcSc ð3Þ

Many definitions were suggested for these shape factors. Table 1 lists the values

suggested by Hanson (Arora, 1987) with L being the long dimension, while B is the

short dimension of the footing. These shape factors are convenient and may be

adopted in practice. The effects of depth, inclination of load, base tilting, ground

slope, and water table depth are ignored and may be taken into consideration in later

work.

3. Variability of soil properties

In data analysis and density function distribution, two essential parameters are

required, the mean l and the variance V. The standard deviation, r, being the square
root of the variance, is usually relied upon when measuring dispersion of the data

about the mean. Comparing the dispersion of different groups requires a dimen-

sionless variable, the coefficient of variation, CV=r/l.
Related to bearing capacity analysis of shallow foundation, the soil properties

needed for calculation are the angle of internal friction, the cohesion, and the unit

weight. Most researchers agree that these properties are, in fact, random variables

and are controlled by normal distribution. Much of effort has been exerted to assess

the coefficient of variation of these and other soil properties. Lumb (1974) stated that

Table 1. Shape factors adopted

Shape of Footing Sc Sq Sc

Strip 1.0 1.0 1.0
Rectangular 1+0.2 B/L 1+0.2 B/L 1 ) 0.4 B/L

Square 1.3 1.2 0.8
Circular 1.3 1.2 0.6
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most coefficients of variation of soil properties commonly range between 10 and 25%

and values out of this range should be avoided or used cautiously. This range is

relatively strict when dealing with values obtained from field tests, such as the

standard penetration test, vane shear test, etc. Tests based on total stresses may also

yield higher coefficients of variation. Table 2 presents recommended ranges for the

coefficient of variation for soil parameters taken from different researchers.

Duncan (2000) suggested that the ‘‘3r rule’’, r=(highest value obtained ) lowest

value obtained)/6, may be used successfully to estimate the coefficient of variation. In

Table 2. Variability of soil properties

Property CV (%) Notes Reference

/ (Sands) 5–15 Recommended 10% Lee et al. (1983)
/ (Clays) 12–56 Lee et a1. (1983)
tan/ (Sands) 5–15 Lumb (1974)

/¢ 4 Christian et al. (1994)
/¢ estimated from PI 15–20 Clay Phoon and Kulhway (1996)
/¢ (Direct shear) 7–20 Sand, clay Phoon and Kulhway (1996)

/¢ (Triaxial) 10–15 Sands Phoon and Kulhway (1996)
cu (Sandy soils) 25–30 Recommended 30% Lee et al. 1983
cu (Clays) 20–50 Lee et al. (1983)
cu (Clays) 20–50 Lumb (1974)

su 13–40 Duncan (2000)
su/r¢vo 5–15 Duncan (2000)
su (Vane) 10–20 Duncan (2000)

su (Vane) 20–32 Christian et al. (1994)
su (Unconfined) 20–55 Clay Phoon and Kulhway (1996)
su (UU test) 10–35 Clay Phoon and Kulhway (1996)

su (CU test) 20–45 Clay Phoon and Kulhway (1996)
su (Field vane) 15–50 Clay Phoon and Kulhway (1996)
su (Estimated from N) 40–60 Clay Phoon and Kulhway (1996)
su (Estimated from PI) 30–55 Clay Phoon and Kulhway (1996)

cd Modified Proctor 1–7 Recommended, 5% Lee et al. (1983)
c Density 1–10 Recommended 3% Lee et al. (1983)
c 5–10 Lumb (1974)

c 3–7 Duncan (2000)
cb 0–10 Duncan (2000)
c 2 Christian et al. (1994)

Liquid limit (LL) 2–48 Recommended 10% Lee et al. (1983)
Plasticity index (PI) 7–79 Recommended 30% for

clays and 70% for sands

and gravels

Lee et al. (1983)

N 15–45 Duncan (2000)
qu Unconfined strength 6–100 Recommended 40% Lee et al. (1983)
qc (Elastic) 5–15 Duncan (2000)

qc (Mechanical) 15–37 Duncan (2000)
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fact, the uncertainty in estimating the coefficient of variation itself makes the use of

3r rule plausible. Judgement and experience are valuable in such estimations.

4. Reliability and factor of safety

The applied contact pressure under a footing may be calculated as the gross load (Q)

(including the weight of the footing and the soil above) divided by the footing area

(A), If this pressure is denoted by gapp, then the factor of safety against failure will be

Fs ¼ qult=qapp ð4Þ

Sometimes the Fs is required, corresponding to the net pressure neglecting the weight

of the footing and the refill soil and is thus calculated as

Fs ¼
qult � cDf

qapp � cDf
ð5Þ

¼ ðqult � cDfÞA=Qnet

where Qnet is the net load applied from the superstructure. In this paper Equation (4)

will be adopted for the factor of safety calculation. It is assumed that the probability

distribution of qult is a Gaussian normal one, which is not very accurate but the level

of approximation is accepted. Other researchers, however, have used other distri-

butions (see e.g., Basma, 1994; Basheer and Najjar, 1998).

Division of qult distribution by the value of Fs will also yield a normal bell type

distribution for qapp. Figure 1 shows both distributions. The shaded area is the

region indicative of the probability of failure, which may be defined in three ways as

shown in the following equation

Pf ¼ Pðqult < qappÞ ¼ Pðqult � qapp < 0Þ ¼ Pðqult=qapp < 1Þ ð6Þ

while the reliability is simply

Figure 1. Probability of failure indicated by the shaded area, the intersection of the distributions of

ultimate bearing capacity and applied load.
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R ¼ 1� Pf

The first definition, i.e., Pf=P(qult < qapp), is depicted in Figure 2(a) where qult is

distributed and required in the area up to qult=qapp to measure the probability of

failure. If the density function of (qult ) qapp) is plotted, it will give a normal dis-

tribution shape with a mean of (lqult
) lqapp) and a standard deviation of

(r2qult ) r2qapp)
0.5 Figure 2(b) shows this distribution with the shaded area being the

probability of failure, A similar distribution may be adopted for the factor of safety

Fs being qult/qapp, as shown in Figure 2(c).

Figure 2. Definitions of the probability of failure with the corresponding reliability indeces and factors of

safety.
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Considering Figure 2(a), the convenient way to assess the probability of failure is

to fix the value of qapp and seek the probability of qult<qapp. The random variable z

of the standard normal distribution will be

z ¼
qult � lqult

rqult

ð8Þ

and defining z0 as z at which qult=qapp, i.e.,

z0 ¼
qapp � lqult

rqult

ð9Þ

the probability of failure will be Pf=F(z0) where F is the standard normal dis-

tribution cumulative function. These definitions are adopted in the computer

programs of this paper. For the second definition of the probability of failure, that

is Pf=P(qult ) qapp < 0), it is possible to apply a distribution for qapp as well

(Figure 1). 1f a distribution of (qult ) qapp) is available (Figure 2(b)) the standard

normal variate z will be

z ¼
ðqult � qappÞ � ðlqult � lqappÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
qult
þ r2

qapp

q ð10Þ

and if we are seeking the probability of failure then the value of z corresponding to

zero, the difference of qult and qapp will be

z0 ¼ �
lqult
� lqapp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
qult
þ r2

qapp

q ð11Þ

and the probability of failure will be Pf =F(z0) accordingly. If the standard devia-

tion is substituted as CVÆl, the probability of failure may be written as

Pf ¼ U �
lqult
� lqapp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CV 2
qult

l2
qult
� CV 2

qapp
l2
qapp

q

0

B

@

1

C

A

ð12Þ

If the coefficients of variation are assumed equal this may be directly related to the

factor of safety substituting lqult
=Fs Æ lqapp and rqult

=Fs Æ rqapp. So, the variable z0 at
zero difference will be

z0 ¼ �
Fs � 1

CVqult

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F 2
s þ 1

p ð13Þ

The factor of safety refers to the one called ‘‘central factor of safety’’, which is

calculated as the ratio of means of the ultimate and applied distributions. This may

be used for rapid determination of an approximate value of the reliability using:

R ¼ Uð�z0Þ ¼ U
Fs � 1

CVqult

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
s þ 1

p

 !

ð14Þ
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Notice that when Fs increases, the random variable within the parentheses

approaches 1.0 /CVqult
, i.e., lqult

/rqult
.

It is obvious that as Fs is increased, probability of failure is decreased and

consequently the reliability is increased. For a convenient measure of risk, a

reliability index is adopted as

b ¼ �z0 ¼
lqult
� lqapp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
qult
þ r2

qapp

q ð15Þ

The value of b indicates the probability of failure or the reliability through their

definitions. When the coefficients of variation for both ultimate capacity and applied

pressure are taken as equal, b becomes:

b ¼ Fs � 1

CVqult

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F 2
s þ 1

p ð16Þ

Phoon and Kulhawy (1996) stated that b for most geotechnical and structural

components lies between 1 and 4. Probability of failure is expected to be 50% when b
becomes 0, corresponding to a factor of safety that equals 1. For the last definition of

probability of failure in Equation (6), i.e., P(qult/qapp < 1), with reference to

Figure 2(c), distribution for the factor of safety itself should be available and then it

will become easy to calculate the probability of failure, Pf=P (Fs <1). The random

variate z will be:

z ¼
Fs � lFs

rFs

ð17Þ

with z0 obtained at Fs =1. If qapp is fixed, that is CVqapp
=0 , the variable z will be the

same as the one adopted for the first definition in Equation (9) and CVFs
will be equal

to CVqult
. Substituting Fs as the expected mean and CVqult

for CVFs
a value for a

reliability index in this case may be written as:

b ¼ �z0 ¼
Fs � 1

CVqultFs
ð18Þ

Table 3 lists the values of reliability and factor of safety for different values of b and

coefficients of variation chosen for qult. It may be noticed that as the coefficient of

variation increases, the factor of safety corresponding to a certain reliability

decreases. The flatter the probability distribution for the qult, the lower the risk. It is

also important to distinguish that when the reliability required is increased, high

coefficients of variation yield zero or negative factors of safety. This could be

partially overcome by applying other types of probability distributions.

5. Mean and variance of the ultimate bearing capacity

From the above descriptions and definitions one may estimate the reliability of the

foundation safety for a certain factor of safety, otherwise the distribution of qapp and
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Table 3. Central factors of safety for different values of reliability and coefficient of variation of ultimate

capacity

Central factors of safety

b R CVqult

=0.05

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.25 0.598706 1.012 1.025 1.039 1.052 1.066 1.081 1.095 1.111 1.126 1.142
1.017 1.036 1.054 1.073 1.092 1.112 1.132 1.152 1.173 1.194

0.50 0.691462 1.025 1.052 1.081 1.111 1.142 1.176 1.212 1.250 1.290 1.333

1.036 1.073 1.112 1.152 1.194 1.238 1.284 1.333 1.384 1.437
0.75 0.773373 1.039 1.081 1.126 1.176 1.230 1.290 1.355 1.428 1.509 1.600

1.054 1.112 1.173 1.238 1.308 1.384 1.465 1.554 1.651 1.758

1.00 0.841345 1.052 1.111 1.176 1.250 1.333 1.428 1.538 1.666 1.818 2.000
1.073 1.152 1.238 1.333 1.437 1.554 1.686 1.836 2.010 2.215

1.25 0.894350 1.066 1.142 1.230 1.333 1.454 1.600 1.777 2.000 2.285 2.666

1.092 1.194 1.308 1.437 1.585 1.758 1.964 2.215 2.530 2.942
1.50 0.933193 1.081 1.176 1.290 1.428 1.600 1.818 2.105 2.500 3.076 4.000

1.112 1.238 1.384 1.554 1.758 2.010 2.332 2.763 3.377 4.341
1.75 0.959941 1.095 1.212 1.355 1.538 1.777 2.105 2.580 3.333 4.705 8.000

1.132 1.284 1.465 1.686 1.964 2.332 2.849 3.647 5.068 8.414
2.00 0.977250 1.111 1.250 1.428 1.666 2.000 2.500 3.333 5.000 10.00

1.152 1.333 1.554 1.836 2.215 2.763 3.647 5.369 10.43

2.25 0.987776 1.126 1.290 1.509 1.818 2.285 3.076 4.705 10.00
1.173 1.384 1.651 2.010 2.530 3.377 5.068 10.43

2.50 0.993790 1.142 1.333 1.600 2.000 2.666 4.000 8.000

1.194 1.437 1.758 2.215 2.942 4.341 8.414
2.75 0.997020 1.159 1.379 1.702 2.222 3.200 5.714 26.66

1.216 1.494 1.877 2.461 3.507 6.098 27.13
3.00 0.998650 1.176 1.428 1.818 2.500 4.000 10.00

1.238 1.554 2.010 2.763 4.341 10.43
3.25 0.999423 1.194 1.481 1.951 2.857 5.333 40.00

1.261 1.618 2.160 3.145 5.709 40.48

3.50 0.999767 1.212 1.538 2.105 3.333 8.000
1.284 1.686 2.332 3.647 8.414

3.75 0.999912 1.230 1.600 2.285 4.000 16.00

1.308 1.758 2.530 4.341 16.45
4.00 0.999968 1.250 1.666 2.500 5.000

1.333 1.836 2.763 5.369

4.25 0.999989 1.269 1.739 2.758 6.666
1.358 1.920 3.040 7.065

Note: Cells that are not shaded are devoted for values of factor of safety calculated from Equation (18)

while the shaded areas with light gray are for those calculated through Equation (16). The cells shaded

with dark gray indicate unavailability of positive safety factors.
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qult should be known. The main step is to determine the expected mean and variance

of qult so that one may calculate b and consequently the probability of failure.

As it is mentioned in Introduction, the method adopted to determine lqult
, rqult

is

the Taylor’s series expansion. Using the first three terms of Taylor’s series it can be

shown that (see e.g., Kapur and Lamberson, 1977)

EðyÞ � fðlÞ þ 1

2
f 00ðlÞ � VðxÞ ð19Þ

where E(y) is the expected value of y=f(x). The variable x has a mean value l, and f ¢¢
denotes the second derivative of the function f. For the determination of the variance

of the function y, only two terms of Taylor’s series are sufficient and V(y) will be:

VðyÞ � ½f 0ðlÞ�2 � VðxÞ ð20Þ
When a function of several variables is considered, y=f(x1, x2,… , xn), the expansion

of E(y) and V(y) by Taylor’s series yields the following:

EðyÞ ¼ fðl1; l2; . . . ; lnÞ þ
1

2

X

n

i¼1

@2f

@x2i

�

�

�

�

xi¼li

� VðxiÞ
" #

ð21Þ

VðyÞ ¼
X

n

i¼1

@f

@xi

�

�

�

�

xi¼li

" #2

�VðxiÞ

8

<

:

9

=

;

ð22Þ

Next, these equations are applied to determine the expected mean and the variance

of the ultimate bearing capacity, Returning to the form of qult in Equation (3), the

independent variables are c,/ and c.
The first- and second-order derivatives of qult based on Equation (3) may be

written as:

@qult
@c
¼ ScNc

@qult
@/
¼ cSc

@Nc

@/
þ cDfSq

@Nq

@/
þ 0:5cBSc

@Nc

@/

@qult
@c
¼ DfSqNq þ 0:5BScNc

@2qult
@c2

¼ 0 ð23Þ

@2qult

@/2
¼ cSc

@2Nc

@/2
þ cDfSq

@2Nq

@/2
þ 0:5cBSc

@2Nc

@/2

@2qult
@c2

¼ 0
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Hence, the expected mean and variance of qult may be found through the following

equations:

EðqultÞ ¼ qultðmÞ þ 0:5vT
@2qult
@x

�

�

�

�

x¼m
ð24Þ

VðqultÞ ¼ vT
@2qult
@x

�

�

�

�

x¼m
ð25Þ

where

x ¼ ðc / cÞT

m ¼ ðlc l/ lcÞT

v ¼ ðVc V/ VcÞT

qultðmÞ ¼ qultðlc; l/; lcÞ

@2qult
@x

¼ @qult
@c

� �2
@qult
@/

� �2
@qult
@c

� �2
 !T

The variance, being the square of the standard deviation, is substituted as

V=(l ÆCV)2. This is more convenient for practical and programming reasons as

the usual statistical parameter given for a soil property is the coefficient of

variation CV.

6. Procedure for analysis and design

Three cases may be considered according to the input and output parameters, one

case for analysis and two cases for design. These cases are listed in Table 4 and the

procedure is explained in the following.

In case 1, as dimensions are unknown, a trial dimension B for the width (or the

diameter for the circular footings) is required. A convenient start may be 0.3 m.

Using this trial width, the expected mean and variance of qult are calculated. Once

the normal distribution parameters are determined, the value of qult corresponding to

a given probability of failure, Pf=P(qult < qapp=Q/A)=1)R, may be found using

the inverse of the normal distribution cumulative function.

Table 4. Cases of the three programs with their input–output explained

Case no. Case type Input data Output data

1 Design Soil properties applied load reliability Dimensions factor of safety
2 Design Soil properties applied load factor of safety Dimensions reliability
3 Analysis Soil properties applied load dimensions Factor of safety reliability
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This value of qult is again used to evaluate B from A=Q/qult and in turn, B is used

to recalculate quit, and so on, until the difference in two successive resulting B values

are very close. A limit for the number of iterations may be used as well. After this

stage, the factor of safety may be calculated as (qult from Equation (3))/qapp. The

central factor of safety may be calculated also as lqult
/qapp. It may be noticed that the

central factor of safety is always higher than that obtained by the conventionally

calculated bearing capacity. The reason is that the derivatives in Equation (23) are

usually added to the value of E(qult) in Equation (24).

In design case 2, no iteration loop is required as the factor of safety is given. The

dimensions are found directly from Equation (4) by substituting qapp Æ Fs for qult
with qapp=Q/A. Consequently, A or B may be determined.

No problems are encountered when dealing with circular, square or strip footings

calculations, as B may be used explicitly to define the area and the dimensions of the

footing. In rectangular footings, the longer dimension L is also effective in calcula-

tions. This can be overcom by adding the ratio B/L as an input parameter, or else the

dimension L should be specified as part of the input data. Thus, B will be the only

unknown.

It is assumed that the footing is re-dimensioned for practical reasons, hence, a final

check may be done through the analysis program prepared for case 3. In case 3, as all

dimensions and properties are given, the factor of safety is calculated as in Equation

(4). The probability of failure is found directly from the normal distribution

cumulative curve using qapp as the value of the random variable (see Figure 2(a)). If

the central factor of safety is required, the values obtained from Table 3 may be

adopted. It may also be calculated dividing the mean qult by qapp. The program of

case 3 may be used to study the effects of the different parameters such as the

coefficients of variation for different input data.

7. Computer programs

The most important advantage of applying Mathcad to the programming of the

reliability problem is to leave the tedious work of the first and the second-order

differentiation of the function of the ultimate bearing capacity to the computer and

limit the paper work to the conceptual level. This allows one to extend the appli-

cation to the general bearing capacity equation in which many terms and variables

are dependent on / and it also allows for the consideration of other variabilities such

as those for loading and dimensions.

Another advantage of Mathcad is that it has built-in statistical functions to cal-

culate the probability corresponding to a certain value of the random variable,

whether the density or the cumulative density is required, In addition the inverse

function and the value of the variable corresponding to a certain probability may

also be found. For the case of normal distribution, the functions ‘‘pnorm’’ and
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‘‘qnorm’’ are the cumulative probability function and the inverse cumulative proba-

bility function, respectively.

Three programs were prepared for each type of footings (strip, square, circular

and rectangular) corresponding to cases 1, 2, and 3. For tracing how Mathcad

statements and commands are used, a sample of the coding is presented in Appendix

for each case. These three coding lists correspond to the design and analysis of strip

footings, cases 1, 2 and 3, respectively. It will be easy to guess which statements

should be modified for other types of footings. Statements and notation from

Mathcad are simple and easily understood.

8. Application and discussion

Many examples have been solved using the stated computer programs. In this paper,

five examples are presented. In each example, the main requirement is stated first

with all corresponding input data. A discussion of the results follows, Through the

discussion, due to some changes in the problem data and consequently the output,

differences are evaluated and justified.

In the design examples, case 1, a tolerance value to stop the iteration is chosen as

1 mm. A limit of 100 iterations is also specified. In all problems, the ultimate bearing

capacity and the mean of the ultimate capacity are computed according to Equation

(3) and Equation (24), respectively, with their corresponding factors of safety.

8.1. EXAMPLE 1

Strip footing, sandy soil, design case 1

Given data and properties Results and required output

Df (m) 1.0 CVqult
0.434

Q (kN/m) 500 R 0.95
c (kN/m2) 0 Pf 0.05

/ (�) 35 CFs 3.499
c (kN/m3) 18.9 Fs 3.076
CVc 0 lqult

(kN/m2) 1374

CV/ 0.10 qult (kN/m2) 1208
CVc 0.05 b 1.645
R 0.95 B (m) 1.274

Iterations 9

In this example, a strip footing is placed at 1 m depth in a sandy soil. This example

is given and has been solved by others (Basheer and Najjar, 1998). This is a

design problem of case 1 and a loop of operations is required to obtain the proper

width. The results of Basheer and Najjar (1998) were, B=1.1 m, CFs=2.8,

lqult=1277 kN/m2, hence qult=1128 kN/m2. Basheer and Najjar (1998) applied a
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‘‘Beta distribution’’ and that is why the results are different. It can be noticed that

although the reliability values are the same, the resulted width and factors of safety

are different. The normal distribution yields a flatter density function and the

probability of failure corresponding to a given applied pressure will be greater than

that of a Beta distribution. To make a fair comparison, the given reliability value was

changed several times until a width of 1.1 m was obtained. The corresponding

reliability was 0.9326, i.e., a probability of failure of 0.0674. At this stage, the factors

of safety became very close.

Although Basheer and Najjar (1998), used only iterations, the time required to use

their design charts might be 100 times greater.

8.2. EXAMPLE 2

Strip footing, sand, design case 2

Given data and properties Results and required output

Df (m) 0.7 CVqult
0.428

Q (kN/m) 180 R 0.949836 ~0.95
c (kN/m2) 0 Pf 0.05
/ (�) 30 CFs 3.372
c (kN/m3) 18 Fs 3.0
CVc 0 lqult (kN/m2) 523.4

CV/ 0.12 qult (kN/m2) 465.7
CVc 0.10 b 1.643
Fs 3.0 B (m) 1.16

Basma (1994) applied an asymptotic extreme type II maxima distribution and uti-

lized the first-order Taylor’s series expansion for the mean and the variance of qult.

Using a criterion for risk reduction, higher factors of safety were proposed and the

corresponding probabilities of failure were computed and presented. The procedure

consists of choosing a value for the probability of failure and a risk reduction factor

is then determined using a relation between the probability of failure chosen and the

coefficient of variation of the ultimate bearing capacity. Against this risk reduction

factor the calculated factor of safety is enlarged and the dimensions are re-calculated

accordingly.

The results of the program above may not be compared to those obtained by the

method of risk reduction factor as the probability of failure is an input parameter in

the latter method.

To make a comparison, one of the findings in Basma’s results is detected here. In

the example solved by the risk reduction factor method, an enlarged factor of safety

of 4.92 was obtained for a given probability of failure of 0.01 (i.e., a reliability value
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of 0.99). The MATHCAD program was re-executed with this safety factor and the

corresponding reliability was 0.970297, b =1.885.

Applying the normal distribution to the ultimate bearing capacity with coefficients

of variation greater than 0.35 (in this example 0.428), reliability values cannot reach

0.98 (see also Table 3), hence, a value R in the range 0.95–0.977 should be accepted

while corresponding values obtained using other types of distribution are usually

higher.

If one tries to obtain a high value for R, say 0.99, negative values for the width or

the factor of safety are obtained and the number of iterations reaches its maximum

limit.

8.3. EXAMPLE 3

Strip footing, sand, analysis case 3

Given data and properties Results and required output

Df (m) 0.5 CVqult
0.587

B (m) 1.0 R 0.872

Q (kN/m) 180 Pf 0.128
c (kN/m2) 0 CFs 3.005
/ (�) 30 Fs 3.223
c (kN/m3) 19.61 lqult (kN/m2) 540.825

CVc 0 qult (kN/m2) 400.132
CV/ 0.20 b 1.136
CVc 0

This example is chosen to show how the probability of failure increases due to high

CVqult
. The effect of the 20%, CV/ is very clear. The example was originally solved by

Cherubini (1990), where an ‘‘exact’’ distribution function was obtained but the

bearing capacity equation used was the Krizek (1965) approximate equation. The

values computed for the ultimate capacity using this equation were about 25%

higher than those obtained using Equation (3). This made the comparison of safety

factors insignificant. Only a comparison of the trend is possible and several trends

may be noticed. When the CV/ value is increased to 25% the probability of failure is

increased to 0.134 and when it is decreased to 15% the corresponding probability of

failure becomes 0.105. This is similar to the trend in Table 3 as CVqult
value is directly

related to CV/.

Meanwhile, a decrease in the angle of friction to 20� caused a decrease in Pf to

0.078 keeping the safety factor unchanged. This is due to the effects of the derivatives

of the bearing capacity factors on the value of CVqult
which decreased to 0.422. It is

preferred to acquire higher factors of safety for higher / values.

SHALLOW FOUNDATIONS USING MATHCAD 651



8.4. EXAMPLE 4

Rectangular footing, clayey sand, analysis case 3

Given data and properties Results and required output

Df (m) 0 CVqult
0.455

B (m) 0.5 R 0.899514

L (m) 2.0 Pf 0.100486
Q (kN) 353.3 CFs 2.391
c (kN/m2) 6.4 Fs 2.075

/ (�) 38.5 lqult (kN/m2) 844.68
c (kN/m3) 15.69 qult (kN/m2) 732.932
CVc 0.30 b 1.279

CV/ 0.10
CVc 0.03

This example is originally a test cited in Bowles (1988). The failure pressure was

found to be 1060 kN/m2 but the bearing capacity equation, Equation (3), gave an

ultimate bearing capacity of 732.9 kN/m2 which is relatively low compared to the

field value (similar result is cited by Bowles, 1988). The coefficients of variation for

soil properties were taken as recommended in Table 2.

Again, the value of CVqult
is relatively high yielding a value for reliability, about

90%, relatively lower than what could be obtained by other skewed type distribu-

tions. Decreasing the applied load to half the value above, 176 kN/m, will increase

the safety factor to about 4, and increase the reliability to about 0.96.

Decreasing CVc, to 0.15 increases the reliability to 0.909475. while decreasing CV/

to half its value, i.e., 0.05, causes a significant increase in R which becomes 0.966298.

Reliability is more sensitive to the value of / and its coefficient of variation rather

than other properties.

8.5. EXAMPLE 5

Square footing, c)/ soil, analysis case 3

Given data and properties Results and required output

Df (m) 0.5 CVqult
0.29

B (m) 0.71 R 0.970327
L (m) 0.71 Pf 0.03

Q (kN) 132.3 CFs 2.208
c (kN/m2) 14.7 Fs 2.147
/ (�) 25 lqult (kN/m2) 579.584
c (kN/m3) 14.7 qult (kN/m2) 563.448

CVc 0.30 b 1.886
CV/ 0.10
CVc 0.03
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This example is also a test cited in Bowles (1988). The bearing capacity equation

adopted gave a very good estimation close to the experimental value, 540 kN/m2.

The applied load is taken at half of this value and Q is given as 132.3 kN. This

should yield a factor of safety close to 2. Here, it can be noticed how the reliability is

relatively high although the factor of safety is not too large. The reliability increases

to 0.992 if the safety factor becomes 3.

9. Conclusions

Design and analysis of shallow foundations with respect to bearing capacity may be

more reliable when the probability of failure or the reliability of safety factor are

considered, as the designer may have a better assessment of the involved risk.

The use of Taylor’s series method for the estimation of the mean and variance of

the ultimate bearing capacity becomes easier when differentiation is made by

Mathcad. The accuracy can also be increased taking more terms from Taylor’s series

without much paperwork.

The use of Mathcad may substitute the need for design charts or deep knowledge

of statistics. Simple applicability of Mathcad programs may expand the use of the

reliability based design methods.

It is found that the reliability of the footing system is more sensitive to the value of

the angle of friction and its coefficient of variation rather than other soil properties

such as the unit weight or the cohesion. Reliability increases as any of the coefficients

of variation of soil strength properties decreases. Adopting higher safety factors for

cases with higher values of the angle of internal friction is recommended as small

variations in the angle of friction may cause higher variation in the ultimate bearing

capacity and the risk increases.

The use of normal distribution was found to be safer than other distributions,

that is, lower reliability values are obtained when applying normal distribution at

the same factors of safety. Also, the use of the reliability index to determine the

factor of safety may be considered an effective guide to assess the uncertainty of

the ultimate bearing capacity through the calculated coefficient of variation as

shown in Table 3.

Appendix

D :¼ 1 notes

Q :¼ 500 this program solves for case 1, design of

c :¼ 0 strip footings

/ :¼ 35 Q ¼ actual design load, kN/m

c :¼ 18:9 D ¼ depth of footing
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CVc :¼ 0

CV/ :¼ 0:1

CVc :¼ 0:05

M :¼ 100

tol :¼ 0:001

R :¼ 0:95

/ :¼ ð/þ 0:001Þ � p
180

Nqð/Þ :¼ tan
/
2
þ p

4

� �� �2

� expðp � tanð/ÞÞ

Ncð/Þ :¼ 2 � ðNqð/Þ þ 1Þ � tanð/Þ

Ncð/Þ :¼ ðNqð/Þ � 1Þ � cotð/Þ

Sc :¼ 1

Sq :¼ 1

Sc :¼ 1

Vc :¼ ðCVc�cÞ2

V/ :¼ ðCV/�/Þ2

Vc :¼ ðCVc�cÞ2

qultðB;D; c;/; cÞ :¼ c �Ncð/Þ � Sc þ c �Nqð/Þ � Sq þ 0:5B � c �Ncð/Þ � Sc

rqultðB;D; c;/; cÞ :¼ Vc �
d

dc
qultðB;D; c;/; cÞ

� �2
"

þ V/ �
d

d/
qultðB;D; c;/; cÞ

� �2

þ Vc �
d

dc
qultðB;D; c;/; cÞ

� �2�0:5

lqult
ðB;D;c;/;cÞ :¼ qultðB;D;c;/;cÞ

þ0:5 Vc
d2

dc2
qultðB;D;c;/;cÞ

�

þV/ �
d2

d/2
qultðB;D;c;/;cÞþVc �

d2

dc2
qultðB;D;c;/;cÞ

�
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CVqultðB;D; c;/; cÞ :¼ rqultðB;D; c;/; cÞ
lqult
ðB;D; c;/; cÞ

B1 :¼ 0 B2 :¼ 0:3

BBðB1;B2Þ :¼ I 0

while ½ðjB1� B2j � tolÞ _ ðB2<0Þ�
B1 B2

I Iþ 1

break if I ¼M

qapp  qnormð1�R; lqult
ðB1;D; c;/; cÞ; r qultðB1;D; c;/; cÞÞ

B2 Q

qapp

I

B2

� �

k :¼ BBðB1;B2Þ I:=k0 B:= k1

qapp :¼ Q

B

CFs :¼
lqult
ðB;D; c;/; cÞ

qapp

Fs :¼ qultðB;D; c;/; cÞ
qapp

b :¼ ðCFs� 1Þ
CVqultðB;D; c;/; cÞ � CFs

R :¼ 1� pnormð�b; 0; 1Þ

Results

CVqultðB;D; c;/; cÞ ¼ 0:434

R ¼ 0:950013

1� R ¼ 0:049987

CFs ¼ 3:499

lqultðB;D; c;/; cÞ ¼ 1:374� 103

qultðB;D; c;/; cÞ ¼ 1:208� 103
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b ¼ 1:645

B ¼ 1:274

I ¼ 9

D :¼ 0:7 notes

Q :¼ 180 this program solves for case 2, design of

c :¼ 0 stripfootings

/ :¼ 30 Q=actual design load, kN/m

c :¼ 18 D= depth of footing

CVc :¼ 0

CV/ :¼ 0:12

CVc :¼ 0:1

Fs :¼ 3

/ :¼ ð/þ 0:001Þ � p
180

Nqð/Þ :¼ tan
/
2
þ p

4

� �� �2

� expðp � tanð/ÞÞ

Ncð/Þ :¼ 2 � ðNqð/Þ þ 1Þ � tanð/Þ

Ncð/Þ :¼ ðNqð/Þ � 1Þ � cotð/Þ

Sc := 1

Sq := 1

Sc := 1

Vc := ðCVocÞ2
V/ :¼ ðCV/�/Þ2
Vc :¼ ðCVc�cÞ2
qultðB;D; c;/; cÞ :¼ c �Ncð/Þ � Sc þ c �D �Nqð/Þ � Sq þ 0:5 � B � c �Ncð/Þ � Sc

rqultðB;D; c;/; cÞ :¼ Vc �
d

dc
qultðB;D; c;/; cÞ

� �2

þV/
d

d/
qultðB;D; c;/; cÞ

� �2
"

þVc �
d

dc
qultðB;D; c;/; cÞ

� �2
#0:5

lqult
ðB;D; c;/; cÞ :¼ qultðB;D; c;/; cÞ

þ 0:5 � Vc �
d2

dc2
qultðB;D; c;/; cÞ

�

þV/
d2

d/2
qultðB;D; c;/; cÞ þ Vc �

d2

dc2
qultðB;D; c;/; cÞ

�
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CVqultðB;D; c;/; cÞ :¼
rqultðB;D; c;/; cÞ
lqult
ðB;D; c;/; cÞ

B :¼ root qultðB;D; c;/; cÞ �
B

Fs
�Q;B; 0:3; 100

� �

qapp :¼ Q

B

Pf :¼ pnormðqapp; lqult
ðB;D; c;/; cÞ; rqultðB;D; c;/; cÞÞ

R = 1 ) Pf

b :¼ qnormðR; 0; 1Þ

CFs :¼
lqultðB;D; c;/; cÞ

qapp

Fs :¼ qultðB;D; c;/; cÞ
qapp

Results

CVqultðB;D; c;/; cÞ ¼ 0:428

R ¼ 0:949836

1� R ¼ 0:050164

CFs ¼ 3:372

Fs ¼ 3

lqultðB;D; c;/; cÞ ¼ 523:416

qultðB;D; c;/; cÞ ¼ 465:703

b ¼ 1:643

B ¼ 1:16

B :¼ 1 notes

D :¼ 0:5 this program solves for case 3, analysis of

Q :¼ 180 stripfootings

c :¼ 0 Q ¼actual design load, kN/m

/ :¼ 30 D=depth of footing

c :¼ 19:61

CVc :¼ 0

CV/ :¼ 0:2

CVc :¼ 0
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/ :¼ ð/þ 0:001Þ � p
180

Nqð/Þ :¼ tan
/
2
þ p

4

� �� �2

� expðp � tanð/ÞÞ

Ncð/Þ :¼ 2 � ðNqð/Þ þ 1Þ � tanð/Þ

Ncð/Þ :¼ ðNqð/Þ � 1Þ � cotð/Þ

Sc :=1 Sq :=1 Sc :=1

Vc :¼ ðCVc � cÞ2

V/ :¼ ðCV/ �/Þ2

Vc :¼ ðCVc � cÞ2

qapp :¼ Q

B

qultðB;D; c;/; cÞ :¼ c �Ncð/Þ � Sc þ c �D �Nqð/Þ � Sq þ 0:5 � B � c �Ncð/Þ � Sc

Vqult : ¼ Vc �
d

dc
qultðB;D; c;/; cÞ

� �2

þV/
d

d/
qultðB;D; c;/; cÞ

� �2

þ Vc �
d

dc
qultðB;D; c;/; cÞ

� �2

rqult :¼ V0:5
qult

lqult
: ¼ qultðB;D; c;/; cÞ þ 0:5 � Vc �

d2

dc2
qultðB;D; c;/; cÞ

�

þV/ �
d2

d/2
qultðB;D; c;/; cÞ

þVc �
d2

dc2
qultðB;D; c;/; cÞ

�

CVqult :¼ rqult

lqult

CFs :¼
lqult

qapp
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Fs :¼ qultðB;D; c;/; cÞ
qapp

b :¼ CFs � 1

CVqult � CFs

R :=1)pnorm()b, 0, l)

Results

CVqult ¼ 0:587

R ¼ 0:872

1� R ¼ 0:128

CFs ¼ 3:005

Fs ¼ 2:223

lqult
¼ 540:825

qultðB;D; c;/; cÞ ¼ 400:132

b ¼ 1:136
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