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and compost will have a synergistic effect, which will 
depend on the biochar/compost ratio, consequently 
impacting nutrient uptake and biomass of plants. In 
this context, ryegrass was grown on agricultural soil 
amended with five compost/biochar ratio mixtures 
with  and without N fertilisation. We followed soil 
fertility parameters, soil microbial carbon (C) and N, 
nutrient uptake, and plant growth. Results showed that 
irrespective of their ratio, biochar and compost mix-
tures had no effect on microbial biomass but increased 
soil nitrate concentration, suggesting that, despite their 
high C/N ratios, amendments increased N availabil-
ity while preventing microbial immobilisation. Plant 
biomass and nutrient uptake improvements depended 
on the  biochar/compost mixing ratio. Plant stoichio-
metric analysis revealed that a mixture containing less 
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Abstract  Compost and biochar are increasingly con-
sidered to improve crop growth and soil functioning in 
agriculture. However, their combined application has 
shown contrasting results, probably resulting from the 
use of different biochar/compost ratios and divergent 
(synergistic or antagonist) impacts on nutrient avail-
ability, especially nitrogen (N). We aimed to elucidate 
how biochar/compost mixtures affect nutrient avail-
ability and plant growth. We hypothesised that biochar 
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biochar than compost reduced N limitation and was 
even more effective in stimulating plant growth  than 
mineral  N fertiliser. The beneficial effects of bio-
char and compost on plant growth were strength-
ened when used in combination  with N fertilisation. 

In conclusion, we demonstrated synergistic effects 
between biochar and compost, predominantly driven 
by their mixing ratio, to reduce N limitation in the soil 
towards a more nutrient-equilibrated system and high-
lighted their potential use as a sustainable alternative 
or supplement to mineral fertilisers.

Graphical abstract 

Keywords  Biochar · Compost · Soil fertility · 
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Introduction

The exponential rise of the  human population is 
associated with increasing consumption and demand 
for agricultural products (Kopittke et  al. 2019). To 
improve yields, the use of mineral fertilisers increased 
exponentially throughout the world over the last 
decades (Savci 2012), and led to disruptions of bio-
geochemical cycles with deleterious environmental 
impacts (El-Naggar et  al. 2019; Laghari et  al. 2016; 
Tei et  al. 2020). Indeed,  excessive fertilisation has 
adverse effects on soil microbial communities (Savci 
2012) and may also be a threat for water quality due 
to high N and P losses to aquatic systems (Savci 
2012; Tei et al. 2020). Consequently, there is a need 
to find more sustainable and cost-effective materials 
to supply nutrients to plants (Igalavithana et al. 2015). 

One option are organic amendments, which not only 
supply nutrients, but also improve the overall soil 
quality (Diacono and Montemurro 2010; Siedt et  al. 
2021) and may be beneficial for soil organic carbon 
(SOC) sequestration (Chabbi et al. 2017; Védère et al. 
2023). Among the different potential organic amend-
ments, biochar and compost are the subject of many 
studies due to their ability to improve soil fertility and 
the SOC content simulaneously.

Compost is a stabilised product, rich in organic 
matter, resulting from the microbial degradation of 
organic wastes (Diacono and Montemurro 2010; 
Kammann et  al. 2016). The composting process 
reduces the amount of organic wastes as the major-
ity is mineralised and the resulting material can be 
used for soil amendment. However, at the end of the 
process, not all materials are composted, and com-
post refusals are leftovers, which still need to be dis-
posed. To further reduce waste in the context of a 
circular economy, these composting refusals can be 
pyrolyzed to produce biochar in a cost-effective and 
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sustainable process, which, to our knowledge, is a so 
far neglected possibility. Biochar is a stable and car-
bon-rich product, which has a high surface area and 
porosity, and is used as a soil amendment in degraded 
environments to improve soil physical and chemi-
cal properties (Chen et al. 2019; Karim et al. 2022). 
However, as biochar and compost are derived from a 
wide variety of precursor materials, they are charac-
terized by contrasting properties (Abbott et al. 2018).

Previous studies hypothesised that combining 
nutrient rich compost with biochar will induce syn-
ergistic effects on the soil quality, nutrient supply, 
microbial activity and ultimately plant growth (Kam-
mann et  al. 2016; Radin et  al. 2018). Indeed, com-
post contains organic matter, can be rich in nutrients 
and stimulate microbial activity. However, it is eas-
ily decomposable and subject to rapid loss. On the 
other hand, biochar is a more stable product with a 
low nutrient content but with high sorption potential 
able to store nutrients and supply them to plants dur-
ing their growth. Biochar, as a very porous material, 
can also serve as a habitat for microorganisms (Chen 
et  al. 2019). Previous studies applying biochar and 
compost in combination showed contrasting results, 
with positive, neutral or negative effects of the com-
bined treatments compared to the single ones. More 
precisely, a higher plant biomass and nutritious state 
and higher organic carbon was found by Abbas et al. 
(2020) when applying a combination of biochar and 
compost at a 1:1 ratio, whereas Doan et  al. (2015) 
applied a mixture of biochar and compost at a ratio 
1:3 and found a higher soil N content and maize yield 
than the single amendments. No difference between 
the single and combined biochar/compost treatments 
were observed in two studies with mixing ratios rang-
ing between 1/3 and 1/5 with ryegrass and lettuce 
(Aubertin et al. 2021; Trupiano et al. 2017). Finally, 
negative effects of the mixture on plant biomass, 
height, leaf area and nutritious state were observed at 
a mixing ratio of 1:1.2 (Libutti and Revelli 2021; See-
hausen et al. 2017). These studies showed that there is 
no clear trend on the best ratio between biochar and 
compost, and potential synergism, to improve soil 
properties and plant growth. Furthermore, most of the 
cited studies tested only one biochar/compost ratio. 
The potential synergistic effects between biochar 
and compost may be highly dependent on the ratio 
between recalcitrant and labile carbon (C) compounds 
and thus the effect of different proportions of biochar 

and compost in the mixtures needs to be evaluated. In 
fact, one of the possible limitations of the use of bio-
char could be its potential negative effect on plant N 
availability, although it was shown to have beneficial 
effects on K availability (Nobile et  al. 2022). When 
applied to soil, due to its high proportion of C rela-
tive to N, biochar can induce a microbial immobilisa-
tion of N (Abbas et al. 2020; Chen et al. 2021; Scho-
field et al. 2019) even though this effect depends on 
the type of biochar and its C mineralisation potential 
(Nguyen et al. 2017). As a result, additional mineral 
N fertilisation may be required when biochar is added 
to the soil (1) to avoid N deficiency in plants due to N 
immobilisation by microorganisms and (2) to sustain 
crop production (Iglesias-Jimenez and Alvarez 1993; 
Li et al. 2022). On the other hand, Dakora and Phil-
lips (2002) showed that biochar C/N ratio was a poor 
predictor of soil N mineralisation and that, unexpect-
edly, biochar tended to raise N mineralisation poten-
tial in soil by inducing a priming effect.

In this study, we aimed at gaining insight into the 
impact of biochar and compost mixed at different 
ratios on nutrient availability and plant growth. For 
this purpose, we investigated the effect of five bio-
char/compost mixtures on (i) soil chemical properties, 
(ii) nutrient availability, and (iii) plant growth, under 
two N fertilisation regimes. We monitored above-
ground ryegrass growth, and above- and belowground 
nutrition status of the plants after three harvests. We 
hypothesised that (i) biochar/compost mixtures  will 
show a synergistic effect leading to a greater improve-
ment of soil fertility and plant growth than the two 
amendments applied alone, and (ii) the intensity of 
the synergistic effect will depend on the ratio between 
biochar and compost and the nitrogen fertilisation.

Materials and methods

Soil and amendments

Soil was collected from an experimental site based at 
the UniLaSalle campus, in Beauvais (Oise, France) 
at the following GPS coordinates: 49°25′49″ N, 
2°04′51″ E. It was classified as a silt loam Haplic 
Luvisol. Samples were taken at 0–10  cm depth and 
sieved at 5 mm.
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The compost was a green waste compost (grass, 
poplar, and conifer branches) sampled at the plat-
form of Fertivert (Seine-Maritime, France), being the 
result of a 4-month-thermophilic phase and 2-month-
maturation process.

The non-composted residues generated by the 
composting process were used to produce biochar. 
Those residues were predominantly made of the non-
composted tree branches. Pyrolysis took place in an 
industrial pyrolysis reactor (Biogreen® Pyrolysis 
Technology, ETIA, Oise, Haut-de-France, France) 
without oxygen, at 450 °C for 10 min.

Initial soil, compost, and biochar characteris-
tics have been previously assessed (Nobile et  al. 
2022, 2020; Védère et al. 2023) and are presented in 
Table 1.

Experimental design

A two factorial pot experiment was performed using 
the soil, the two amendments, and a N fertiliser solu-
tion. The first factor was “amendment” and the sec-
ond was “fertilisation”.

For the “amendment” factor, biochar and compost 
were applied together in the soil at five different mix-
ing ratios (Table  S1): (i) BC100, corresponded to 
pure biochar (ii) BC70CP30, corresponded to a com-
bination of biochar and compost at a ratio of 70:30 
(on a dry weight (dw) basis) (iii) BC50CP50, corre-
sponded to a combination of biochar and compost at 

a ratio of 50:50 (on a dw basis) (iv) BC30CP70 cor-
responded to a combination of biochar and compost 
at a ratio of 30:70 (on a dw basis) and (v) CP100, cor-
responded to pure compost. Amendment application 
rate was 10 t ha−1 in every treatment (considering an 
application at 5  cm). A control without amendment 
was also prepared. Considering the properties of the 
amendments, the mixtures added different quanti-
ties of N, P and K: (i) BC100 added 8.4 kg  ha−1 N, 
37  kg  ha−1 P, and 179  kg  ha−1  K; (ii) BC70CP30 
added 87 kg ha−1 N, 39 kg ha−1 P and 176 kg ha−1 K; 
(iii) BC50CP50 added 139  kg  ha−1 N, 40  kg  ha−1 
P and 174  kg  ha−1  K; (iv) BC30CP70 added 
191  kg  ha−1 N, 41  kg  ha−1 P and 173  kg  ha−1  K; 
and (v) CP100 added 270  kg  ha−1 N, 42  kg  ha−1 P 
and 170 kg ha−1 K. Based on these values, the treat-
ment CP100 presents the highest nutrient content and 
should thus lead to the highest biomass production, 
if no synergism occurs between biochar and compost.

For the “fertilisation” factor, half of the pots were 
fertilised (treatments noted Fert+) with a N solution, 
in the form of ammonium-nitrate, corresponding to 
70 N units.ha−1, while distilled water was applied to 
the other half (treatments noted Fert−). N fertiliser 
was applied after amendments were mixed with the 
soil and substrates were placed in the pots, and one 
week before sowing.

In total, this two factorial design had 12 treatments 
(Table  S1) and all treatments were repeated five 
times. Plastic pots (8 cm diameter, 7 cm height) were 

Table 1   Initial properties 
of the soil and amendment 
used in the experimentation

a 1:5 ratio NF ISO 10390, 
bNF ISO 10693, cdry 
combustion NF ISO 14235, 
dMetson method NFX 
31-130, eDumas method
Data from Nobile et al. 
(2022)

Units (dry weight) Soil Compost Biochar

Clay % 20.5 – –
Fine silt % 26.4 – –
Coarse silt % 43.0 – –
Fine sand % 7.47 – –
Coarse sand % 2.60 – –
pH (H2O)a – 7.93 8.00 11.4
Total carbonatesb % 0.80 – –
Organic carbonc g kg−1 10.2 292 316
Cation exchange capacityd cmolc kg−1 109 34.9 8.50
Total nitrogene g kg−1 1.13 27.0 0.84
Total phosphorus g kg−1 0.57 4.20 3.71
Total potassium g kg−1 14.3 17.0 17.9
Total magnesium g kg−1 3.20 2.80 5.07
Total calcium g kg−1 7.77 29.0 34.0
Total sodium g kg−1 5.85 – –
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filled with 450  g of soil (dw basis) and the amend-
ments and were randomly arranged in a greenhouse 
with controlled conditions (photoperiod 16 h light/8 h 
dark, light intensity of 10  W  m−2, temperature of 
21 °C). Before sowing, soils with and without amend-
ments were equilibrated during one week at 80% 
water holding capacity.

After substrate equilibration, a subsample of 
soil was taken in three replicates and was ana-
lysed (Centre provincial de l´Agriculture et de la 
Ruralité, La Hulpe, Belgium) for pH (in KCl, ISO 
10390), total N (Dumas method), ammonium-N 
and nitrate-N contents (KCl extraction), available P 
and K concentrations (ammonium acetate + EDTA 
extraction), organic C content (dry combustion NF 
ISO 14235) and C/N ratio. Then, 0.5 g of seeds of 
ryegrass (Lolium multiflorum) were sown in each 
pot and plants were allowed to grow for 3 months 
(13 weeks). During those 13 weeks, substrates were 
maintained at 80% water holding capacity through 
regular watering (every 2 days) based on mass loss 
and thus no leaching was observed.

Soil pore water sampling and analysis

Soil pore water (SPW) was sampled (8 mL volume) 
with a rhizon sampler (model MOM, Solutions 
Technologiques pour l´Environnement, Reignac sur 
Indre, France) placed into the soil at the beginning 
of the experiment. Sampling had been done before 
(T0) and 4, 8 and 13 weeks after sowing (T4, T8 and 
T13, respectively) by applying a pressure on the soil 
moisture sampler using vacuum tubes (Solutions 
Technologiques pour l´Environnement,Reignac sur 
Indre, France). pH was immediately measured with 
a pH meter (Metler Toledo, Seven Easy).

Plant harvest and analysis

Each month after the start of the experiment, the 
aerial parts of the plants were harvested by cutting 
all the biomass at 1  cm above the soil level. Plant 
shoots were dried at 50 °C for 2 days and weighed 
to determine their dry biomass.

At the end of the experiment (i.e., 13  weeks 
after sowing), plants were harvested and, follow-
ing the removal of the aerial part of the plants, soil 

and roots were gently separated. Roots were washed 
with water, dried for two days at 50  °C and then 
carefully manually cleaned in order to remove all 
the possible remaining soil, compost and biochar 
particles. Root biomass could not be determined due 
to a too important biomass loss during the harvest.

Shoot (from the three harvests) and root (from 
the last harvest) materials were grounded in order 
to analyse their C and N content using an elemental 
analyser (Vario Isotope Select, Elementar, Hanau, 
Germany) and acid digested in a microwave in order 
to determine their P and K concentrations using 
inductively coupled plasma mass spectrometry 
(Thermo Scientific iCAP 6000 Series). Using those 
concentrations, C/N and N/P ratios were calculated.

Soil sampling and analysis

Once plants were harvested and roots removed from 
soil, the soil was sampled and separated in two sub-
samples. The first sub-sample was kept at − 20 °C (to 
conserve the chemical state of the substrates) until 
further analysis. The second sub-sample was stored 
at 4  °C and microbial biomass was extracted within 
48 h.

Similarly to the analysis at sowing time, the soils 
sampled at the end of the experiment and stored at 
–  20  °C were analysed for pH, electrical conductiv-
ity, total N, ammonium-N content, nitrate-N content, 
available P, and K concentrations, organic C content 
and C/N ratio. The methods used were the same as 
described previously.

In addition, the soils were also analysed for micro-
bial biomass C and N, using the chloroform fumiga-
tion method (Vance et  al. 1987): 6  g of chloroform 
fumigated and non-fumigated soil were extracted with 
40 mL of a K2SO4 solution (0.05 M). After 30 min, 
solutions were centrifuged and filtered (0.45 µm). The 
K2SO4 extracts were frozen, freeze dried and their 
C and N content was determined using an elemental 
analyser (Vario Isotope Select, Elementar, Hanau, 
Germany). The difference between fumigated and 
non-fumigated soils was used as the microbial C or 
N flush, and converted to microbial biomass C and 
N, using the following equations (Beck et  al. 1997; 
Lovell et al. 1995):

(1)Microbial C = C flush × 2.22
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Statistical analysis

All data were analysed using the R software, version 
3.5.1. First, the normality of the data was evaluated 
using the Shapiro test. Thereafter, the homogene-
ity of variance was assessed using either the Bartlett 
test (for normal data) or the Fligner test (for non-
normal data). Finally, means were compared using 
the Anova test, when data distributions were para-
metric, or the Kruskal–Wallis test, when data distri-
butions were not parametric, followed by a post-hoc 
test, i.e., Tukey test or Dunn test, respectively. In 
addition, the effect of amendment, fertilisation and 
amendment*fertilisation was assessed using two-way 
Anova or Adonis tests. Difference was considered 
significant at p < 0.05.

Results

Soil properties and pore water pH

Following amendment applications, pH, total 
N, nitrate–N, organic C, C/N, available P and K 
increased, while ammonium-N content decreased 
(Table  2 and Table  S2). Nitrogen fertilisation only 
affected nitrate–N concentration, which increased in 
the fertilised pots compared to non-fertilised ones. 
Finally, the interaction amendment*fertilisation only 
had a significant effect on the ammonium-N con-
centration. The highest values were observed when 
BC100/-Fert was applied for pH, organic C, C/N and 
available P, when CP100/-Fert was applied in the case 
of total N and available K, while the ratio BC50CP50/
Fert+ showed the highest nitrate-N concentration.

After the end of the experiment, amendment appli-
cation had a significant effect on all soil chemical 
properties, except pH and nitrate-N content (Table 3 
and Table S2). All those affected soil properties (total 
N, ammonium-N, organic C, C/N, available P and K) 
were increased by amendment application, except 
ammonium-N content. OC and C/N ratios showed 
no differences between the different biochar-com-
post mixtures. BC100 treatments showed the highest 

(2)Microbial N = N flush ∕ 0.5 available P, CP100 the highest total N and both treat-
ments had similar and high available K concentra-
tions compared to the controls and mixtures.

At the end of the experiment, microbial biomass C 
(MBC) and N (MBN) were 0.21 and 0.024 mg  g−1, 
respectively, on CT/Fert− (Figure S1a and 1b) and 
they were not affected by any of the amendments.

Before the start of the experimentation, the pH 
measured in soil pore water (SPW) of the control 
(CT/Fert−) was 7.61 (Figure S2), and increased at 
the latter sampling times to reach a value of 8.69. 
Amendments significantly affected SPW pH in the 
first three samplings but had no effect at the har-
vest time (T13) (Table S2). Amendments tended to 
decrease SPW pH at T0 (values ranging from 7.08 
to 7.53) and T8 (values ranging from 7.80 and 8.45), 
while an increase was noted at T4 (values between 
7.61 and 7.95). Fertilisation only affected SPW pH 
at the initial time, and induced a reduction of SPW 
pH, which was less strong when amendments were 
applied. The interaction amendment*fertilisation 
had a significant effect on SPW pH at all sampling 
times except the T0.

Plant biomass

After each harvest, the plant biomass in the control 
treatment were respectively 1.18, 0.42 and 0.51  g 
(Fig. 1). Plant biomass was significantly affected by 
amendment and fertilisation (Table  S3). Plant bio-
mass was positively and significantly affected by the 
interaction of amendments with fertiliser addition 
during the first and second harvest. All the organic 
amendments, independently of the fertiliser applica-
tion, increased the plant aerial biomass following 
the order: CT < CP100 < BC100 < BC70CP30 < BC
50CP50 < BC30CP70 during the two first harvests. 
After the third harvest the addition of amendment 
only significantly increased the biomass in the case 
of BC30CP70 and CP100 treatments, irrespective of 
the presence or the absence of N fertiliser. The posi-
tive effect of fertiliser addition was observed after 
the first and the second harvest (except for CP100). 
At the last havest only the BC30CP70/Fert+ treat-
ment showed an effect. The highest biomass was 
always recorded for the BC30CP70/Fert+ treatment 
with 3.01, 1.21 and 0.72 g after the three harvests.
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Finally, the total aerial biomass collected by the 
end of the experiment was 2.10  g in the control 
treatment (CT/Fert−) (Fig. 1). Total aerial biomass 
production was significantly affected by amend-
ment, fertilisation and their interaction (Table  S3). 
Amendment application increased biomass in all the 
treatments as well as fertiliser addition. Fertilisa-
tion allowed for a higher biomass increase in treat-
ments without compost (+ 48.9% and + 52.5% bio-
mass respectively in CT/Fert+ and BC100/Fert+) 
and a lower biomass increase in the two treatments 
with the highest compost  contribution (+ 19.2 
and + 31.3% biomass respectively in BC30CP70/
Fert+ and CP/Fert+). Highest total aerial biomass 
was recorded for the treatment BC30CP70/Fert+ .

Carbon and macronutrient concentrations (N, P and 
K) in the plants

At the first harvest, amendment application had 
a significant effect on the plants’  C, N, P and 
K  concentrations, while fertilisation affected 

N and P concentrations and the interaction 
amendment*fertilisation affected N and K concen-
trations (Table  S3). In more detail, C values ranged 
from 395.4  g  kg−1 (CP100/Fert-) to 442.2  g  kg−1 
(BC50CP50/Fert−) in the amended conditions, 
although they were not different from the control. 
The N concentrations were increased by the addi-
tion of some mixture up to twofold (BC30CP70/
Fert+). The plants’ P concentrations were decreased 
by the biochar amendments and fertilisation up to 
−  34% (BC30CP70/Fert+). Finally, K concentra-
tions were increased by the amendments up to + 16% 
(BC30CP70/Fert+).

At the second harvest, amendment application 
significantly affected all parameters. Fertilisation 
affected all elements except K concentrations while 
the interaction amendment*fertilisation only signifi-
cantly affected N and P concentrations (Table  S3). 
Carbon concentrations increased with amendments 
and fertilisation up to + 2% (Figure S3) (BC30CP70/
Fert +). Nitrogen and P concentrations were both 
decreased when amendments and fertilisation were 

Fig. 1   Plant aerial biomass (g) measured in the aerial tissue of 
Lolium multiflorum after 4 weeks (bottom), 8 weeks (middle), 
13  weeks (top) of growth and total aerial biomass produced 
during the experiment (full bar) on the different substrates. 
CT = non-amended soil, BC100 = soil amended with biochar, 
BC70CP30 = soil amended with a biochar:compost mixture 
in the ratio 70:30 (on a dry weight basis); BC50CP50 = soil 
amended with a biochar:compost mixture in the ratio 50:50 

(on a dry weight basis); BC30CP70 = soil amended with a 
biochar:compost mixture in the ratio 70:30 (on a dry weight 
basis); CP100 = soil amended with compost. All amendments 
were added at a dose of 10 t ha−1 total. Fert− = no application 
of a nitrogen fertilization; Fert +  = application of a nitrogen 
fertilization. Letters indicate a significant difference of the total 
biomass (p < 0.05) (n = 5)
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applied, except for P when CP100 was used (Figs. 2 
and 3). More specifically, N concentrations in plants 
grown on the amended substrates decreased down 
to −  21% (BC100/Fert+), whereas P concentra-
tions decreased down to − 20% (BC30CP70/Fert−). 
Finally, K concentrations were only increased in the 
presence of CP100 up to + 38% (Fert−) and + 58% 
(Fert+) (Fig. 4).

At the last harvest, the application of the 
organic amendments significantly affected C, N, 
P and K concentrations, fertilisation affected only 
N, P and K concentrations while the interaction 
amendment*fertilisation had no effect compared 
to control (Table  S3). The carbon concentrations 
of harvested biomass were increased by the addi-
tion of organic amendments up to + 6% (CP100/
Fert−) (Figure S3); N concentrations were not 
significantly changed by amendment addition 
(Fig. 2). Phosphorus concentrations decreased with 

the addition of amendment and fertilisation, to 
reach values down to − 34% (Fig. 3) (BC30CP70/
Fert+). Finally, K concentrations were again only 
increased when CP100 was applied, with values up 
to + 9% on average (Fig. 4).

Roots were also analysed for their element 
concentrations, and in general, amendment, fer-
tilisation and amendment*fertilisation had no 
effect on root element concentrations, except for 
K (Table  S4). Concentrations varied between 
319.5  g  kg−1 (CP100/Fert−) and 365.5  g  kg−1 
(BC100/Fert+) (Table  S5) for C, 6.2  g  kg−1 (CT/
Fert+) and 7.0 g kg−1 for N (BC30CP70/Fert+ and 
CP100/Fert+). P concentrations ranged from 
698 mg  kg−1 (CT/Fert−) to 942 mg  kg−1 (BC100/
Fert+) and K concentrations from 3.4 g  kg−1 (CT/
Fert- and BC30CP70/Fert+) to 4.8 g kg−1 (BC100/
Fert+).

Fig. 2   Nitrogen content (g  kg−1) measured after 4  weeks 
(left), 8  weeks (middle) and 13  weeks (right) of growth on 
the different substrates in the aerial biomass of Lolium multi-
florum. CT = non-amended soil, BC100 = soil amended with 
biochar, BC70CP30 = soil amended with a biochar:compost 
mixture in the ratio 70:30 (on a dry weight basis); 
BC50CP50 = soil amended with a biochar:compost mixture 

in the ratio 50:50 (on a dry weight basis); BC30CP70 = soil 
amended with a biochar:compost mixture in the ratio 70:30 (on 
a dry weight basis); CP100 = soil amended with compost. All 
amendments were added at a dose of 10 t.ha.−1 total. Fert− = 
no application of a nitrogen fertilization; Fert   = application of 
a nitrogen fertilization. Letters indicate a significant difference 
for each week (p < 0.05) (n = 5)
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Element stoichiometry of aboveground and 
belowground plant tissue

For aerial tissues, at the first harvest, the C/N ratio 
was 51.80 in the control without fertiliser (CT/Fert−) 
(Fig. 5a) and the N/P ratio was 3.02 (Fig. 5b). Amend-
ment, fertilisation, and amendment*fertilisation 
significantly affected both ratios (Table  S3). The 
C/N ratio tended to decrease after amendment, with 
values ranging from 28 (BC30CP70/Fert+) to 53 
(BC70CP30/Fert−), while N/P ratio increased and 
reached values between 2.9 (CP100/Fert−) and 8.7 
(BC30CP70/Fert+). Similar trends were observed 
following fertilisation, i.e., decrease of the C/N ratio 
and increase of the N/P ratio.

At the second harvest, for the non-fertilized 
and non-amended control (CT/Fert−), shoot C/N 
ratio was 57.96 and shoot N/P ratio was 2.00 
(Fig.  5a, b). Amendments significantly increased 
C/N ratio and decreased N/P ratio, with values 
ranging respectively from 55 (CP100/Fert−) to 

74 (BC100/Fert+) and from 1.75 (BC70CP30/
Fert−) to 2.1 (BC30CP70/Fert+). Fertilisation and 
fertilisation*amendment only significantly affected 
C/N ratio (Table S3).

At the last harvest, the shoot C/N and N/P ratios for 
CT/Fert- were 55.07 and 3.23, respectively (Fig. 5a, 
b). Amendment applications tended to significantly 
increase both ratios and values ranged between 55 
(CP100/Fert+) and 64 (BC30CP70/Fert+) for C/N, 
and between 3.4 (BC100/Fert−) and 4.4 (BC30CP70/
Fert+) for N/P.

At the end of the experiment, root C/N ratio was 
50.4 on the unfertilised control, and none of the treat-
ments (amendments and fertilisation) affected the root 
C/N ratios (Table S5). The root N/P ratio was 8.0 for 
CT/Fert−, and none of the other treatments showed 
significant difference with the control (Table S5).

The results of the element stoichiometry of plant 
tissue identify the ratio BC30CP70 as optimal for a 
reducing N limitations, as we observed a decrease 

Fig. 3   Phospshorus content (g  kg−1) measured after 4  weeks 
(left), 8 weeks (middle) and 13 weeks (right) of growth on the 
different substrates in the aerial tissues of Lolium multiflorum. 
CT = non-amended soil, BC100 = soil amended with biochar, 
BC70CP30 = soil amended with a biochar:compost mixture 
in the ratio 70:30 (on a dry weight basis); BC50CP50 = soil 
amended with a biochar:compost mixture in the ratio 50:50 

(on a dry weight basis); BC30CP70 = soil amended with a 
biochar:compost mixture in the ratio 70:30 (on a dry weight 
basis); CP100 = soil amended with compost. All amendments 
were added at a dose of 10 t.ha.−1 total. Fert− = no application 
of a nitrogen fertilization; Fert +  = application of a nitrogen 
fertilization. Letters indicate a significant difference for each 
week (p < 0.05) (n = 5)
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of  C/N and increase of  N/P  ratios of plant tissues 
compared to the control treatment.

Discussion

Although the combination of biochar and compost 
has been often studied to improve the fertility of agri-
cultural soils, the importance of the ratio between 
these two organic amendments still lacks proper 
evaluation. The objectives of our study were to assess 
the influence of biochar/compost mixing ratios on 
soil and plant parameters to determine the optimal 
ratio. We have demonstrated an additive effect of 
biochar and compost combination on the soil fertil-
ity (in particular nutrient content and availability).
In contrast, combining biochar and compost induced 
a synergistic effect on plant growth and nutrition. 
Finally, we showed that the intensity of this synergis-
tic effect was highly influenced by the ratio between 

both components of the mixture, with the treatment 
containing 30% biochar and 70% compost having the 
best effects.

The soil fertility improvement is driven by the 
compost proportion, in an additive interaction 
between biochar and compost

Addition of biochar and compost to the soil 
increased its organic C concentrations directly 
after the amendment application and until the end 
of the experiment, between 25 and 60%. This was 
expected as the addition of organic amendment, 
such as biochar and compost, is often shown to raise 
SOC rapidly after their application (Agegnehu et al. 
2015, 2016; Chan et  al. 2007; Fischer and Glaser 
2012). An interesting result regarding SOC was 
that soil MBC measured in soils at the end of the 
experiment was not impacted by amendment appli-
cation, which is inconsistent with results obtained 
by other authors (Irfan et  al. 2019; Li et  al. 2020; 

Fig. 4   Potassium content (g  kg−1) measured after 4  weeks 
(left), 8 weeks (middle) and 13 weeks (right) of growth on the 
different substrates in the aerial tissues of Lolium multiflorum. 
CT = non-amended soil, BC100 = soil amended with biochar, 
BC70CP30 = soil amended with a biochar:compost mixture 
in the ratio 70:30 (on a dry weight basis); BC50CP50 = soil 
amended with a biochar:compost mixture in the ratio 50:50 

(on a dry weight basis); BC30CP70 = soil amended with a 
biochar:compost mixture in the ratio 70:30 (on a dry weight 
basis); CP100 = soil amended with compost. All amendments 
were added at a dose of 10 t ha−1 total. Fert− = no application 
of a nitrogen fertilization; Fert +  = application of a nitrogen 
fertilization. Letters indicate a significant difference for each 
week (p < 0.05) (n = 5)
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Liu et al. 2021). Indeed, after soil application, com-
post usually stimulates soil microbial communities, 
which in turn impacts biogeochemical cycling and 
plant growth (Abbott et al. 2018). Similarly, biochar 
has often beneficial effects on soil microorganisms 
by providing a microhabitat (Lehmann et al. 2011), 
protecting them from predation and allowing a 
good water retention in its microporosity protecting 
them from desiccation (Abbott et  al. 2018). MBC 
is generally increased after biochar application 

particularly at low pH soil (< 6.5) (Pokharel et  al. 
2020). Nevertheless, in our experiment where soil 
pH was 7.9, MBC was unchanged by the amend-
ment applications after 13  weeks, suggesting that 
the growth conditions for microbial soil communi-
ties were similar in all treatments at the end of the 
experiment. The absence of effects could be related 
to the fact that water was provided at optimal 
rate, and thus microorganisms did not particularly 
need protection from desiccation (Griffin 1981; 

Fig. 5   C/N ratio (a) and N/P ratio (b) measured after 4 weeks 
(left), 8 weeks (middle) and 13 weeks (right) of growth on the 
different substrates in the aerial tissues of Lolium multiflorum. 
CT = non-amended soil, BC100 = soil amended with biochar, 
BC70CP30 = soil amended with a biochar:compost mixture 
in the ratio 70:30 (on a dry weight basis); BC50CP50 = soil 
amended with a biochar:compost mixture in the ratio 50:50 

(on a dry weight basis); BC30CP70 = soil amended with a 
biochar:compost mixture in the ratio 70:30 (on a dry weight 
basis); CP100 = soil amended with compost. All amendments 
were added at a dose of 10 t ha−1 total. Fert− = no application 
of a nitrogen fertilization; Fert +  = application of a nitrogen 
fertilization. Letters indicate a significant difference for each 
week (p < 0.05) (n = 5)
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Young et  al. 2008). As well, MBC was measured 
only  once, 13  weeks after the amendment applica-
tion, and thus may not be  sufficient to ensure that 
the added substrates had no effect on microorgan-
isms´ development. Otherwise, measurements 
of soil gas emissions during such experimenta-
tion could have brought more insights on possible 
microbial activities.

The addition of the biochar-compost mixtures 
increased the total content and availability of the 
macronutrients nitrogen (from 11 to 36%), phos-
phorus (from 10 to 84%) and potassium (from 11 
to 65%). Similar amelioration of soil organic matter 
and nutrient contents has been previously observed 
following the application of compost and biochar, 
and related to the amendment properties (high 
organic matter and available nutrient contents) 
(Plaza et al. 2016; Radin et al. 2018; Ravanbakhsh 
et  al. 2019). However, an immobilisation of N fol-
lowing the addition of amendments with high C/N 
ratio has also been observed, especially in the case 
of biochar (Bong Cassendra Phun Chien et al. 2021; 
Jien et al. 2018). One of the reasons for such immo-
bilisation is sorption of N on the biochar surface 
(Garbowski et al. 2023; Jien et al. 2018) and, more 
importantly, its incorporation into the microbial 
biomass (Irfan et al. 2019). At the end of our study, 
the application of biochar and compost did not show 
any microbial immobilisation of N, as shown by the 
lack of effects of organic amendment application on 
MBN after 13 weeks, which is likely related to the 
lack of change in MBC. When biochar and/or com-
post are applied to the soil, the mineralisation of the 
labile C by microorganisms may, in the short term, 
induce a microbial immobilisation of the available 
soil N, resulting in higher MBN (Abbas et al. 2020; 
Chen et  al. 2021; Schofield et  al. 2019). Nitrogen 
incorporated into the microbial biomass is not avail-
able for plants, which could consequently reduce 
their growth. For these two reasons, it has been 
recommended to apply, together with an organic 
C-rich amendment such as biochar or compost, a 
mineral N fertiliser to compensate for the N immo-
bilisation. Indeed,  N provided by mineral fertilisa-
tion is directly available for plants although rapidly 
depleted, while the one from organic amendments 
will require more time to become available (Dey 

and Mavi 2021; Gao et al. 2019). By contrast, add-
ing biochar and/or compost increased total N in the 
soil (from 11 to 36%) and, more importantly, the 
concentration of nitrate-N at initial time (between 
1.8 and 5.6 times), which might be due to the direct 
release of nitrate-N by amendments and to higher 
nitrification (Clough et al. 2013; Zhang et al. 2021). 
We hypothesised that adding biochar and/or com-
post improved the availability of N, and thus could 
ameliorate plant growth, as nitrate is the form of N 
preferentially taken up by plants. Our results con-
firmed this hypothesis, as the ryegrass biomass 
increased in the amended conditions, under both N 
fertilisation regimes, although the increase dimin-
ished after repeated harvesting. Previous studies 
have also shown that following compost/biochar 
amendments, the improvement of soil fertility was 
followed by an increase in biomass production of 
maize (Abbas et  al. 2020; Manolikaki and Diama-
dopoulos 2019; Zahra et  al. 2021), Salix purpurea 
(Seehausen et  al. 2017), lettuce (Trupiano et  al. 
2017), and Phragmites karka (Abideen et al. 2020). 
The importance of N in this growth amelioration 
was confirmed by the decrease in C/N ratio (T1) and 
an increase in the  N/P ratio of the plants, demon-
strating a reduction of N limitation under amended 
conditions (Cao and Chen 2017), and a change 
of the system from a N limitation towards a more 
equilibrated system, in terms of plant nutrition.

Except for the available P, nutrient availability was 
mainly dependent on the compost content, as higher 
values were found in the compost only treatment and 
diminished with the proportion of compost, which 
could be explained by the fact that compost contains 
more available nutrients. On the contrary, P availabil-
ity was more important in mixtures with higher pro-
portions of biochar. Wood biochar seems to have the 
potential to raise P availability through a direct addi-
tion, through a pH raise of soil or by inducing a com-
petition with organic anions brought by biochar on 
soil fixation site (Houben et al. 2017). However, our 
results reject the first explanation as pH changes were 
not significant. Moreover, compost had a slightly 
higher P content than biochar, and thus a competi-
tion with other anions seems more likely. Altogether, 
soil parameters show that compost and biochar have 
no synergistic effect on soil but rather an additional 
effect.
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The optimal ratio for inducing a synergistic 
interaction between biochar and compost

Interestingly, the soil analysis revealed that N availa-
bility was dependent on the ratio of compost and bio-
char, and the highest availability of N (ammonium-
N + nitrate-N) was found for the ratio BC50CP50, 
while N chemical fertilisation further increased N 
availability. We hypothesised that the highest growth 
and uptake of N would occur in this treatment. How-
ever, the best growth was measured for the ratio 
BC30CP70, which showed even higher biomass pro-
duction than the N fertilisation treatment (CT/Fert+). 
In addition, compared to the other treatments, includ-
ing mineral N fertiliser, this biochar/compost ratio 
still increased plant growth at the successive harvests. 
It also induced an increase in the N/P ratio of plants, 
and thus a reduction in N limitation, after 13 weeks, 
indicating a longer lasting effect. Thus, this study 
demonstrated that a ratio of 30% biochar and 70% 
compost allowed for synergistic interactions between 
those two amendments to increase nutrient uptake by 
plants, although the synergism was not observed in 
terms of nutrient availability in the soil. This could 
be related to the high amount of carbon and nutrients 
added through compost and their stabilisation via 
a small dose of biochar, and a modification of plant 
physiological response to the changes in soil condi-
tions (Kidd et  al. 2009). This specific  biochar/com-
post ratio also improved growth under N fertilisation 
more than the other treatments. Finally, as the ratio 
BC30CP70 showed the best results, higher than the 
fertilised control, we can conclude that adding a mix-
ture of biochar and compost at a specific ratio could 
reduce mineral N fertilisation or improve its effect. 
Biochar and compost used together as soil amend-
ment are extensively studied but few works address 
the ratio differences of such mixtures and their poten-
tialities in terms of soil functioning and plant devel-
opment. Such practice needs, however, to be evalu-
ated for other biochar/compost mixtures and in terms 
of cost/benefits for the farmer. Our results agree 
with our previous study showing that this specific 
ratio (BC30CP70) was able to substitute for P and 
K fertilisation for the same soil, under field condi-
tions (Nobile et al. 2022). Taken together, we suggest 
that biochar-compost mixtures  with specific ratios 

(30/70% in our case) have potential to reduce the reg-
ular N, P and K fertilisation, although more testing is 
needed, using different types of biochar and compost 
and NPK fertilisers under contrasting pedoclimatic 
conditions and cropping systems.

Conclusion

A pot experiment was performed to evaluate the influ-
ence of the biochar/compost ratio in amendment mix-
tures with regards to their effects on soil fertility and 
plant growth. This study confirmed our two hypoth-
eses: (i) biochar and compost association resulted in   
better plant growth and nutrient availability than their 
single applications, and (ii) the effect of biochar/com-
post mixtures depends on their ratio and nitrogen fer-
tilisation. Altogether, the results showed that associat-
ing biochar and compost can have synergistic effects 
and may be able to alleviate mineral N fertilisation 
if used in an appropriate ratio. We therefore suggest 
that  adding a small amount of biochar to compost 
before field application could be useful to reduce 
mineral fertiliser input. This may lead to better plant 
growth and carbon storage than compost application 
alone. Such synergism between different biochar and 
compost types remains to be elucidated.
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