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triamide (NBPT) and factor 2 consisted in irrigation 
establishing times: V3 (third leaf fully expanded), 
V3 + 7, V3 + 14 and V3 + 21  days. The experiment 
was conducted in 2016/17 and 2017/18. The accu-
mulated volatilization, in the average of the irriga-
tion times, was 7% and 4% to urea and urea + NBPT, 
respectively. In each day of irrigation delay, there was 
a grain yield loss of 158 and 83 kg day−1 ha−1, with 
urea and urea + NBPT, respectively. The grain yield 
loss of the short cycle cultivar due to irrigation delay 
was 12% larger than the one observed for the medium 
cycle and even larger when urea was used. Thus, the 
use of NBPT is a relevant strategy to mitigate the vol-
atilization of ammonia, increase agronomic efficiency 
and grain yield of the crop when there is a delay in 
the irrigation.

Keywords  Nitrogen loss · Agronomic efficiency · 
Irrigation management · Oryza sativa

Introduction

Nitrogen (N) is the most limiting element in the 
development of rice plants due to the low organic 
matter level of most soils cultivated with rice (Mar-
tins et al. 2017; Carlos et al. 2021). Also, this element 
is subjected to many loss processes such as volatili-
zation, leaching and denitrification (Zhao et al. 2013; 
Nash et al. 2015). Some studies have observed ammo-
nia volatilization losses of 10–14% (Pan et al. 2016), 
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however in more extreme conditions losses can be 
up to 25% (Misselbrook et  al. 2014; Adhikari et  al. 
2020). Ammonia volatilization can be even higher 
depending on the N source, such as urea, a high 
N content and low effective cost fertilizer (Minato 
et  al. 2020). After its application to the soil, urea is 
immediately hydrolyzed by the enzyme urease which 
results in the formation of ammonium carbonate, 
which rapidly decomposes into ammonium, bicarbo-
nate and hydroxyls, significantly increasing pH values ​​
around the fertilizer granules (8.5 to 8.8) (Phong-
pan et al. 1995; Pan et al. 2016). The increase in pH 
around the granule accelerates the conversion of this 
ammonium to ammonia, which can be volatilized into 
the atmosphere (Viero et al. 2015; Ke et al. 2017).

In irrigated rice, flooding is a strategy that reduces 
N losses and improves the efficiency of N fertiliza-
tion (Carlos et al. 2021). When applying urea to the 
dry soil and establishing the water layer immediately 
afterwards, the downward movement of the water 
incorporates N into the soil, reducing losses due to 
volatilization (Liu et  al. 2020b). However, it is not 
always possible to establish the water layer in the 
entire crop in a timely manner, in order to avoid N 
losses through ammonia volatilization, since irriga-
tion should occur three to five days after the appli-
cation of N fertilization (Xu et  al. 2012). After this 
period, the urea deposited on the soil surface is 
exposed to losses, which may contribute to a reduc-
tion in grain yield (Liu et  al. 2020a). One way to 
get around this problem is to use urea formulations 
plus urease inhibitors (Zaman et  al. 2008; Chatter-
jee 2018). Several chemical compounds have been 
evaluated for their effectiveness in reducing ammo-
nia emissions from N fertilizers by inhibiting the 
urea hydrolysis process (Rose et  al. 2018) and the 
consequent impacts on grain yield (Abalos et  al. 
2014; Rose et al. 2018). Thus, urease inhibitors have 
been used as promising chemical additives in reduc-
ing urease activity by delaying urea hydrolysis for 7 
to 10 days (Puga et al. 2020), and therefore decreas-
ing losses through ammonia volatilization (Chatterjee 
2018; Abed et al. 2020). In the case of irrigated rice, 
the delay in urea hydrolysis by the action of inhibi-
tors contained in the fertilizer would allow a longer 
time for the establishment of the water layer in the 
entire crop, resulting in a reduction of N losses, an 
increase in the efficiency of use of the N and grain 
yield (Scivittaro et  al. 2010). In addition, the length 

of the cultivar cycle may have an influence on the use 
of urease inhibitors and the delay in irrigation (Silva 
et  al. 2017). The ill combination of irrigation delay 
and the use of conventional urea can be more effec-
tively detected in short rather than medium cycle cul-
tivars. However, there is still a great knowledge gap 
regarding the losses due to ammonia volatilization 
under irrigation delay in rice cultivation with the use 
of short and medium cycle cultivars.

The hypothesis of this work is that losses from 
ammonia volatilization, due to the delay in the estab-
lishment of the water layer in rice, is reduced by the 
use of urease inhibitor N- (n-butyl)thiophosphoric tri-
amide (NBPT) which provides greater availability of 
mineral N in the soil and provides greater rice grain 
yield. Thus, the objective of this work was to evaluate 
the volatilization of ammonia and the grain yield of 
rice grains under the use of urea + NBPT under dif-
ferent times of establishment of the irrigation for two 
seasons.

Material and Methods

Site description

The experiment was conducted at the Rio Grande do 
Sul Rice Institute experimental station. The experi-
mental area is located at 29°57′02″ S and 51°05′02″ 
W at 7 m elevation. The soil was classified as Enti-
sol (Endoaquent) (US Soil Taxonomy 1999) which 
has 200 g kg−1 of clay; pH (1:1 soil:water ratio) 5.3; 
10 mg kg−1 of P; 42 mg kg−1 of K; 3.1 cmolc kg−1 of 
Ca, 1.2 cmolc kg−3 of Mg and 17 g kg−1 organic mat-
ter in the 0–0.20 m layer.

Experimental Design

The experimental design was random blocks in split-
plot design with the treatments arranged in a 4 × 2 
factorial scheme. Factor 1 consisted of different irri-
gation start times, V3 (third leaf fully expanded) 
(Counce et al. 2000), V3 + 7 days, V3 + 14 days and 
V3 + 21  days. Irrigation times (factor 1) were allo-
cated to the main plots. Factor 2 consisted of two N 
fertilizers, urea and urea + N- (n-butyl)thiophosphoric 
triamide (NBPT). These nitrogen sources were allo-
cated in the sub-plot. The first application of N in top 
dressing was carried out at the three fully expanded 
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leaf stage, which represents the V3 stage (Counce 
et al. 2000). The experimental units were plots with a 
width of 9 rows with 0.17 m spacing, totaling a width 
of 1.53  m. The length of the plot was 5  m, totaling 
an area of 7.65 m2. The design used was randomized 
blocks with 4 replications. The sowing method used 
was in dry soil with a tractor-tractioned plot seeder. 
In 2017/18, the experiment was conducted in the 
same location and similarly to the 2016/17 crop 
season. However, a short cycle cultivar, IRGA 430 
(120  days), was inserted, in addition to the cultivar 
IRGA 424 RI (135 days), which was also used during 
the first year of the experiment.

The seeding density used was 100  kg  ha−1. The 
fertilizer application throughout the cycle was of 166, 
30 and 90 kg ha−1 of N, P and K, respectively. N ferti-
lization, using urea and urea plus NBPT, was divided 
in applications of 16  kg  N  ha−1 at the time of sow-
ing, and 100 and 50 kg  ha−1 of N in top dressing at 
the phenological stages V3 and R0 (beginning of flo-
ral primordium differentiation) (Counce et al., 2000), 
respectively.

Ammonia collection and analysis

Ammonia volatilization collections were carried out 
in the 2016/17 and 2017/18 crop seasons according 
to the methodology proposed by Viero et  al. (2015) 
using static semi-open collectors. The collectors 
were composed of PVC columns 150  mm in diam-
eter, with circular sponges 150  mm in diameter and 
20  mm in height, which were allocated internally 
in the PVC column at heights of 0.25 and 0.30  m, 
both being saturated with 60 mL of phosphoric acid 
solution (50  ml L−1) and glycerin (40  ml L−1). The 
sponge allocated at 0.25 m was used to capture vola-
tile NH3 and the sponge allocated at 0.30 m was used 
to prevent the entry of ammonia outside the PVC 
chamber (Supplementary online material). As 9 col-
lections were carried out over time, 9 PVC bases were 
used in the soil with 0.05 m in height where the NH3 
capture chambers were positioned (Supplementary 
online material). Nitrogen at an equivalent dose of 
100 kg N ha−1 was applied on the same day at stage 
V3 in all bases. At each collection, the sponge was 
replaced with a new solution containing phosphoric 
acid and glycerin. The amount of volatilized ammonia 
was determined by steam entrainment in a Kjeldahl 
semi-micro device (Tedesco et  al. 1995). Ammonia 

collections were performed at 1, 2, 3, 4, 7, 9, 11, 14 
and 16 days after N fertilization. The ammonia con-
tents were expressed as daily volatilization rates and 
the amount of accumulated volatilization that results 
from the sum of the daily ammonia volatilization 
rates. Ammonia volatilization collections were made 
in the first application of N, where the highest propor-
tion of N (67%) is applied in the soil with moisture in 
the field capacity. The meteorological data of rainfall 
that influence ammonia volatilization are shown in 
Fig. 1. The average temperatures in November 2016 
and 2017 were 20.9 and 20.7 °C, respectively.

Plant biomass, chlorophyll index, grain yield and 
agronomic efficiency (AE)

To determine the amount of plant biomass, plants 
were collected above the soil surface in an area of 
0.5 × 0.5  m (0.25 m2) in each experimental plot in 
the phenological stage of full flowering, R4 (Counce 
et  al. 2000). The material was dried in an oven at 
50ºC until reaching constant weight, subsequently, the 
weight measurement was made. The chlorophyll con-
tent was determined using the Falker chloroFILOG 
model CFL 1030 equipment. The chlorophyll content 
of the central region of the flag leaf of 4 plants per 
plot was quantified at the end of the crop season, at 
the phenological stage of R0 (Counce et al. 2000).

To quantify the grain yield data in each plot, an 
area of 1.2 × 4  m was collected, totaling 4.8 m2. 
Afterwards, these samples were traced, impurities 
were removed by ventilation and weight and humid-
ity measures were used to determine the grain yield at 
13% humidity.

To calculate the Agronomic Efficiency (AE), the 
grain yield in the respective irrigation time and type 
of N fertilizer was calculated and subtracted from 
the control treatment dose (0  N), divided by the N 
dose used, Eq. 1. A control treatment without nitro-
gen application (0 kg N ha−1) was used at all times of 
irrigation establishment to calculate the Agronomic 
Efficiency.

where, Yeldf: grain yield in the N dose used, Yeld0: 
grain yield in the control treatment and Fertilizer N: 
N dose used.

(1)AE =

Yeldf − Yeld0

FertilizerN
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Statistical analysis

Levene’s test was used to assess the homogeneity of 
variances. The normality of the data was assessed 
by the Shapiro–Wilk test and subsequently, fol-
lowing the assumptions of normality, the data on 
ammonia emission and grain yield were subjected 
to analysis of variance (ANOVA), and when sig-
nificant (p < 0.05) the data were fitted to the lin-
ear regression model with significance evalua-
tion at p < 0.05. When used, the average test was 
performed with the tukey test (p < 0.05). All data 
analysis was conducted in the R statistical environ-
ment with particular use of the packages nlme and 
ggplot2 (R Core Team 2020). Principal component 
analysis was carried out where all the attributes and 
parameters of the analyzed plants were vectored to 
better understand the variations observed regarding 
the cultivar cycle and the N dose. For PCA analysis, 
the statistical software R was used.

Results

Ammonia volatilization

The irrigation delay and the use of conventional urea 
increased the daily rate of volatilization of ammonia 
(Table 1) (Fig. 1A and B) and consequently affected 
the accumulated loss of ammonia (Fig.  1C and D). 
Both the daily rate and the accumulated loss were 
higher when fertilization with conventional urea was 
carried out. In addition, the highest losses of ammo-
nia occurred on the 7th day after the application of N 
fertilizers, reaching peaks of up to 2.5 kg ha−1 day−1, 
in both growing seasons (Fig.  1A and B). Consid-
ering that the applied rate of N as top dressing was 
100 kg ha−1 until the moment of water flow into the 
system, it was verified that the periods of establish-
ment of the irrigation layer and the type of N ferti-
lizer used had a significant effect on the proportion 
loss of accumulated ammonia (Fig.  1B and D). In 
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the 2016/2017 growing season, conventional urea 
under 14 and 21-days delay had average accumulated 
losses of about 8 kg ha−1, which is equivalent to 8% 
of the applied N. On the other hand, when establish-
ing the irrigation layer immediately after the applica-
tion of N fertilizer in stage V3 and V3 + 7 days, the 
average losses of ammonia from conventional urea 
were 5.1 and 6.3% of the applied N, respectively. In 
the 2017/2018 growing season, treatments with con-
ventional urea under 14 and 21-days delay showed 
average accumulated losses of 7.6  kg  ha−1, which 
are equivalent to 7.5%. The accumulated losses of 
urea + NBPT were not influenced by the delay in 
irrigation in both crop seasons. Under the delay of 
21 days from the establishment of the water layer, the 
losses resulting from the use of urea + NBPT were 
less than half compared to conventional urea. The 
average losses in the two agricultural years, regard-
less of delay time, was 6.7% with conventional urea 
and 3.7% with urea + NBPT (Table 1).

Plant biomass, chlorophyll index, grain yield and 
Agronomic Efficiency (AE)

The shoot plant biomass content of rice plants was 
influenced by N fertilizer and irrigation delay. When 
irrigation was carried out in V3, the biomass produc-
tion of rice plants was at the level of 20 Mg ha−1. On 
the other hand, with delay in establishing irrigation by 
14 and 21 days, more extreme conditions, 15 Mg ha−1 
biomass was observed (Fig.  2a). In the delays in 

establishing irrigation between 7 and 14 days, a clear 
difference was observed between the higher produc-
tion of plant biomass in the rice shoots due to the use 
of urea + NBPT (Fig. 2a). The chlorophyll index fol-
lowed the trend observed in plant biomass (Fig. 2b). 
In the most pronounced irrigation delays of 7 and 
14  days, lower levels of chlorophyll were observed 
(Fig. 2b). When urea was used in the fertilization of 
rice and irrigation delay of 21  days, a reduction of 
10% in the chlorophyll index was observed in com-
parison to irrigation in V3 (Fig. 2a). When fertilizing 
with urea + NBPT, this reduction was only 5%.

The delay in establishing the irrigation layer nega-
tively influenced the grain yield in the two growing 
seasons (Table  2). However, it was found that the 
reduction in grain yield was lower when urea + NBPT 
was used, with a decrease of 79.9 to 103.6 kg ha−1 of 
grains per day of delay (Fig.  3). On the other hand, 
with the application of urea, this reduction ranged 
from 88.3 to 257  kg  ha−1 of grains per day of irri-
gation delay. In other words, with the use of urea, 
there is a daily loss of 157.5  kg  day−1 and using 
urea + NBPT this loss is 82.7  kg  day−1. This cor-
responds to a 47.5% reduction in losses due to the 
use of the NBPT inhibitor. For the short cycle cul-
tivar, regardless of the use of urease inhibitor, the 
daily grain yield losses due to the irrigation delay 
were 180  kg  day−1 of grains, while in the medium 
cycle cultivar the grain yield loss was 72  kg  day−1 
of grains. This condition means that after a period of 
irrigation delay of 21  days the losses of grain yield 

Table 1   Accumulated nitrogen losses on the 16th day after the application of nitrogen fertilization using urea and urea + NBPT in 
irrigated rice under irrigation delay in the 2016/17 and 2017/18 crop seasons

*  Uppercase letters compare in the column and lowercase in the row. Tukey test (p < 0.05). ns: no statistical difference

Accumulated ammonia volatilization (%)

Crop Season 2016/17

Days of irrigation delay after nitrogen fertilization in V3

1 7 14 21 X

Urea 5.1 Ac 6.3 Ab 7.9 Aa 7.9 Aa 6.8 A
Urea + NBPT 3.8 Bns 4.2 B 4.1 B 3.9 B 4.2 B

Crop Season 2017/18

1 7 14 21 X

Urea 5.2 Ac 6.2 Ab 7.3 Aa 7.6 Aa 6.6 A
Urea + NBPT 3.0 Bns 3.6 B 2.7 B 3.3 B 3.2 B
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Fig. 2   Dry matter a and 
chlorophyll index b of rice 
irrigated under urea and 
urea + NBPT and irriga-
tion delay in crop seasons 
2016/17 and 2017/18. 
Bands indicate a 95% confi-
dence interval

Table 2   Rice grain yield after application of nitrogen fertilization with urea and urea + NBPT under irrigation delay in the 2016/17 
and 2017/18 crop seasons

*Tukey test (p < 0.05)

Grain yield (Mg ha−1)

Crop Season 2016/17 – Medium cycle

Days of irrigation delay after nitrogen fertilization in V3

1 7 14 21

Urea 7.5 b* 8.9 a 6.9 bc 6.3 c
Urea + NBPT 8.0 b 9.0 a 7.4 bc 6.8 c

Crop Season 2017/18 – Medium cycle

1 7 14 21

Urea 9.7 ab 10.2 a 8.6 b 7.3 c
Urea + NBPT 9.1 ab 9.9 a 8.9 b 7.9 c

Crop Season 2017/18 – Short cycle

1 7 14 21

Urea 11.8 a 10.8 b 9.9 c 8.2 d
Urea + NBPT 11.2 a 10.9 a 9.8 b 9.7 b
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under irrigation delay are 32.8 and 20.5% in the short 
and medium cycle cultivars, respectively.

The AE was affected by the use of urea + NBPT 
and by the delay in irrigation (Fig. 4). When irriga-
tion was established in V3, AE was similar to 26 
and 24  kg grains kg N−1 for urea and urea + NBPT, 
respectively. However, with the delay in irrigation, 
the reduction in AE decreased significantly with the 

sole use of urea. AE is not influenced by the days of 
delayed irrigation with the use of urea + NBPT. Per 
day of delayed irrigation using conventional urea, a 
reduction of 0.48 kg of grains was observed per kg of 
N used in fertilization (Fig. 4).

Pearson’s correlation showed a positive relation-
ship between AE, plant biomass and chlorophyll with 
the yield of irrigated rice grains (Fig. 5). On the other 

Fig. 3   Grain yield of irri-
gated rice under irrigation 
delay and use of urea and 
urea + NBPT in medium 
and short cycle cultivars in 
the crop seasons 2016/17 
and 2017/18. * Indicate 
statistical difference at the 
level of p < 0.05
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hand, an inverse relationship was observed between 
grain yield and N losses due to ammonia volatiliza-
tion. Ammonia volatilization also showed an inverse 
relationship with plant biomass content, AE and chlo-
rophyll index (Fig. 5).

In the principal component multivariate analysis 
(PCA), it was observed that 54.9% of the data vari-
ation occurred in PC1 and 18.0% of the variation in 
PC2 (Fig. 6). The sum of PC1 and PC2, 72.9% of all 
observed variations were obtained. In Fig. 6a, a clear 
cluster was observed when urea and urea + NBPT 
were used. Most of the vectors analyzed, such as 
Yield, AE, plant biomass and chlorophyll, converged 
to urea + NBPT. However, the ammonia vector con-
verged to the grouping of use of urea as N fertilizer 

(Fig. 6a). Regarding the groupings by times of estab-
lishment of irrigation, it was observed that the vectors 
of the variables yield, plant biomass, chlorophyll and 
AE converged to the irrigations established in V3 and 
with 7 days delay. In the groups with the longest irri-
gation delay, 14 and 21 days, there was a convergence 
of the ammonia volatilization vector.

Discussion

Ammonia volatilization

Losses of N by ammonia volatilization increased with 
the delay of irrigation, due to the urea solubilization 

Fig. 4   Agronomic effi-
ciency in irrigated rice 
under nitrogen fertilization 
with urea and urea + NBPT 
under irrigation delay after 
nitrogen fertilization in 
stage V3. Averages of three 
experiments in the crop sea-
sons 2016/17 and 2017/18
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reactions. The N present in urea in the amide form is 
converted in the soil to ammonium, but the increase 
in pH that occurs around the urea granule causes part 
of the ammonium to be converted to ammonia, which 
volatilizes and is lost to the atmosphere (Viero et al. 
2015; Ke et  al. 2017). The magnitude of losses was 
lower than values commonly found in the literature, 
which are 10–14% N on average (Pan et  al. 2016) 

and up to 25% of applied N (Misselbrook et al. 2014; 
Adhikari et al. 2020). Variations in the magnitude of 
losses reported in the literature are due to factors such 
as CEC and soil moisture, climatic conditions such 
as temperature and precipitation, type of fertilizer 
and fertilizer management (Scivittaro et  al. 2010). 
The wide variation in ammonia losses is due to rain-
fall after urea application and the most favorable 

Fig. 6   Principal com-
ponent analysis of the 
variables evaluated in rice 
irrigated using urea and 
urea + NBPT a and under 
different irrigation delay 
times b. Ammonia: accu-
mulated ammonia loss, ae: 
agronomic efficiency, yield: 
grain yield, chlorophyll: 
chlorophyll index and dry 
matter: plant biomass
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condition for losses occurs when there is application 
of urea in moist soil without subsequent rainfall (Ni 
et al. 2014). Probably, the volume of rainfall observed 
after N application in the present study helped to 
incorporate N into the soil, reducing losses. In a study 
conducted in southern Brazil with irrigated rice, 
Scivittaro et al. (2010) observed that ammonia losses 
were 15% in saturated soil and 22% in moist soil. In 
this experiment, the interval between the application 
of urea and the beginning of irrigation was 10 days. 
Soil and temperature conditions observed by Scivit-
taro et al. (2010) are very similar to the present study, 
as both experiments were conducted in Southern Bra-
zilian paddy fields. However, possibly the higher soil 
moisture in the work by Scivittaro et  al. (2010) has 
contributed to higher ammonia losses. Larger soil 
moisture content has been reported as a factor that 
increases ammonia losses as it possibly increases the 
dissolution and activation of enzymatic hydrolysis 
caused by urease (Ni et al. 2014). On the other hand, 
the larger loss of ammonia under irrigation delay con-
tributes to a lower availability of mineral N to plants, 
which impacted a lower chlorophyll index and plant 
biomass.

Irrigation delay

The current N fertilization recommendation system in 
Southern Brazil suggests the use of high rates of N 
(80 to 100 kg N ha−1) at the beginning of tillering in 
dry soil prior to the establishment of irrigation (SOS-
BAI 2018). The high concentration of ammonium in 
the soil at an short stage of development with less 
demand, may further favor losses due to ammonia 
volatilization (Xu et al. 2012). As the delay in irriga-
tion intensifies the process of ammonia volatilization, 
it can trigger a lower supply of N to the plants and 
have impact on the reduction of irrigated rice grain 
yield. On the other hand, delayed soil flooding may 
also interfere with another important N loss process 
in flooded soils, denitrification. Maintaining the soil 
oxidized for a longer time favors the activity of nitri-
fying bacteria, essentially aerobic organisms, which 
promote nitrification (transformation of ammonium 
into nitrate) (Buchen et  al. 2016). Thus, the larger 
amounts of nitrate accumulated in the aerobic period 
cause a higher loss of N through denitrification after 
flooding, by reducing the nitrate to N2O, NO and N2, 

which are easily lost to the atmosphere (Silva et  al. 
2017).

The urease inhibitor reduces urea hydrolysis, 
which reduces the rapid increase in NH4

+ and pH 
around the urea granule. In this condition, a reduc-
tion in the peak of losses due to ammonia volatiliza-
tion is observed (Ni et al. 2014). Some authors have 
observed that the reduction of ammonia losses ena-
bles an adequate synchronism of mineral N availabil-
ity to plants (Soares et  al. 2012). In an experiment 
under similar soil and climate conditions, Scvittaro 
et al. (2010) observed that wet soil with and 10 days 
of irrigation delay had losses of 19.7 and 2.4 kg ha−1 
of N, using urea and urea + NBPT, respectively. That 
is, a considerable reduction in ammonia losses due to 
the use of the urase inhibitor (NBPT) similar to what 
was observed in the present study. These differences 
found in this locations may be related to soil charac-
teristics such as pH and CTC, and to climatic condi-
tions, such as temperature and wind speed, in addition 
to the characteristics of irrigation water (Knoblauch 
et al. 2012).

However, the impact of NBPT on the grain yield 
of rice under irrigation delay may be associated with 
processes other than ammonia volatilization (Silva 
et  al. 2017). As the NBPT molecule inhibits the 
hydrolysis of urea and the formation of ammonium, 
there is also a reduction in nitrate synthesis and, thus, 
a reduction in the intensity of denitrification in a con-
dition of delay of irrigation in rice. Some authors have 
observed that the use of NBPT reduced the availabil-
ity of ammonium for nitrification and consequently 
the rates of N2O emissions (Singh et al. 2013).

In the context of irrigated rice production in 
Southern Brazil and many places in the world that use 
mechanized sowing in rows, the delay of irrigation in 
rice fields is frequent. This situation affects numerous 
plant development factors, especially the efficiency 
of nitrogen utilization by the crop. Thus, the use of 
NBPT as a urease inhibitor is a relevant strategy to 
mitigate the losses due to ammonia volatilization, 
enabling higher plant biomass production, higher 
amounts of chlorophyll in rice plants under irrigation 
delay, which is a recurrent condition in paddy fields. 
Other investigations of ammonia losses in soils with 
CEC contrast and under different climatic conditions, 
mainly temperature, must be evaluated in rice cultiva-
tion, as there is a great gap of scientific information.
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Conclusions

The highest emissions of ammonia from rice cul-
tivation occur when there is a delay in irrigation 
and this loss of nitrogen is reduced with the use of 
N-(n-Butyl) thiophosphoric triamide (NBPT). The 
delay in irrigation causes higher yield grain losses 
when urea is used in comparison with urea + NBPT. 
Furthermore, yield losses under irrigation delay are 
more pronounced in short cycle than medium cycle 
cultivars. Thus, the use of urea plus the additive with 
NBPT is an important strategy to increase the agro-
nomic efficiency of nitrogen in irrigated rice produc-
tion systems, mainly in rice fields that do not have 
adequate irrigation.

Future research from this study should be car-
ried out in order to compare the ammonia losses and 
agronomic response of rice with the use of NBPT 
in relation to new molecules that inhibit urease and 
nitrification.
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