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Abstract To investigate soil amelioration effects by

older tropical fast-wood plantations, we examined the

fine litterfall and accompanying nutrient flux of a 20-

year-old Acacia mangium site over 3 years under a wet

tropical climate in Sabah, Malaysia. The litterfall of a

Swietenia macrophylla site and an Araucaria cun-

ninghamii site was also examined for comparison.

Annual nitrogen (N) flux through litterfall (kg N ha-1)

was larger in A. mangium (207–223) than in

S. macrophylla (126–153) or A. cunninghamii (72–94),

whereas annual phosphorus (P) flux through litterfall

(kg P ha-1) was considerably smaller in A. mangium

(2.7–3.4) than in S. macrophylla (7.5–15.6) or A.

cunninghamii (7.8–9.2). N flux through litterfall, forest

floor N, and N concentration in topsoil (0–5 cm) were

in the order of A. mangium [ S. macrophylla [
A. cunninghamii, but other element fluxes were not

related to concentrations in soils. Our findings suggest

that topsoil N increased because of a large N flux from

litterfall. We conclude that these plantation trees,

including A. mangium have the potential to produce a

N flux in litterfall for the rapid return of organic N to

soils larger than or equivalent to that in adjacent

primary forests. However, the litterfall of a single

species may lead to deficits of a particular element and

cause nutrient imbalances. Using a mixture of fertilizer

tree species or applying mixed litter might be a better

solution.
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Introduction

Acacia mangium is a major tropical and subtropical

fast-wood plantation species in Asia and is also planted

in Africa and Central and South America (CAB

International 2005). In Sabah State in Borneo, Malay-

sia, exotic fast-growing species were introduced for

plantations in the 1960s, and more than 100,000 ha had

been planted by 2003 (Sabah Forestry Department

2005). A. mangium is one of the best performers in

short-rotation forestry in the humid tropics and

constitutes more than half of exotic plantation trees

in Sabah. A. mangium can survive degraded site

conditions (Srivastava 1993; Yang et al. 2009), even
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in acidic sandy sites with low nutrient content (Nor-

isada et al. 2005). However, such fast-growing,

monoculture plantations have been criticized because

they may lead to plant disease (Cossalter and Pye-

Smith 2003), lower biodiversity (Lugo 1997; Cossalter

and Pye-Smith 2003), and rapid removal of resources

(Fölster and Khanna 1997; Yamashita et al. 2008).

Today, some projects are converting existing mono-

culture plantations into mixed forests, including

through agroforestry using indigenous species (JIR-

CAS 2007; Abdu et al. 2008; Sakai et al. 2009).

Despite the problems of monoculture plantation,

A. mangium can be used as a nurse tree in mixed

planting because of its tolerance for and adaptation to

severe site conditions (Kamo et al. 2002; Norisada

et al. 2005; Abdu et al. 2008; Yang et al. 2009).

Although some researchers and policy-makers also

expect to use N2-fixing trees to replenish soil N levels

(Khanna 1998; Schroth et al. 2001), nutrient supply

effects of legumes on mixed planting are not fully

understood, and in situ examination of this is under

way in some regions (reviewed by Forrester et al.

2006; Laclau et al. 2008; Siddique et al. 2008).

Understanding of the effect of N2-fixing trees,

particularly A. mangium, on soil conditions has

recently improved (Fisher 1995; Bernhard-Reversat

1996; Majalap 1999; Li et al. 2001; Garay et al. 2004;

Jang et al. 2004; Xue et al. 2005; Kimaro et al. 2007;

Abdu et al. 2008; Macedo et al. 2008; Yamashita et al.

2008; Kunhamu et al. 2009). Some studies have found

more organic matter and N accumulation in soils of

A. mangium stands than in those of non-legume tree

stands. However, few studies have examined the

relationship between soil nutrient quantity and quality

of litterfall in A. mangium stands (Bernhard-Reversat

1996; Majalap 1999; Kunhamu et al. 2009). In

addition, A. mangium tends to be logged in a short

rotation of less than 10 years, mainly for pulpwood

production (Srivastava 1993); thus, nutrient dynamics

in older stands have not yet been studied. However,

A. mangium has the potential to produce lumber

(Groome 1991) on longer rotations, requiring an

understanding of nutrient dynamics of older stands

for efficient timber production and soil conservation.

Older stands may also provide information on facili-

tating better nutrient conditions for the growth of other

plants in some intercropping systems.

In this study, nutrient dynamics through litterfall in

a 20-year-old A. mangium stand were investigated for

3 years and compared with those of stands of two

major tropical plantation species, Swietenia macro-

phylla and Araucaria cunninghamii, at the same

location. The aim was to examine the potential of tree

plantations for soil amelioration with respect to

nutrient fluxes through litterfall in older stands. The

nutrient flux of these plantations was also compared

with that of primary forests (Dent et al. 2006) that

would once have covered the research site. We

discuss the function of the amelioration of soil

nutrient content by A. mangium in light of our own

data and those from previous studies.

Methods

Research area

This study was conducted at the Gum Gum Forest

Reserve in Sandakan, Sabah, Malaysia (5�520N,

117�540E; Fig. 1). The forest reserve was once

covered by lowland dipterocarp forest and was

conventionally logged several times between the

1920s and 1960s (Sabah Forestry Department 2009).

A plantation program was started in 1964. Precipi-

tation and temperature data for the measurement

period were obtained from Sandakan airport about

20 km from the research station recorded in the

Global Historical Climatology Network (Point No.

50596491, National Climatic Data Center 2009).

Average annual precipitation was 2,572 mm, and

mean temperature was 27.9�C during the measure-

ment period. This area has a wet tropical climate,

with no month receiving less than 100 mm rain long-

term average (Dent et al. 2006). Fluctuation in the

mean monthly temperature is less than ±1.5�C, and

no obvious long drought has occurred. The research

sites were on gently sloping alluvial plains at an

altitude of less than 40 m asl. The soil is Haplic

Alisol (Alumic, Hyperdystric, Clayic; IUSS Working

Group WRB 2007). Soil properties of the represen-

tative profile are described in Table 1.

Litterfall was collected at three sites: 20–22-year-

old Acacia mangium Willd., 34–36-year-old S. mac-

rophylla King, and 27–29-year-old Araucaria cun-

ninghamii Sweet., located within 1 km of one another.

A. mangium is a N2-fixing evergreen tree from

northern Australia and Papua New Guinea, S. macro-

phylla is a non-N2-fixing evergreen tree from Central
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and South America, and A. cunninghamii is a conifer

from Australia and Papua New Guinea. Stand condi-

tions were described in a previous report (Inagaki et al.

2009). Basal areas at A. mangium, S. macrophylla, and

A. cunninghamii sites were 40, 59, and 54 m2 ha-1,

respectively.

Litterfall sampling and analysis

Litterfall samples were collected from March 2002 to

February 2005 (3 years), twice per month on the 1st

and 15th days, using 1 m 9 1 m square litter traps

made with PVC pipe and polyethylene net. The litter

traps were randomly placed at each site, with about one

trap per 0.01 ha (Table 2). According to Finotti et al.

(2003), the coefficient of variance of litterfall mass

becomes stable with more than 10 traps per 0.64 ha.

Litter samples were dried at 70�C until constant weight

and separated into five fractions: species leaves, other

leaves, fine wood (\20 mm in diameter), reproductive

parts, and miscellaneous organic matter that could not

be categorized into other fractions (Cuevas and Lugo

Fig. 1 Location of the

research station

Table 1 Soil properties of a soil profile from the Araucaria cunninghamii site

Horizon Depth (cm) pH (H2O) OC (%) TN (%) CEC Clay (%) Silt (%) Sand (%) Texture (FAO)

Ah 0–9,11 3.92 1.18 0.14 15.7 31 27 42 CL

E 9,11–23 3.76 0.50 0.08 17.0 38 26 36 CL

EB 23–39 3.60 0.31 0.06 22.6 50 29 21 C

Bt1 39–57 3.63 0.26 0.06 21.9 53 31 17 C

Bt2 57–90 4.25 0.12 0.06 22.6 53 33 14 C

Bg 90–115 4.14 0.05 0.05 20.3 52 29 19 C

Cg 115–145(?) 4.62 0.13 0.06 25.5 57 39 7 C

pH was measured with a glass electrode, organic C by the Walkley–Black method, total N by the Kjeldahl method, cation exchange

capacity (CEC) by the NH4-Ac extraction method, and soil texture by the pipette method

Table 2 Plot sizes and numbers of litter traps at the three sites

Site Year planted Plot size No. of

traps

Acacia mangium 1982 20 m 9 50 m 12

Swietenia macrophylla 1968 25 m 9 50 m 12

Araucaria cunninghamii 1975 40 m 9 40 m 16
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1998). Species leaves of A. mangium were phyllodes;

those of A. cunninghamii included needles attached to

final order branches. Large wood samples ([20 mm)

were omitted from the analysis because of large

fluctuations in values.

Samples were ground in an agate motor grinder

(RT-100, Retsch, Haan, Germany) after being cut

with a mill (A11, IKA, Konigswinter, Germany).

Total C and N concentrations were measured by the

dry combustion method (NC-22F, Sumitomo Chem-

ical, Tokyo, Japan). For P, K, Ca, Mg, Fe, and Mn

analysis, samples were analyzed by ICP-AES

(Optima 4300 DV, PerkinElmer, Waltham, MA,

USA) using the wet combustion method (Yamasaki

1997), with nitric and perchloric acid for digestion.

For species leaves, we analyzed C and N concentra-

tions monthly and P, K, Ca, Mg, Fe, and Mn

bimonthly. For other litter fractions, we analyzed

composite samples of 1 year from March to February

in the next year. Values for samples missing due to

destruction of traps were estimated using the average

of adjacent collections.

Sampling and analysis of soil and organic matter

at forest floor

Chemical conditions in the surface soil (0–5, 5–15,

and 15–30 cm) and the forest floor of these stands

were as previously reported in Inagaki and Titin

(2009), and these data were used for analysis.

Sampling was conducted in September 2002. We

randomly selected six sampling points at each site

(Table 2). At each sampling point, soil samples were

taken using core samplers (Split tube sampler,

Eijkelkamp, Giesbeek, The Netherlands) from four

ridges 2 m 9 2 m square, separated into three depth

ranges, 0–5, 5–15, and 15–30 cm, and then merged

into one sample for each depth range. Six forest floor

samples were taken from inside 50 cm 9 50 cm

squares located at the center of the soil sampling

quadrats.

Soil samples were measured for organic C by the

Walkley–Black method, total N by the Kjeldahl

method, exchangeable cations by the NH4-Ac

extracted method using AAS, and available P by

the Bray II method. Forest floor samples were also

analyzed for organic C, total N, and total cations after

wet combustion.

Statistical analysis

The total nutrient fluxes in litterfall were compared

between species and years using repeated measures

analysis of variance (ANOVA); a post hoc Tukey’s

honestly significant difference (HSD) test was used to

compare means (P \ 0.01). Two fixed factors were

considered, site (between subjects) and measurement

year (within subjects). The means of the nutrient

fluxes were also compared between litter fractions,

species and year using repeated measures ANOVA

and a post hoc Tukey’s HSD test. In this analysis,

litter fractions nested within sites were included as a

third fixed factor. We treated the individual traps as a

random site effect in the mixed-effect model using

restricted maximum likelihood (REML). The data on

levels of elements in the forest floors and soil from a

previous report (Inagaki and Titin 2009) were also

analyzed by one-way ANOVA and post hoc Tukey’s

HSD test. All statistical analysis was performed using

JMP 6.0.3 (SAS Institute, Inc., Cary, NC, USA).

Results

Mean annual litterfall dry mass was similar in Acacia

mangium (12.8–13.5 Mg ha-1) and S. macrophylla

(12.5–14.1 Mg ha-1) but lower in Araucaria cun-

ninghamii (6.2–7.4 Mg ha-1; Table 3). Annual fluc-

tuation in dry mass in the 3-year study period was not

significant. Annual C flux through litterfall exhibited

a similar tendency as dry mass.

Annual N flux from litterfall in A. mangium (207–

223 kg N ha-1) was 1.6-fold higher than in

S. macrophylla (126–153 kg N ha-1), and that of

A. cunninghamii was lowest (72–94 kg N ha-1). In

contrast, annual P flux was smaller in A. mangium

(2.7–3.7 kg P ha-1) than in A. cunninghamii (7.8–

9.2 kg P ha-1) and S. macrophylla (7.5–15.6 kg P

ha-1). Annual flux of base cations and Fe was largest

in S. macrophylla, and at least 1.5 times greater than

those of the A. mangium and A. cunninghamii sites.

Annual Mn flux showed a different tendency from

that of Fe: it was much smaller in the S. macrophylla

site and was 1.5-fold higher in the A. mangium site

than in the A. cunninghamii site.

In the A. cunninghamii site, most litterfall fractions

were species leaves (Fig. 2) because needles of

A. cunninghamii were attached to final order branches
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and were difficult to separate, as described by Bubb et al.

(1998). At the other two sites, nutrient content in species

leaves differed by element. Mean annual N fluxes of

species leaves were 124, 93, and 80 kg N ha-1 at the A.

mangium, S. macrophylla, and A. cunninghamii sites,

respectively. Although these fluxes were significantly

different (Table 4; Fig. 2), these differences in N flux in

species leaves were smaller than those in total litterfall
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(Table 3). Unlike total litterfall P, the P flux of species

leaves was significantly larger in A. cunninghamii

(8.4 kg P ha-1) than in S. macrophylla (5.9 kg P ha-1),

and that of A. mangium site (1.1 kg P ha-1) was only

one-third of the total litterfall P. The miscellaneous

fraction made a large contribution to the C, N, P, and K

fluxes (16–27%, 10–24%, 10–27%, and 24–32%,

respectively), and reproductive parts made a large

contribution to the P flux at both the A. mangium and

S. macrophylla sites (both 21%).

Very high C, N, and P fluxes in litterfall were

observed at the S. macrophylla site a few months after

March, when the rainy season ends (Fig. 3). At the

S. macrophylla site, monthly element fluxes were very

large during these months but very small in other

months. In particular, the P flux at the S. macrophylla

site was smaller than at the A. mangium site, where

annual P flux was smallest for several months. At the

A. mangium site, C, N, and P fluxes in litterfall were

highest in June and July, but were not as distinct as in

S. macrophylla. Monthly changes in C, N, and P fluxes

in litterfall were less distinct at the A. cunninghamii

site than at the other two sites.

We compared the element flux in litterfall with

elements on the forest floor and in soils down to 30 cm

(Fig. 4). Total N content, flux in litterfall and mass on

the forest floor, and concentration in topsoil (0–5 cm)

decreased in the order A. mangium[S. macrophylla[
A. cunninghamii. N flux in litterfall and topsoil N

concentration were significantly correlated (r = 0.99,

P = 0.005), but no such correlations were observed in

the other elements. Organic C in litterfall was larger at

the A. mangium and S. macrophylla sites than at the

A. cunninghamii site, but organic C on the forest floor

was similar in all stands. Apart from N, only Ca content

on the forest floor followed the same species order as

Ca flux in the litterfall. The amounts of Ca on the forest

floor and Ca concentrations in surface soil were

unrelated. Mg and K fluxes in litterfall differed

between species; however, those on the forest floor

and in the soil did not differ.

Discussion

Nutrient flux through litterfall

Litterfall production of the Acacia mangium and

S. macrophylla sites was larger than in previousT
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results, and that of the Araucaria cunninghamii site

was equivalent to results in its original habitat,

Queensland, Australia (Brasell et al. 1980; Bubb et al.

1998; Table 5). Litterfall mass at the A. mangium site

was considerably larger than that of some younger

stands (Saharjo and Watanabe 2000; Bouillet et al.

2008b) and slightly larger than that of 10-year-old

stands (Lim 1988; Bernhard-Reversat 1993; Majalap

1999; Kamo et al. 2008; Kunhamu et al. 2009). One

explanation for these differences might be the

contribution of stand necromass to the litterfall, since

14% of trees in the A. mangium site were dead during

the measurement period (Kamo et al. unpublished

data). The stand growth of fast-growing tree species

showed an early peak and then a decline (West 2006).

The growth peak appeared at age 4.5 years in an

A. mangium stand near the research site (Kamo and

Jamalung 2005). A. mangium stands in Indonesia also

showed growth peaks at age 4–6 years (Heriansyah

et al. 2007). These results, together with the appear-

ance of dead trees at the A. mangium site, suggest that

the 20-year-old A. mangium research stand had

already matured. Despite this later stage of forest

development, individual trees were still growing

(Kamo et al. unpublished data). Another possible

reason for the discrepancy in findings is differences in

site fertility. High litterfall production was reported

even in younger A. mangium stands (Hardiyanto and

Wicaksono 2008). Litterfall mass at the S. macro-

phylla site was larger than that found in previous

studies (Lugo 1992; Cuevas and Lugo 1998; Isaac

and Nair 2006), although these studies did not include

juvenile stands of less than 10 years of age (Table 5).

Our results for the S. macrophylla site might reflect

the fertile alluvial soils at the site.

N flux in litterfall at the A. mangium site was

considerably larger than that of S. macrophylla, even

though their litterfall dry mass was similar (Table 3).

This is possibly due to symbiotic N fixation, estimated

to be more than 30 kg N ha-1 year-1 in some A. man-

gium stands in Brazil (Bouillet et al. 2008a), and/or

higher N demand by legumes. Legumes may be higher

N2-demanding species (McKey 1994) because they

tend to have a higher N concentration in leaves

regardless of whether they fix atmospheric N2. The

difference in litterfall N likely explains the higher N

accumulation in biomass due to the higher N demand of

A. mangium (Inagaki et al. 2009).

According to a tropical and subtropical litterfall data

set including both natural and plantation forests

(n = 135) assembled by Dr. K.V. Sankaran (Binkley

et al. 1997), annual N flux at the A. mangium site was
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above the 95% percentile and that at the S. macrophylla

site was also above average. Large N fluxes of more

than 200 kg N ha-1 year-1 were also reported in other

tropical plantations of N2-fixing trees (Binkley et al.

1992; Swamy and Proctor 1997; Jamaludheen and

Kumar 1999). The A. mangium site not only produced

the largest annual N flux compared with other tropical

forests (Binkley et al. 1997) but also supplied the flux

each month, unlike S. macrophylla (Fig. 3).

Compared to previous results, annual N fluxes of

A. mangium in this study were larger, whereas annual

P fluxes were similar (Table 5). N concentration per

total litter mass in our study was similar to the results

of Bernhard-Reversat (1993, 1996; 17 mg g-1), and

litter production was larger than in other studies.

Hence, a large N flux in litterfall was recorded in our

study. Annual N fluxes were not correlated with stand

age (Table 5). In the case of leguminous Paraseri-

anthes falcataria plantations in Hawaii, the annual N

flux in litterfall was 240 kg ha-1 year-1 at 6 years of

age (Binkley et al. 1992) but smaller in older stands

(141 kg ha-1 year-1 at 14–16 years; Binkley and

Ryan 1998). In these studies, total N concentrations

in litter were similar in the two age groups (13 and
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15 mg g-1, respectively). Kunhamu et al. (2009)

reported a lower N concentration in A. mangium litter

(6–9 mg g-1) and soil total N concentrations (0.07–

0.42 mg g-1 at 0–15 cm) that were one order lower

than those of soils at 5–15 cm in our study sites (1.2–

1.4 mg g-1; Inagaki and Titin 2009). The difference

in total N concentration in litterfall would be

determined by N availability, and both stand produc-

tion and N availability would probably determine N

flux in litterfall.

The P flux in litterfall was very low in A. mangium,

considering its mass and high N flux (Table 3). A

small P flux in contrast with a large N flux in litterfall

has also been reported in other A. mangium stands

(Majalap 1999; Hardiyanto and Wicaksono 2008),

and was due to high P resorption before leaf fall

(Hardiyanto and Wicaksono 2008; Inagaki et al. in

preparation) and allocation to reproductive parts

(Inagaki et al. in preparation). According to the

global data set (Binkley et al. 1997), the annual P flux

in litterfall at the A. mangium site was below average,

and those at the other two sites were above average.

The S. macrophylla site had a better supply of P with

respect to annual flux. However, this flux was only

larger than that at the other sites from February to

April, at the end of the rainy season, as observed in

Table 5 Litterfall amounts and accompanying nutrient input per year for the three study species based on the literature and the

present study

Species Study

site

Stand

age

Soil

type

Dry mass

(Mg ha-1

year-1)

N

(kg ha-1

year-1)

P

(kg ha-1

year-1)

K

(kg ha-1

year-1)

Reference

A. mangium Pahang,

Malaysia

4 N.A. 8.6–9.3 N.A. N.A. N.A. Lim 1988

Pointe Noire,

Congo

5–7 Arenosols 9.7 170 N.A. N.A. Bernhard-Reversat

1993, 1996

Sumatra,

Indonesia

6–7 N.A. 5.9–6.0 N.A. N.A. N.A. Saharjo and

Watanabe 2000

Sabah,

Malaysia

7–10 Alisols 11.9 155 3.1 55.7 Majalap 1999

São Paulo,

Brazil

1.5–2.5 Ferralsols 6.1 90 N.A. N.A. Bouillet et al. 2008b

Sakaerat,

Thailand

12–13 Acrisols/

Podozols

7.5–9.8 N.A. N.A. N.A. Kamo et al. 2008

Sumatra,

Indonesia

2–4 Acrisols 9.4–12.5 137.3–146.6 1.6–3.0 17.8–27.3 Hardiyanto and

Wicaksono 2008

Kerala, India 9 Acrisols 5.7–11.2 42.1–82.9 1.8–3.3 36.2–71.9 Kunhamu et al. 2009

Sabah,

Malaysia

20–22 Alisols 12.8–13.5 207–223 2.7–3.4 38–46 This study

S. macrophylla Laquillo,

Puerto Rico

17, 49 Acrisols/

Ferralsols

10.0–10.7 33–43 1.1–4.5 5.0–5.2 Lugo 1992

Laquillo,

Puerto Rico

26 Acrisols 9.8 74.3 2.7 74.3 Cuevas and Lugo

1998

Kerala, India N.A. N.A. 6.4 68 4.2 26 Issac and Nair 2006

Sabah,

Malaysia

34–36 Alisols 12.5–14.1 126–153 7.5–15.6 72–107 This study

A. cunninghamii Queensland,

Australia

42–44 Krasnozems 5.1–12.7 78–109 9–13.1 37.0–66.8 Brasell et al. 1980

Queensland,

Australia

10–62 Krasnozems/

Podzolic

soil

6.0–10.9 28.1–60.6 4.4–6.2 N.A. Bubb et al. 1998

Sabah,

Malaysia

27–29 Alisols 6.4–7.4 72–94 7.8–9.2 35–45 This study
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Puerto Rico, the original habitat of S. macrophylla

(Lugo 1992; Cuevas and Lugo 1998). Palm (1995)

emphasized the importance of nutrient release timing

for crops in agroforestry systems; however, such

intense nutrient flux as seen in S. macrophylla cannot

provide successive nutrient releases throughout the

year.

Other litterfall fractions besides species leaves

made considerable contributions to the total element

flux in litterfall (Fig. 2). Cuevas and Lugo (1998)

reported that other fractions apart from species leaves

made up more than 50% of total N and P flux in some

plantations.

We compared our results with the litterfall of

primary forests under similar edaphic conditions.

Dent et al. (2006) investigated the litterfall of

primary vegetation in the Sepilok Forest Reserve,

about 5 km from our research sites (Fig. 1). The

alluvial forest was the most fertile of four different

types of forest they measured; we assumed it to be

the original vegetation type of our sites because of

the similarity in soil characteristics (Table 1). The

mean litterfall mass in the alluvial forest was

7.7 Mg ha-1 year-1 for 2 years of measurement,

which is similar to that of the A. cunninghamii site

and smaller than those of the A. mangium and

S. macrophylla sites. The annual N fluxes in litterfall

at the present study sites, lowest at the A. cunningh-

amii site, were slightly smaller than that of alluvial

forest (103 kg N ha-1 year-1) and larger than those

of infertile primary forests (from 47.6 to

56.9 kg N ha-1 year-1). Except in A. mangium,

annual P fluxes in litterfall at our sites were also

larger than that of alluvial forest (5.41 kg P ha-1

year-1), and our annual K fluxes in litterfall were

almost equivalent to or larger than that of the

alluvial forest (29.9 kg K ha-1 year-1). Nutrient

fluxes through species leaves and fine wood litterfall

in the three plantation forests were 80–140% for N,

30–160% for P, and 80–190% for K compared to

those of the most fertile site in the nearby primary

forest (Dent et al. 2006). In terms of nutrient

cycling, greater production and accompanying nutri-

ent return to the forest floor occurred in the

plantation sites than in the natural forests. In

general, the N pool on the forest floor of primary

wet tropical forests is high (e.g., Vitousek and

Sanford 1986), and our results indicate that planta-

tion forests can also provide a rich N pool.

Effect of element flux in litterfall on soil

chemistry

We assumed that the subsurface soils of the three

study sites were similar because chemical properties

(Fig. 4) and topographic conditions were consistent

across the sites.

Our results show that higher N flux in litterfall

occurred at the A. mangium site, and the N mass on the

forest floor and in the topsoil (0–5 cm) was propor-

tional to the N flux in litterfall (Fig. 4). Based on the

present results and those from nine other sites,

including seven sites from two other research stations

(Inagaki and Titin 2009), forest floor N and topsoil (0–

5 cm) N were significantly positively correlated (12

sites; r = 0.61, P \ 0.05; Fig. 5). A. mangium sites

had also higher forest floor N levels as well at the

other research stations. Therefore, the larger N input

from more than 200 kg ha-1 of litterfall could enrich

topsoil N and forest floor N. The subsurface soil (5–

20 cm) N mean concentration in fertile primary forest

(1.0 mg g-1; Dent et al. 2006) was similar to that at

our sites (1.2–1.4 mg g-1; at 5–15 cm); the mean

concentration of topsoil (0–5 cm) N in fertile primary

forest (1.6 mg g-1; Dent et al. 2006) was also similar

to that in A. cunninghamii soil (1.9 mg g-1; Fig. 4),

and both N fluxes in litterfall were similar. Therefore,
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forest floor and soil from the 9 sites not part of the present

study, indicated by open square, are also from Inagaki and

Titin (2009)
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the degree of N flux in litterfall is likely to affect the N

concentration of topsoil.

The effects of Acacia plantations on soils have

been investigated in many studies, especially

recently. Some studies have reported positive effects

on topsoil of N accumulation (Fisher 1995; Bernhard-

Reversat 1996; Majalap 1999; Garay et al. 2004; Jang

et al. 2004; Xue et al. 2005; Kimaro et al. 2007;

Macedo et al. 2008; Kunhamu et al. 2009) and/or N

mineralization (Majalap 1999; Li et al. 2001; Kimaro

et al. 2007). Vitousek et al. (2002) pointed out the

importance of N2 fixation as a source of N cycling in

tropical ecosystems, and a large organic N flux

through litterfall is likely to enhance N availability in

tropical forest plantations. The relationships between

large N flux in litterfall, large N stock on the forest

floor, and soil N have also been studied. More than

150 kg N ha-1 year-1 in litterfall (Bernhard-Rever-

sat 1996; Majalap 1999) and large forest floor mass

(Garay et al. 2004) or forest floor N of more than

100 kg ha-1 (Xue et al. 2005; Macedo et al. 2008)

resulted in larger N concentrations or mineralization

of topsoil than in controls. Garay et al. (2004) also

found a higher percentage of soil aggregates contain-

ing more organic C and nutrients than fine soil, in

A. mangium soil than in Eucalyptus soil. Using the

Soil Fertility Index (SFI) proposed by Moran et al.

(2000), Abdu et al. (2008) found that SFI values were

higher in an A. mangium intercropping forest than in

a secondary forest. These results suggest that a large

organic matter input leads to N accumulation and

ameliorates soil conditions. Some studies have

observed soil N enrichment to a depth of 30 cm

(Jang et al. 2004; Macedo et al. 2008), whereas

examination of N was limited to 0–5 cm in our study

(Inagaki and Titin 2009). This could be attributed to

differences in soil type, depth of the A horizon,

original soil condition, and years since planting. Our

study site was secondary forest before planting, and

soil degradation might have been little in contrast to

the study sites of Jang et al. (2004) and Macedo

et al. (2008); furthermore, these studies compared

A. mangium sites with considerably degraded land.

Although the soil N stock of our A. mangium study

site was not enhanced in deeper soil horizons, the

large N flux in litterfall is likely to enhance the

available N pool, which would be labile on the forest

floor and in surface soil. Therefore, older A. mangium

stands would have an advantage in providing a larger

N pool. In addition to the aboveground litterfall,

belowground litterfall would also contribute to soil

amelioration because belowground litterfall is

expected to show large production and rapid turn-

over, although the amounts and functions of below-

ground litterfall are still uncertain, particularly in

tropical forest ecosystems (Graefe et al. 2008).

As for other elements (C, P, Ca, Mg, and K), there

were no significant relationships between litterfall

and soil. Litterfall P at the A. mangium site was lower

than at the other two sites, even though topsoil P as

measured by the Bray II method was high (Fig. 4).

According to our results (Inagaki and Titin 2009),

soil P at two A. mangium sites at two other research

stations was not higher than that at other species sites.

Soil P as measured by the Bray II method had no

relationship to litterfall P in this study. Methods of

measuring plant available P in soil are still under

discussion because extraction methods for soil P

reveal only a part of the total plant available P

(Tiessen and Moir 2008). The significance of the

relationship between litterfall P and soil P depended

on soil P fractions (Cuevas and Lugo 1998), or plant

species (Watanabe et al. 2009). Available nutrients in

pools and demand by plants could vary, particularly

for P (Binkley et al. 2000; Inagaki et al. 2009). To

better understand P management in plantations,

further studies are needed on soil P fractions and

growth and demand of plantation trees.

Ca and Mg are relatively immobile elements. The

Ca flux in litterfall and on the forest floor was similar

even though other elements were reduced (Fig. 4). In

a 26-year-old S. macrophylla site in Puerto Rico, Ca

in the forest floor (Lugo et al. 1990) was twofold

larger than litterfall Ca flux (Cuevas and Lugo 1998).

Ca from litterfall is likely to stay longer on the forest

floor than other elements. During litter decomposition

in a primary forest in Borneo, Ca remained at almost

100% on a mass basis over a period of a few months

in some species, but the process differed by species

and litter characteristics (Hirobe et al. 2004).

The Mn flux in litterfall was extremely low at the

S. macrophylla site. This may cause lower decom-

position rates and affect surface soil conditions.

Metallic elements such as Mn and Fe have a positive

effect on the decomposition of litter or dissolved

organic matter and act like catalysts (Berg et al. 2000;

Davidson et al. 2003). Because of the difference in

vegetation, concentrations of certain elements might
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be altered. Jobbágy and Jackson (2004) reported that

an Eucalyptus plantation accumulates more Mn in the

surface soil than grassland by uplifting it from deeper

soil horizons. Such differences in the flux of key

elements by plant activities might alter the decom-

position process and the nutrient dynamics of forest

plantation ecosystems.

Conclusion

We evaluated nutrient supply through litterfall in an

older Acacia mangium site and two other plantation

sites. Annual N flux at the A. mangium site was more

than 200 kg N ha-1 because of a large litterfall mass

and higher N concentration. The large litterfall mass

could have been enhanced by standing necromass

because of the age of the stand, and the higher N

concentration could have been caused by the N-fixing

of legumes. Soil N availability would also affect these

factors. Species leaves accounted for more than 50%

of the total N flux, with significant amounts in other

fractions. We considered that such a large N flux

enriched topsoil N of the A. mangium site relative to

that of the other sites. However, P flux through

litterfall was very small compared to that of the other

two stands. Of the three species studied, A. mangium

was the best supplier of N to the forest floor, but not

the best supplier of P. The S. macrophylla site had

larger element fluxes, except for N and Mn, than the

other sites. However, because of its high litterfall flux

within a few months, nutrient supply is inconstant,

which may lead to inadequate nutrient release. The

Mn flux in litterfall at the S. macrophylla site was very

small. The nutrient fluxes of plantation sites, even of

the Araucaria cunninghamii site, were equivalent to

or larger than those of nearby fertile primary forests.

For the purpose of rapid organic N supply,

A. mangium has a great potential to produce a large

N flux through litterfall. However, the litterfall of a

single species may cause deficits of particular ele-

ments (e.g., P in A. mangium and Mn in S. macro-

phylla) and/or inconstant litter supply (as shown in

S. macrophylla) and might cause a nutrient imbalance

in soils. Fast-wood plantations have potential as

fertilizer trees, but foresters should pay attention to

maintaining nutrient balance in soils. Using a mixture

of fertilizer tree species or applying a mixed litter

might be a better solution.
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