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Abstract A computational model is formulated for
studying dynamic crack propagation in quasi-brittle
materials exposed to time-dependent loading condi-
tions. Under such conditions, inertial effects of struc-
tural components play an important role in modelling
crack propagation problems. The computational model
is proposed within the theory of regularised cracks
which uses a damage-like internal variable. Here, frac-
ture considers phase-field damage which gives rise to
a material degradation in a narrow material strip defin-
ing the regularised crack. Based on the energy formu-
lation using the Lagrangian of the system, the proposed
computational approach introduces a staggered scheme
adopted to solve the coupled system and providing it in
a variational form within the time stepping procedure.
The numerical data are obtained by quadratic program-
ming algorithms implemented togetherwith afinite ele-
ment code.
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1 Introduction

The ideas which are important in solid mechanics
include phenomena like damage, degradation and ulti-
mately fracture. In many situations, a quasi-static
consideration of those processes is sufficient to pro-
vide satisfactorily accurate data which agree with real
behaviour of structures. Nevertheless, when the pro-
cesses are fast or structures are substantially large,
the inertial effect may considerably modify also the
mechanical response of such structures or of their com-
ponents and subsequently change cracks and their for-
mation processes, too. One of the crucial items here is a
finite speed of transferring any information, including
crack propagation. Therefore, complex computational
models of fracture really account for dynamic crack
propagation.

The cracks are modelled in two basic ways in calcu-
lations: discretely or continuously. The former assumes
the crack as a discontinuity in geometry as it is seen
macroscopically, while the latter diffuses the discon-
tinuity into the material by making it degraded, as it
appears in its micro-structure, and relates the degra-
dation to changes in physical characteristics. These
changes are called damage and computationally they
are represented by additional internal variables (Fré-
mond 1985; Maugin 2015). Such a concept led also to
Phase-Field Models (PFM), where the damaged mate-
rial appears in narrowmaterial bands called regularised
cracks.
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Many brittle fracture computational approaches,
ultimately appropriate for computational power of
finite-element implementations, are based on the vari-
ational fracture model, proposed in Francfort and
Marigo (1998), Bourdin et al. (2000) accounting for
minimisation of energy in a solid through analysis of
strain energy in domains and surface energy of arisen
cracks related to Griffith’s concept of fracture. The
original concept was later modified in many ways to
establish it within the concept of regularised cracks.
Initially showing the relation to the discrete concept
of cracks by mathematical tools of � convergence, see
Dal Maso (2012), which gave birth to the phase-field
approach as brought forth in Bourdin et al. (2008).
The computational power of the developed approach
provided robust computational PFM implementations
with a rigorous thermodynamical background inMiehe
et al. (2010), Del Piero (2013), Molnár and Gravouil
(2017). There appeared many improvements and mod-
ifications of the phase-field methods for fracture from
that time. Such adjustments specified distinct issues of
the approach related to the characteristics of the compu-
tational model: scale parameter related to the width of
the regularised crack, degradation function describing
the damage process of the material (Kuhn et al. 2015;
Sargado et al. 2018), its effect on fracture in various
materials (Fang et al. 2022; Freddi andMingazzi 2022;
Raj and Murali 2020; Xu et al. 2022), crack nucle-
ation conditions and related processes (Tanné et al.
2018; Wu 2017; Yin and Zhang 2019; Wang et al.
2020) etc. The variety of degradation functions used by
many researcher is interpreted by particular material
behaviour, properties of the computational approach
andmany times they are supported by empirical results.
In addition, many computational procedures distin-
guish between cracking mechanisms in distinct crack
modes, revealing different amount of energy, used in
variationally based techniques, which is needed to ini-
tiate and propagate cracks in various crack modes,
see Zhang et al. (2017), Feng and Li (2022). Hence, the
applications of the phase-field model appeared in cal-
culation combining loading in tension, compression, or
shear (Cao et al. 2022; Luo et al. 2022; Yue et al. 2022).
Generally, all such modifications assisted to overcome
limitation of the original Griffith theory.

As mentioned in the beginning, it is also signif-
icant to stress those efforts which implemented the
influence of inertia within the present fracture con-
cept. With PFM seen as an energy based method, a

similar energy formulation is a good strategy to be
utilised. Therefore, the dynamic fracture concepts use
the Lagrangian for introducing kinetic energy into frac-
ture mechanics approaches as done by Borden et al.
(2012), Zhang et al. (2021), Weinberg and Wieners
(2022) and intensively studied under various condi-
tions as documented e. g. by Li et al. (2023), Zeng
et al. (2023), Zhang et al. (2023), Peng et al. (2023).
Naturally, the solution is constructed on the Hamilton
variational principle extended to systems with dissi-
pation, here naturally represented by unidirectionality
of crack propagation processes (Kružík and Roubíček
2019; Roubíček and Panagiotopoulos 2017). Addition-
ally, the speed of the processes in the materials can also
be affected by their rheological properties. It is natural
to consider and to sum them up to the dissipative effects
of the models of fracture. They complete the physi-
cal properties of the analysed systems and also make
improvements in numerical treatment of the computa-
tional solution. Thus, it is useful to consider fracture
models with a visco-elastic rheology pertinent to solid
materials (Roubíček 2020).

The main objective of the paper is to provide an
upgrade of the author’s works (Vodička 2022, 2023)
for quasi-static mixed-mode PFM fracture propagation
by a novel computational approach where inertia is
considered for nucleation and propagation of cracks.
This upgraded approach is also performed here and
assessed by a computer code implementing PFM for
solids, see also Vodička (2024). The main contribu-
tions of the study are: (i) a full energy expressed com-
putational formulation for dynamically evolving frac-
ture in terms of PFM damage; (ii) specifically intro-
duced terms for energy dissipation motivated by frac-
ture mode-mixity and by a general four parametric
solid rheology; (iii) a variationally based computational
approach implemented in an in-houseMATLAB Finite
ElementMethod (FEM) computer code for testing vari-
ous problemswith crack propagation under timedepen-
dent loads. The algorithms are verified in various struc-
tural elements exposed to various types of loading and
made of damageable visco-elastic materials. The tested
solids represent typical academic examples, though in
some cases simulating real experimental observations
obtained by other authors.

The rest of the contribution is organized as follows.
PFM is formulated in terms of strain, fracture, kinetic
and dissipated energies stressing the mixed mode char-
acter of fracture in Sect. 2. The details of the computa-
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tional implementation of the approach are provided in
Sect. 3, focusing on the illustrating the time discretisa-
tion as a tool which provides variational methodology
for the evolution process, and schematic computational
details of FEM approximation in relation to applied
methods of mathematical programming. Examples of
computations are shown in Sect. 4. The calculations
validate the discussed aspects of the dynamic model
for fracture, and the dependence of the cracking phe-
nomena on some material characteristics in the struc-
ture under load. Finally, Sect. 5 provides concluding
remarks.

2 Description of the computational model

The changes in force and deformation quantities rep-
resenting interaction of a solid structural body with
surrounding can be expressed in terms of energy, let
simplify the situation to 2D case under plane strain
conditions. Consider the body, denoted �, bounded by
a contour �, see Fig. 1, to be elastic with stiffness ten-
sor C . Such an isotropic material requires for intro-
ducing C two parameters: presently, (plain strain) bulk
modulus Kp and shear modulus μ are used. Changes
in loads applied to bodies may also dissipate energy,
which is to be considered for time dependent load-
ings. Therefore, also a rheological description for the
material is implemented introducing viscosity tensor
D. For a simplification of notation, the rheological
properties of the material are related to the elastic ones
through a relaxation time parameter τr. A four paramet-
ric solid material presented in Kružík and Roubíček
(2019) is used for a complete description of visco-
elastic material behaviour. The scheme of this rheol-
ogy is also shown in Fig. 1, where the generic elas-
tic stiffness is denoted Ci , i = 1, 2 and the generic
damper characteristic is Di , so that Di = τriCi . The
stress–strain relation corresponding to the scheme is
described by the relations σ = C1(e(u)−e2)+D1e(u̇),
C1(e(u)−e2) = C2e2+D2ė2, where σ denotes stress,
e is strain pertaining to the displacementu, e2 is a part of
the strain as seen in Fig. 1, and ’dot’ means the deriva-
tive with respect to time t . For the material used in the
model, it is written as

σσσ = C
((

1 + 1

γ

)
(e(u) − e2) + τr1e(u̇)

)
,

(
1 + 1

γ

)
(e(u) − e2) = (1 + γ )e2 + τr2 ė2, (1)

where e introduces the small strain tensor e = e(u) =
1
2

(∇u + (∇u)�
)
(u is the displacement field), and σσσ

is the stress tensor. Thus the four parameters include
stiffness (Kp or μ), stiffness ratio γ (chosen such that
without dampers γ = C2

C1
), and two time relaxation

parameters τri . This four parametric solid model may
be reduced to simpler solid rheologies. If τr1 = 0, the
rheology is referred to as Poynting-Thomson, if τr2 = 0
the rheology may be simplified to Kelvin-Voigt model.
Additionally, the stiffness parameters may use differ-
ent triples for the rest characteristics in order to catch
different behaviour of the volumetric and shear waves
propagating through the medium. Anyhow, the rheol-
ogy introduces an internal variable which pertains to a
part of strain denoted e2, it is also used to complete the
trajectory of the solution.

The boundary � is split into two non-overlapping
parts �B

D and �B
N according to prescribed Dirichlet and

Neumann boundary conditions, respectively. It means
that along the �B

D part the displacement field u is given
by a time dependent function u(t) = g(t), which
includes constraints and loads controlled by displace-
ments. Surface tractions p are controlled be applied
forces p(t) = σσσ · n = f (t) on the �B

N part, with n
being the outward unit normal vector. This part natu-
rally involves also the load-free boundary. Demonstra-
tively, the boundary conditions are shown in Fig. 1.

The picture also includes another curve formed
inside the body—the actual crack, it is denoted �c in
Fig 1. Such macroscopic crack is usually a result of
changes in microscopic structure of the material. In
many computational models, the formation of micro-
faults is interpreted as a degradation of the material,
therefore also forming of the crack is simulated by a
degradation process. This degradation is determined
by another internal variable α which has a damage-
like character: α at any point of the body and at any
instant takes values in the range [0; 1] and degrada-
tion is a process which starts with α = 0 pertaining to
the intact material, and terminates with appearing of a
crack represented by the value α = 1.When describing
the trajectory of the solution, it necessary involves also
this variable, whose distribution in the body simulates
a crack. As a continuous distribution of the variable
is supposed, because there is a transition band from
intact state to actual crack as represented by the width
ε of such a band in Fig. 1, the crack model is usually
referred to as regularised.
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Fig. 1 Description of the
deformable body (a), a
smear crack characteristic,
boundary conditions and
constraints, with a scheme
of the rheological model (b)

ε
=

ρ

(a) (b)

Summarising, the complete trajectory requires solu-
tion of three variables to be found in a time range
t ∈ [0; T ]: the displacement field u and two internal
variables of partial strain e2 and of damage α.

In fracturemechanics, a crack formation process can
be identified by a release of energy proportional to the
size of the crack. Pertinent energy in a Griffith-like
model is expressed by an integral

∫
�c

Gc d�, which
introduces the fracture energy Gc as a crack charac-
teristic. It may be constant but also may depend on
other physical variables as temperature or speed of
crack propagation. Below, the model is equipped by
the dependence on deformation state to adjust crack-
mode sensitivity. Nevertheless, the integration domain
�c, it means the extension of the crack at the instant
t , is not known a priori, as long as the crack develops
according to the loading history.

The dynamic evolution in the structural body will
be described using energy principles. First, the stored
energy is considered. It includes strain energy of
the visco-elastic solid and the energy accumulated
due to crack forming process as mentioned above.
The representation of the latter may be introduced
by the aforementioned internal parameter α available
at each point of the material domain. The replace-
ment of the integral along �c can be obtained by
a regularisation functional, (Ambrosio and Tortorelli
1990), which makes displacements continuous across
a crack and provides models of smeared cracks called
phase field models. There exist several such regulari-
sations, one introduced in Tanné et al. (2018) presents
the energy equivalent to that of the cracks in the
form:

∫
�

3
8G

I
c

( 1
ε
α + ε (∇α)2

)
d�, which is evaluated

in whole known body �, unlike the standard crack �c,
which is unknown. Simultaneously, the elastic mate-
rial properties (here, Kp and μ) progressively decrease
according to a predefined degradation function 	 such
that for cracks (maximal damage) they vanish. They

are required to obey the relations	(0) = 1,	(1) = δ,
(0 < δ � 1 to guarantee positiveness of the strain
energy in the case of a crack), 	′(x) < 0 for all
x ∈ [0; 1] (for computational purposes also 	′(1) = 0
and 	′′(x) > 0). The result is the regularised crack,
withs no discontinuity and only a narrow band of
degraded material inside a band of a finite width deter-
mined by ε. Generally, as can be also checked by the
aforementioned form of the regularised energy of frac-
ture, small value of ε does not allow α to move from the
initial (usually intact) state by the first term in the inte-
grand, and allows high (but still finite) gradients due
to the second term. Let us also mention that the length
parameter ε can be used to control a stress criterion in
damage and crack propagation, see Tanné et al. (2018),
Sargado et al. (2018),Vodička (2023). The assumptions
made about cracks expressed by the phase field vari-
able and strain energy of the four parametric rheology
model provide the stored energy at the time instant t as
follows:

E (t; u, e2, α) =
∫

�

(
	(α)

(
Kp

∣∣sph+(e(u) − e2)
∣∣2

+μ |dev (e(u) − e2)|2
)

+Kp
∣∣sph−(e(u) − e2)

∣∣2) (
1 + 1

γ

)

+
(
	(α)

(
Kp

∣∣sph+e2
∣∣2 + μ |dev e2|2

)

+Kp
∣∣sph−e2

∣∣2) (1 + γ )

+3

8
G I

c

(
1

ε
α + ε (∇α)2

)
d�. (2)

The expression is valid for admissible displacement
field and phase field damage, which obey the con-
straints

u|�D
= g(t), 0 ≤ α ≤ 1, (3)

otherwise it is considered infinite. The energy func-
tional also features an orthogonal split of the strain ten-
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sor to spherical and deviatoric parts, i.e. e = sph e +
dev e, to distinguish between volumetric strain energy
and shear strain energy, and their different velocity of

wave propagation. Such a split is also capable of defin-
ing material degradation related to volumetric or shear
strain independently. The spherical part is additionally
split to tensile and compressive parts, using the notation
v± = max(0,±v), in the sense that there is no crack
opening and no damaging related to compression.

Another ingredient to the energy balance is the
energy of the external forces, here, represented by the
nonconservative boundary forces f

F (t; u) =
∫

�N

f (t) · u d�. (4)

As long as the loading causes non-negligible inertial
effects, the kinetic energy is also a vital part of the
energy balance. The standard form is given by the rela-
tion

K (u̇) =
∫

�

1

2
ρ |u̇|2 d�, (5)

where ρ denotes mass density of the material.
The evolution is naturally affected by processes

which dissipate energy. As mentioned in the begin-
ning, one part of the dissipation is caused by the imple-
mented rheology of the material, as illustrated by the
dampers in the scheme presented in Fig. 1 (the values
of the parameters Di in the figure are pertinently τri Kp

or τriμ). Second, if the crack evolution is affected by
other than opening mode [Mode I, cf. using the super-
script I in the fracture energy in Eq. (2)], there may
appear another nonlinear behaviour which dissipates
additional energy. In this sense it shares a similar idea
of e.g. Feng and Li (2022) and extends other like Wu
(2017), Tanné et al. (2018). Here, the nonlinearity can
be simulated by defining the fracture energy as mode
dependent, see e.g. Benzeggagh and Kenane (1996).
In particular, the model assumes it to depend on the
deformation at time instant t represented here by dis-
placement field and internal strain variable. As long as
the aforementioned orthogonal split of the strain ten-
sor separates opening from the shear, the corresponding

strain energies may be used to characterise the mode
dependence. The expression for the mode dependence,
given by a functionGc(u, e2), may thus result in a form
as follows

Gc(u, e2) =
Kp

(∣∣sph+(e(u)−e2)
∣∣2 +γ

∣∣sph+e2
∣∣2) + μ

(|dev (e(u)−e2)|2 +γ |dev e2|2
)

Kp

(|sph+(e(u)−e2)|2+γ |sph+e2|2
)

G I
c

+ μ
(|dev(e(u)−e2)|2+γ |dev e2|2

)
G II
c

. (6)

It can be seen that for an opening crack Gc(u, e2)
reduces to G I

c, and there remains just G II
c in the case

of the Mode II crack (shear). Additionally, the crack
propagation is considered as a unidirectional process,
in which α does not decrease in time. All these assump-
tions can be indicated by a dissipation pseudo-potential

R(u, e2, α; u̇, ė2, α̇) =
∫

�

	̂(α)

(
τr1Kp |sph e(u̇)|2 + τr2Kp |sph ė2|2

+τr1μ |dev e(u̇)|2 + τr2μ |dev ė2|2
)

+ 3

8ε

(
Gc(u, e2) − G I

c

)
α̇ηd�, (7)

provided that the constraint α̇ ≥ 0 in� is satisfied, oth-
erwise its value is infinite. The degradation function in
the viscous part is chosen in accordancewith (Roubíček
2020) as 	̂(α) = φ0 + 	(α) for a fixed value φ0.
Observe that additional dissipation due to the crack
appears only in other than opening mode. The last term
vanishes and no additional energy is dissipated in open-
ing. In the shear mode it, e.g., adds some dissipated
energy if G II

c − G I
c is positive.

If the solid body is evolved in timedue to timedepen-
dent external loading and phenomena related to iner-
tia are taken into account, the solution of the problem
considering a general linear solid rheology and crack
formation processes can be obtained from the Hamil-
ton variational principle extended to dissipative sys-
tems, seeBedford (1985),Kružík andRoubíček (2019),
as long as the used rheology and fracture dissipates
mechanical energy. The principle says that the action
S of the system:

S(u, e2, α) =
∫ T

0

(
K(u̇) − E (t; u, e2, α) + F (t; u)

)

−
(∫

�

(
R′̇

u · u + R′̇
e2 · e2 + ∂α̇R · α

)
d�

)
dt , (8)

calculated over the fixed time interval [0,T] during
which the system evolves, is stationary with respect
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to the trajectory (u, e2, α) pertinent to the interval
t ∈ [0, T ]. The energy trinomial in the first parenthe-
ses of Eq. (8) introduces the Lagrangian. In the second

parentheses, the triple
(
R′̇

u,R
′̇
e2

, ∂α̇R
)
defines non-

conservative dissipative forces as dissipation is also
defined by a (pseudo-)potential fromEq. (7). The prime
denotes (Gateaux) differential (with respect to the sub-
script variable), and ∂ denotes the partial subdifferential
(R may jump for zero damage rates α̇ due to unidirec-
tionality of degradation process).

The Euler-Lagrange stationarity conditions provide
the equation of motion and the flow rules for internal
variables (strain and phase-field damage) which also
introduce competition between dissipation due to vis-
cosity and due to fracture. The relations are expressed
as a system of nonlinear equations and inclusion with
initial conditions in the following form

K′(ü) + E′
u (t; u, e2, α) + R′̇

u(u, e2, α; u̇, ė2, α̇)

= F′ (t; u), u(0, ·) = u0, u̇(0, ·) = v0,
E′
e2 (t; u, e2, α) + R′

ė2
(u, e2, α; u̇, ė2, α̇) = 0,

e2(0, ·) = e20,
∂αE (t; u, e2, α) + ∂α̇R(u, e2, α; u̇, ė2, α̇) 	 0,

α(0, ·) = α0.

(9)

It is also supposed that the stored energy functional
E is separately convex with respect to the couple
(u, e2) and α. The initial value for the phase-field
parameter usually pertains to a non-degraded state,
i. e. α0 = 0. It is also to be mentioned that due to
internal strain variable e2, it requires an initial con-
dition itself or through the initial stress σσσ 0, as e20 =
e(u0) − γ

1+γ

(
C−1σσσ 0 − τr1e(v0)

)
.

As a physical reasonability of the governing relation,
the system should satisfy the energy balance. Anyhow,
correct interpretation of time derivative requires time
independent displacement boundary condition. Thus,
it is necessary to make a shift of the solution in order
to separate the time dependence from the dependence
on the displacement u, which constrained by Eq. (3).
The shift is u = ũ + g̃(t), where g̃(t) is a suffi-
ciently smooth function in � satisfying the bound-
ary condition on �D. The new variable ũ then satis-
fies a vanishing boundary condition, which does not
depend on time. The stored energy functional E of
Eq. (2) is reformulated according to this separation as
E(t; u, e2, α) = Ẽ(̃g(t); ũ, e2, α).

Let the relations in Eq. (9) be multiplied in the
respective order by ˙̃u, ė2, α̇, integrated over the space
domain (though not fully mathematically correctly due

to present discontinuities, e.g. inRwith respect to dam-
age rate α̇), and summed up. It renders∫

�

(
Ẽ′
u (̃g(t); ũ, e2, α) · ˙̃u + Ẽ′

e2 (̃g(t); ũ, e2, α) · ė2
+∂αẼ (̃g(t); ũ, e2, α) · α̇

)
d�

+
∫

�

K′(ü) · ˙̃ud� +
∫

�

(
R′̇

u(u, e2, α; u̇, ė2, α̇) · ˙̃u

+R′
ė2(u, e2, α; u̇, ė2, α̇) · ė2

+∂α̇R(u, e2, α; u̇, ė2, α̇) · α̇
)
d� − F

(
t; ˙̃u) = 0.

(10)

The integrand in the first term can be arranged due
to K′(ü) · u̇ = ρ ü · u̇ = d

dt

( 1
2ρ|u̇|2). The second inte-

gral can be expressed as dẼ
dt − ∫

�
Ẽ′
g (̃g(t); ũ, e2, α) ·

˙̃g(t)d� and the integral containing R can be written
due to its homogeneity (i.e. its homogeneity in the rate
variablesR(·, ·, ·; pu̇, pė2, qα̇) = p2qR(·, ·, ·; u̇, ė2, α̇)

for any p, and any q > 0) as 2R(·, ·, ·; u̇, ė2, 0) +
R(·, ·, ·; 0, 0, α̇) − ∫

�
R′̇

u(·, ·, ·; u̇, ė2, α̇) · ˙̃g(t)d�,
where the first two terms express the dissipation rate.
Integrating it over the interval [0; T ] [starting from the
initial conditions in Eq. (9)] provides

K(u̇(T )) − K(u̇(0)) + Ẽ(̃g(T ); ũ(T ), e2(T ), α(T ))

−Ẽ(̃g(0); ũ(0), e20, α0)

−
∫ T

0

∫
�

Ẽ′
g (̃g(t); ũ, e2, α) · ˙̃g(t)

+R′̇
u(u, e2, α; u̇, ė2, α̇) · ˙̃g(t) + ρ ü · ˙̃g d�dt

+
∫ T

0
2R(u, e2, α; u̇, ė2, 0)

+R(u, e2, α; 0, 0, α̇)dt −
∫ T

0
F

(
t; ˙̃u)

dt = 0.

(11)

Returning back to the displacements u, the energy bal-
ance is obtained:

K(u̇(T )) + E(T ; u(T ), e2(T ), α(T ))

+
∫ T

0
2R(u, e2, α; u̇, ė2, 0)

+R(u, e2, α; 0, 0, α̇)dt

= K(u̇(0)) + E(0; u0, e20, α0)

+
∫ T

0
F

(
t; u̇ − ˙̃g(t)

)
dt

+
∫ T

0

∫
�

(
Ẽ′
g
(
g̃(t); u̇ − ˙̃g(t), e2, α

)
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+R′̇
u(u, e2, α; u̇, ė2, α̇) + ρ ü

) · ˙̃g(t)d�dt (12)

read as: the kinetic energy plus stored energy of the sys-
tem at time T plus energy dissipated during the time
interval [0, T ] is equal to the kinetic energy plus stored
energy of the system at time 0 plus energy due to the
work of external forces at the same time range rep-
resented here by the external forces determining the
functional F, and the hard-device loading prescribed
by function g(t) at the boundary �D. The dissipation
that appears here is in the sense of definition of the func-
tional R in Eq. (7) positive which guarantees thermo-
dynamical consistency and satisfaction of the second
law of thermodynamics.

Finally, the system (9) of differential relations is of
the second order with respect to t due to the inertial
term. In computations, it is sometimes useful to reduce
it to a first order system if numerical attenuation is to
be eliminated. Therefore, the variable of velocity as an
independent variable is introduced by putting v = u̇.
The system is then modified as follows:

u̇ = v, u(0, ·) = u0,
K′(v̇) + E′

u (t; u, e2, α) + R′
v(u, e2, α; v, ė2, 0) = F′ (t; u) , v(0, ·) = v0,

E′
e2 (t; u, e2, α) + R′

ė2
(u, e2, α; v, ė2, 0) = 0, e2(0, ·) = e20,

∂αE (t; u, e2, α) + ∂α̇R(u, e2, α; 0, 0, α̇) 	 0, α(0, ·) = α0.

(13)

The numerical approach below will use this modified
system.

3 Numerical solution and computer
implementation

The computational approach for solving the evolution
introduced in Eq. (13) is described in this section. The
solution of the problemwith respect to timeusing a time
stepping procedure is discussed first separately from
the spatial discretisation by FEM and the solution by
(sequential) quadratic programming within each time
step.

3.1 Time discretisation

For defining the time stepping algorithm, first notice
the structure of the functional E introduced by Eq. (2).
If it is viewed with respect to deformation variables,
it remains convex, i.e. E (t; ·, ·, α) is convex at each

instant t and constant α. Similarly, convexity with
respect to the phase-field variable of the restricted func-
tional E (t; u, e2, ·) is observed while, according to
the assumption, the degradation function 	 is convex.
Accordingly, the functionalR introduced by Eq. (7) is
considered in view of the aforementioned homogene-
ity. This separation of variables can be maintained by
using a staggered computational scheme for the time
discretisation, which within each time step solves the
problem separately with respect to deformation and
damage quantities.

Additionally, as proposed in Roubíček and Pana-
giotopoulos (2017), the time stepping scheme for the
first order (in time derivatives) system (13) may be
implemented by means of the Crank-Nicolson for-
mula (Crank andNicolson 1947), which does not incor-
porate numerical attenuation, and thus, there remains
only physical one caused by the proposed rheological
model. It can also be seen as a particular choice of a
general group of methods where the commonly used

Newmark method belongs, see Hilber et al. (1977).
Having in mind these two aspects of the computational
approach, it can be noted that both use a mid-point cal-
culation.

Now, consider time stepping with a fixed time
step size τ defined by the instants tk = kτ for
k = 1, . . . , 
 T

τ
� at with the trajectory is evaluated.

At the instant tk , it is expressed by the quadruplet(
ukτ , v

k
τ , e

k
2τ , α

k
τ

)
. If w generically denotes any of the

variables u, v, e2, orα, themid-point values for the time

discretisation scheme are defined asw
k− 1

2
τ = wk

τ +wk−1
τ

2 ,
and the rates of the variables ẇ are approximated by

the backward finite difference, e.g. ẇ ≈ wk
τ −wk−1

τ

τ
.

Thus, the relations from Eq. (13) are written for all
selected time instants starting from the initial condi-
tions u0τ = u0, v0τ = v0, e20τ = e20, α0

τ = α0 to obtain

ukτ −uk−1
τ

τ
= v

k− 1
2

τ ,

τ · K′
vkτ

(
vkτ −vk−1

τ

τ

)
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+2 · E′
ukτ

(
tk; uk−

1
2

τ , e2
k− 1

2
τ , αk−1

τ

)

+2 · R′
vkτ

(
uk−1

τ , e2k−1
τ , αk−1

τ ; vk−
1
2

τ ,

e2kτ −e2k−1
τ

τ
, 0

)
= f k

τ ,

2 · E′
e2kτ

(
tk; uk−

1
2

τ , e2
k− 1

2
τ , αk−1

τ

)

+τ · R′
e2kτ

(
uk−1

τ , e2k−1
τ , αk−1

τ ; vk−
1
2

τ ,
e2kτ −e2k−1

τ

τ
, 0

)
= 0,

2 · ∂αk
τ
E

(
tk; ukτ , e2kτ , αk− 1

2
τ

)

+τ · ∂αk
τ
R

(
uk−1

τ , e2k−1
τ , αk−1

τ ; 0, 0, αk
τ −αk−1

τ

τ

)
	 0,

(14)

where f k
τ = f (tk).

The discussed variable separation allows Eq. (14) to
be seen in a variational manner as stationarity condi-
tions of certain functionals. It requires, however, slight
modifications of the system. First, using Eq. (14)1
and the mid-point value definition, the variable vkτ
is eliminated from the system by substituting vkτ =
2
τ

(
ukτ − uk−1

τ

) − vk−1
τ followed by replacing the dif-

ferentiation with respect to vkτ by that with respect to
ukτ . Having in mind also convexity of the energy func-
tionals, the relations in Eqs. (14)2 and (14)3 represent
minimisation conditions for the following convex func-
tional

H1
k
τ (u, e2) = 2 · K

(
u − uk−1

τ

τ
− vk−1

τ

)

+2 · E
(
tk; u + uk−1

τ

2
,
e2 + e2k−1

τ

2
, αk−1

τ

)

+τ · R
(
uk−1

τ , e2k−1
τ , αk−1

τ ;
u − uk−1

τ

τ
,
e2−e2k−1

τ

τ
, 0

)
− F(tk; u), (15)

which implies that (ukτ , e2
k
τ ) = argminH1

k
τ (u, e2).

Notice that kinetic energy appears in the functional to
be calculated only from the velocity difference.

In a similar way, the last inclusion in Eq. (14) is a
condition for finding αk

τ = argminH2
k
τ (α), where

H2
k
τ (α) = 2 · E

(
tk; ukτ , e2kτ ,

α + αk−1
τ

2

)

+τ · R
(
uk−1

τ , e2k−1
τ , αk−1

τ ; 0, 0, αk
τ −αk−1

τ

τ

)
, (16)

using the couple (ukτ , e2
k
τ ) calculated by the minimi-

sation of the functional H1
k
τ . The proposed staggered

approach, processes these two minimisations within
each time step to get the complete solution belonging to
the time instant tk . It should be noticed that the unidi-
rectionality of the degradation process adds a constraint
to the minimisation of H2

k
τ which is provoked by the

conditions 0 ≤ α ≤ 1 and α̇ ≥ 0 assumed by Eqs. (3)
and (7). In terms of the discretised relations, they can be
expressed as αk−1

τ ≤ αk
τ ≤ 1 and implemented directly

into constrained quadratic programming algorithms as
discussed below.

3.2 Finite element approximation and implementation
to quadratic programming algorithms

Looking inside the functionals in Eqs. (2) and (7), it
is seen that an appropriate spatial discretisation pro-
vides the first minimisation with a quadratic functional
H1

k
τ . Thus, the minimisation may be implemented by a

Quadratic Programming (QP) algorithm, as formulated
in Dostál (2009) and also applied in previous author
works (Vodička et al. 2014; Vodička 2016; Vodička
2023). The functional H2

k
τ , however, does not have to

be quadratic, as the degradation function 	 in Eq. (2)
is only assumed to be convex. The minimisation with
respect to the phase-field variable thus relies on using
QP sequentially—Sequential Quadratic Programming
(SQP), see Boggs and Tolle (1995), Björkman et al.
(1995) and it is constrainedby aforementionedboxcon-
straints [below Eq. (16)]. Seeing the solution process
within an optimisation algorithm, rather than the com-
monly used Newton-Raphson methodology for non-
linearities, allows an efficient implementation of vari-
ous constraints appearing in the solution, though in the
present implementation limited to (separately) convex
functionals. Details of the computational procedures
follow.

The functionals of Eq. (15) contain a split of spheri-
cal strain, distinguishing tension and compression, (e.g.
sph+e and sph−e) which makes it piecewise quadratic.
Computationally, it can be reformulated introducing
new variablesψ andω satisfying additional constraints

ψ ≥ 0, ψ + tr e(u) ≥ 0,

ω ≥ 0, ω + tr e2 ≥ 0,
(17)

where tr refers to the trace of pertinent tensor. This is
a classical scheme, also referred to as a Mosco-type
transformation (Mosco 1967).

Discretisation by FEM provides approximation of
all variables inside the problem expressed in terms of
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their nodal variables and appropriate nodal shape func-
tions. Considering particular mesh with a typical ele-
ment size h, the formulae for the approximation of
the trajectory variables and the newly defined auxil-
iary variables at the time instant tk are expressed in the
form

ukh(x) =
∑
n

Nn(x)ukn ,

αk
h(x) = ∑

n Nn(x)αk
n ,

e2kh(x) =
∑
n

Pn(x)e2kn ,

ψk
h (x) = ∑

n Pn(x)ψ
k
n ,

ωk
h(x) = ∑

n Pn(x)ω
k
n ,

(18)

introducing nodal variables ukn , αk
n , e2

k
n , ψk

n , ωk
n and

appropriate nodal shape functions according to the
FEM discretisation Nn(x), Pn(x). Matrices gener-
ated from them and those necessary for computations
include the following ones:

Nn =
(
Nn 0
0 Nn

)
, Bn =

⎛
⎝Nn,1 0

0 Nn,2

Nn,2 Nn,1

⎞
⎠ ,

Pn =
⎛
⎝Pn 0 0

0 Pn 0
0 0 Pn

⎞
⎠ , N̄n = (

Nn,1 Nn,2
)
,

(19)

where subscripts separated by comma refer to differen-
tiation with respect to the corresponding spatial vari-
able x1, or x2, cf. Fig. 1. Additionally for the splits
in strain variables and the tensor trace, three constant
matrices are used

S =
⎛
⎝1 1 0
1 1 0
0 0 0

⎞
⎠ , D =

⎛
⎝ 1 −1 0

−1 1 0
0 0 1

⎞
⎠ , P = (

1 1 0
)
.

(20)

The approximations are substituted into function-
als (2), (5), (7) and evaluated within the discretised
functional from Eq. (15). Finally, it is written at the
current time step eliminating terms which contain only
αk−1, as they do not affect the minimisation with
respect to the deformation variables. Such a modified
functional H̃1

k
h(ûh, ê2h, ψ̂h, ω̂h) then reads

H̃1
k
h(ûh, ê2h, ψ̂h, ω̂h)

= 1

2

(
1 + 1

γ

) ∑
m

∑
n

∫
�

	(αk−1
h )

((
Bn

(
ûn + uk−1

n

)

−Pn

(
ê2n + e2k−1

n

))�

× (
KpS + μD

) (
Bn

(
ûn + uk−1

n

)

−Pn

(
ê2n + e2k−1

n

)))
d� + 1

2
(1 + γ )

×
∑
m

∑
n

(
ê2m + e2k−1

m

)� (∫
�

	(αk−1
h )

(
P�
m

(
KpS + μD

)
Pn

)
d�

) (
ê2n + e2k−1

n

)

+
(
1 + 1

γ

)∑
m

∑
n

ψ̂m

(∫
�

(
1 − 	(αk−1

h )
)

KpPm Pn d�
)
ψ̂n + (1 + γ )

∑
m

∑
n

ω̂m

(∫
�

(
1 − 	(αk−1

h )
)
KpPm Pn d�

)
ω̂n

+τr1

τ

∑
m

∑
n

(
ûm − uk−1

m

)� (∫
�

	̂(αk−1
h )

(
B�
m

(
KpS + μD

)
Bn

)
d�

) (
ûn − uk−1

n

)

+τr2

τ

∑
m

∑
n

(
ê2m − e2k−1

m

)� (∫
�

	̂(αk−1
h )

(
P�
m

(
KpS + μD

)
Pn

)
d�

) (
ê2n − e2k−1

n

)

+ 1

τ 2

∑
m

∑
n

(
ûm − uk−1

m − τvk−1
m

)�

(∫
�

ρN�
mNn d�

) (
ûn − uk−1

n − τvk−1
n

)

−
∑
n

(∫
�N

f k
τ n · Nn d�

)
ûn , (21)

where values with the superscript index k−1 are avail-
able from the previous time step, including vk−1

n , which
is not part of minimisation. The terms which contain
only values with index k − 1 could have been elimi-
nated from the minimisation as well because they do
not have an effect in the minimisation.

Additional constraints on auxiliary variables are pro-
vided according to the conditions (17) as follows:

ψ̂n ≥ 0, 2ψ̂n + N̄n

(
ûn + uk−1

n

)
− P

(
ê2n + e2k−1

n

)
≥ 0,

ω̂n ≥ 0, 2ω̂n + P
(
ê2n + e2k−1

n

)
≥ 0.

(22)

If the nodal values are gathered to column vectors
ûh , ê2h , ψ̂h , ω̂h as the introduced notation indicates, and
the integrals in Eq. (21) are used to determine matrices
K••, K•, Q•• with indices corresponding to the nodal
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values of the function on which they operate, V which
contains vk−1, and F which contains f k

τ . The matrix
formof the functional (21)with constraints (22), which
is to be minimised, is given in matrix form as

H̃1
k
h(ûh, ê2h, ψ̂h, ω̂h)

=
(
ûh
ê2h

)� (
Kuu Kue2
Ke2u Ke2e2

) (
ûh
ê2h

)

+
(
uk−1
h

e2
k−1
h

)� (
Quu Que2
Qe2u Qe2e2

)(
ûh
ê2h

)

+ψ̂�
h Kψψ̂h + ω̂�

h Kωω̂h − (V + F) ûh , (23)

where the terms containing only valueswith index k−1
have been eliminated. Realise that the matrices K and
Q depend on the values of the phase-field variable and
should have been written K(αk−1

h ), Q(αk−1
h ), as can

be read in Eq. (21), however, the notation has been
abbreviated.

The minimiser ukh , e2
k
h is obtained by a QP algo-

rithm [implemented by a constrained conjugate gra-
dient based scheme (Dostál 2009)] and provides the
nodal displacements and internal strains of the k-th time
step, i. e. for ûh = ukh , ê2h = e2kh which determine the
(approximated) solution ukh , e2

k
h introduced in Eq. (18).

To complete the solution, it is also necessary to calcu-
late velocity needed at least for the next time step cal-
culation. The nodal values are obtained by the formula
vkn = 2

τ

(
ukn − uk−1

n

) − vk−1
n related to Eq. (14)1.

Similarly, the substitution of approximations in
Eq. (18) into the functional H2

k
τ of Eq. (16) and using

the definitions in Eqs. (2) and (7) leads to another
numerical minimisation.

Before preparing the formula, consider general con-
vexity (whichguarantees positivity of its secondderiva-
tive) of the degradation function 	 in Eq. (2). If it
is not merely quadratic, the aforementioned QP algo-
rithm is applied sequentially. It means that the degrada-
tion function is approximated by the quadratic Taylor
polynomial and the solution is calculated iteratively.
Namely, if the iterations within the time step tk use the
index r , in finding the minimum, an iterated functional
Hk,r
2,h(α̂h) is used. It differs fromH2

k
τ in substituting the

approximation and in replacement of the degradation
function by its quadratic approximation

	(α̂h) ≈ 	(α
k,r−1
h ) + 	′(αk,r−1

h )
(
α̂h − α

k,r−1
h

)

+1

2
	′′(αk,r−1

h )
(
α̂h − α

k,r−1
h

)2
, (24)

where α
k,r−1
h is known from the previous sequential

iteration.
Now, the functional H2

k
τ is written for the current

time step after eliminating terms which contain only
deformation variables variables or constants (the func-
tional is denoted H̃k,r

2,h), which have no effect in min-
imisation with respect to the phase-field variable α. It
reads

H̃k,r
2,h(α̂h) =
∑
n

(∫
�η

(
	′(αk,r−1

h ) − α
k,r−1
h 	′′(αk,r−1

h )
)

((
Kp

∣∣∣sph+e2kh
∣∣∣2 + μ

∣∣∣dev e2kh
∣∣∣2

)
(1 + γ )

+
(
Kp

∣∣∣sph+(
e(ukh) − e2kh

)∣∣∣2

+μ

∣∣∣dev (
e(ukh) − e2kh

)∣∣∣2
)(

1 + 1
γ

))
Nn d�

)
α̂n

+
∑
m

∑
n

α̂m

(∫
�η

1

2
	′′(αk,r−1

h )

((
Kp

∣∣∣sph+e2kh
∣∣∣2

+μ

∣∣∣dev e2kh
∣∣∣2

)
(1 + γ )

+
(
Kp

∣∣∣sph+(
e(ukh) − e2kh

)∣∣∣2

+μ

∣∣∣dev (
e(ukh) − e2kh

)∣∣∣2
)(

1 + 1
γ

))
NmNn d�

)
α̂n

+
∑
n

(∫
�η

3

8ε
Gc(u

k−1
h , e2

k−1
h )Nn d�

)
α̂n

+
∑
m

∑
n

α̂m

(∫
�η

3ε

8
G I

c N̄m N̄
�
n d�

)
α̂n . (25)

If the nodal values are written into a column vector
α̂h according to the previous notation, and the integrals
in Eq. (25) are used to introduce matricesKα ,Qα . The
numerical minimisation then looks for the optimal val-
ues of α̂h for the constrained functional

Hk,r
2,h(α̂h) = α̂�

h Kα(α
k,r−1
h , ukh)α̂h

+Qα(α
k,r−1
h , ukh, u

k−1
h , e2

k−1
h )α̂h , αk−1

h ≤ α̂h ≤ 1,

(26)

with constraints obtained from those introduced below
Eq. (16). Bothmatrices in Eq. (26) depend on the values
of variables calculated previously. This dependences
are stressed in the relation.

The minimum within each iteration is obtained by
a constrained conjugate gradient scheme of a QP algo-
rithm, theminimiser is denoted α

k,r
h and determines the

nodal values (for α̂h = α
k,r
h ) of the approximation α

k,r
h

introduced in Eq. (18).
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Table 1 A pseudo-code for the phase-field dynamic fracture computational approach

3.3 Notes on the computer implementation

The whole calculation applied recursively up to given
time T is schematically specified in a pseudo-code
PF_FRAC_DYN in Table 1. As input arguments it uses
boundary conditions included in Eqs. (3) and (4), and
initial conditions introduced in Eq. (9). Also notice
that the time-stepping value τ (an input value in the
PF_FRAC_DYN code) is kept constant throughout
the calculation in accordance with the time discreti-
sation in Eq. (14) and the assumptions in the paragraph
above it, though it could have been set to different
values depending on the damage growth. Moreover,
to get accurately wave propagation within a fast rup-
ture process, the Courant–Friedrich–Lewy (CFL) con-
dition (Courant et al. 1928) was taken into account,
which states τ < h/vP where vP denotes the wave
speed (the speed of sound) in the material. The rela-
tion between the time step and the element size was
respected in calculations by putting τ slightly smaller
than determined by the FEM mesh-size h. For compu-
tations, the approach was implemented in an in-house
MATLABcomputer codewhich is belowused for crack
propagation testing under time dependent loads.

4 Examples

We demonstrate the developed numerical approach in a
series of calculations. First, the instant of crack nucle-
ation is related to the velocity of propagation of the
waves inside the materials, as any information, includ-
ing effect of the external load, needs some time to be
delivered to a particular place. In the second part, typ-
ical problems evaluated also by other authors are used
to check the influence of the parameters which affect
the crack propagation. Namely, parameters of the rhe-
ological model and fracture energy.

4.1 Elastic wave propagation causing crack nucleation

First, it is checked how propagating elastic wave pro-
vokes a crack nucleation when sufficient energy is at
the disposal. A simple domain configuration shown in
Fig. 2 together with given boundary conditions make
the problem to be essentially one dimensional with the
only varying coordinate being x2. The given displace-
ment load shown also in Fig. 2 provides a single peak
strain energy wave to move in vertical direction from
eachhorizontal face.When thesewavesmeet at the cen-
tre, there is sufficient energy to provoke damage, unless
the waves are damped due to viscoelastic properties.
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(a) (b)

Fig. 2 Simple configuration (a) exposed to a smoothed displace-
ment jump (b)

The initial elastic properties [as introduced inEq. (2)]
are: Kp = 2MPa, μ = 1MPa, the mass density is
ρ = 750 tm−3. These values indicate the elastic wave
to propagate at the velocity of 2 ms−1 (P-wave). What
is varied here, is the amount of viscosity expressed by
the values of the material parameters τr1 and τr2. The
smoothed displacement jump loading g(t) is described
by the function

ζ1(t; n, w, a, b) = (2n + 1)!
(n!)24n+1w

∫ w

−w

(
1 −

( x

w

)2)n

·
(
1 + |t − x − a|

b − a
+ |t − x − b|

a − b

)
dx (27)

as g(t) = 0.02mm · ζ1(t; 4, 10µs, 20µs, 60µs) and
shown in Fig. 2 and it is applied with a time step of
2µs.

The fracture energy in the material is G I
c = 7Jm−2

and the phase-field length parameter is chosen ε =
10µm. The PFM degradation function 	 is taken in
the basic quadratic form: 	(α) = (1 − α)2 + 10−6.
The mesh is regular, made of 16,000 square bilinear
elements.

The results study the propagation of the wave inside
material at the velocity givenby thematerial parameters
(and checked by data in the graphics) and initiation of
degradation of the material as documented in Fig. 3.
The strain energy density ω of the simulation wave
is shown in the bottom half of the domain due to a
symmetry.

As it is seen, close to the time instant t = 0.28 ms,
the waves initiated at the opposite ends of the domain
made contact with each other at the centre (x2 = 0.5
mm) The varying values of the time relaxation param-
eters τr1, τr2 affect the appearance of the wave and
degradation process, in relation to the fact that increas-
ing values includemore attenuation,more energy is dis-
sipated and eventually, if damping is sufficiently high,
there is not sufficient energy to initiate damage. Here,
this occurred for the largest value of 10µs. The ampli-

tude of the wave decreases due to damping caused by
the rheological model and after a wave crush also by a
release of energy caused by new crack formation. The
release of energy is proportional to the value of the
fracture energy.

Thevalues of the phase-field parameterα close to the
vertical centre of the domain can be read in Fig. 4. They
do not include those 10µs cases where α is unmodified
from the initial value 0. The α distribution pertains to a
crack appeared at the instant when thewavesmet (close
to the aforementioned instant of t = 0.28 ms). It is also
observed that due to dissipation particular instants of
triggering damage vary.

The second example demonstrates the dependence
of crack nucleation for a propagating wave on the
parameter of fracture energy. The design of the com-
putational experiment was motivated by a similar test
made in Weinberg and Wieners (2022). The domain
is generated by a curved bar given parametrically as
(x1, x2) = (p1 + p2 sin(π

2 p1), (1 + p2) cos(π
2 p1)),

for |p1| ≤ 0.5mm, |p2| ≤ 0.03125mm. It is loaded by
two slightly unsymmetrical force pulses applied at both
ends of the rod, see Fig. 5. The force load is applied
as a pulse whose time dependence is expressed by the
function

ζ2(t; c, w, v)= exp
(
−�(w − v|t−c|) (v(t−c))2

w2−(v(t−c))2

)
(28)

with � being the Heaviside step function. Then the
forces f1 and f2 in Fig. 5 are given by the rela-
tions: f1(t) = 1MPa · ζ2(t; 75µs, 0.15mm, 2ms−1),
f2(t) = 1.05MPa · ζ2(t; 90µs, 0.15mm, 2ms−1).
The elastic properties of the undamaged material

are: Kp = 3MPa, μ = 1MPa, the mass density is
ρ = 1000 tm−3, so that the elastic P-wave propagates
at the velocity of 2 ms−1. Here, the values of the time
relaxation related to the schematic dumpers in Fig. 1
of viscoelasticity are τr1 = τr2 = 1µs.

The fracture energy of the material considers two
values of G I

c: 3 Jm
−2 and 4Jm−2 simultaneously with

the value of G II
c , see Eq. (6), such that G II

c = 5G I
c to

reduce the influence of shear. The phase-field length
parameter is chosen ε = 10µm. The PFM degradation
function 	 is the same as above. The mesh is regular,
made of square bilinear elements of the size h = 1µm,
the load is applied in time steps of the magnitude 1µs.

The changed fracture energy caused different crack-
ing. Check the graphics in Fig. 6 to see that with the
smaller value of G I

c the crack appears earlier. The evo-

123



A computational approach for phase-field

Fig. 3 Strain energy
density ω distribution along
the bottom half of the
domain at selected instants
(values of t in the legend in
[ms]) of the simple
configuration under a
stress-pulse for various
viscosity parameters: a
varying τr1, vanishing τr2; b
varying τr2, vanishing τr1.
Values of pertinent τri
according to the line style:
solid 0µs, dashed 0.1µs,
dashdotted 1µs, dotted
10µs

Fig. 4 Phase-field parameter distribution at the central part of the domain at selected instants (legend values in [ms]) of the simple
configuration for various viscosity parameters: a both zero, b τr1 = 0.1µs, c τr1 = 1µs, d τr2 = 0.1µs, e τr2 = 1µs

Fig. 5 Curved bar (a)
exposed to force pulses (b)
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Fig. 6 Evolution of phase-field parameter α in the curved rod
case at the particular points (x1, x2) of the top and the bottom
boundary of the domain where the crack appears, two different
values of Gc are used. The enclosed graphics show the actual
position of the crack and the time instants when the crack reached
the bottom contour

lution of the phase-field variable at twoparticular points
of the domain top and bottom layers is in accordance
with the position of the resulting crack shown in the
interior drawing pertinent to the time instant t = 1.2
ms.

Due to non-symmetry of the load it is not symmet-
rically located.

When the fracture energy is changed to the other
value, this first wave does not have sufficient intensity
to provoke a damage leading to a crack, only when the
wave is reflected and returned to this central location
a crack appears at the instant t = 2.0 ms. Also the
exact position of the crack is slightly different from the
previous one.

The propagation of the elastic wave is documented
by a plot of a stress quantity in Figs. 7 and 8.

The first selected instants show the same results up
to the moment when at the case of the smaller G I

c a
crack is formed. It is seen that the first compressive
waves reach the centre approximately for t = 0.45 ms,
corresponding to the wave propagation velocity. When
it returns in form of tension the intensity is sufficient to
produce a crack at the instant t = 1.2ms, if the fracture
energy is G I

c = 3 Jm−2.
The other case needed the wave to be reflected once

more at the bar ends, and only afterwards the crack
appears corresponding to the instant t = 2 ms as also
shown before. Based on the governing relations (9)
and functionals (2) and (7), the critical stress value
appears to be proportional to the square root of frac-
ture energy (provided that the phase-field parameter ε

is kept unchanged). The ratio of the fracture energies
of the two options provides

√
4/3 ≈ 1.15 which may

be verified by observing the maximal stress values: For
G I

c = 3 Jm−2 themaximum is seen at Fig. 7g as approx.

1.3 MPa (the same as in Fig. 8g pertaining to the other
G i

c), and forG
I
c = 4 Jm−2 it is seen at Fig. 8l as approx.

1.5 MPa. Anyhow, the distribution of the stress nicely
documents how the waves move and reflect inside the
domain.

4.2 Tensile load

Dynamic crack propagation is studied in a problem of a
rectangular domain with a pre-crack loaded by a force
load.Thepre-crack supposed to span across a half of the
domain width, shown as �c in Fig. 9. The applied time
dependent load is also shown in the same graphics, the
functionwhich controls it is. To simplify the calculation
because of the symmetry, only the upper part of the
domain is considered as documented in the samefigure.

The particular geometry was captured from Borden
et al. (2012), Li et al. (2023) where similar analysis was
done, leading to, as it is going to be presented below,
the crack bifurcation or kinking if only the symmetric
geometric part is considered. The bifurcation is shown
in the calculations made in Vodička (2024).

The initial elastic properties are: Kp = 22.22GPa,
μ = 13.33GPa, the mass density is ρ = 2450 kgm−3.
These parameters cause the P-wave to propagate at the
velocity of 3.81 kms−1, while the Rayleighwave speed
is 2.13 kms−1. The parameters defining the rheology
according to the scheme in Fig. 1 are γ = 1, τr2 = 0,
and τr1 being changed in the range from 0.01µs to
10µs. Themesh is regularmadeof 8000bilinear square
elements.

The fracture energy in the domain is G I
c = 3J

m−2, and it is slightly modified for the shear mode:
G II

c = 2G I
c. The phase-field length parameter is set to

ε = 1mm. The PFM degradation function 	 is chosen
simply the same as in the previous example. The load-
ing f (t) = 1MPa · ζ1(t; 4, 1µs, 4µs, 12µs) accord-
ing to Eq. (27) and the graph in Fig. 9 is applied with a
refined time step of 0.1µs, after an initiation (smoothed
linear) period it is kept constant.

The crack propagation processes are studied in terms
of the phase-field variable. Its distribution determines
the actual position of the crack at each instant, and
its changing in time provides the velocity of the crack
propagation. As the crack tip is not exactly defined a
fixed value 0.9 of the phase-field nodal values is chosen
to identify the physical crack and its change within a
time span. The graphs in Fig. 10 contain calculated val-
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Fig. 7 Distribution of the stress trace [MPa] in the curved rod case, corresponding time instants are: a t = 0.3 ms, b t = 0.45 ms, c
t = 0.55 ms, d t = 0.75 ms, e t = 0.85 ms, f t = 1 ms, g t = 1.1 ms, the fracture energy is G I

c = 3 Jm−2

Fig. 8 Distribution of the stress trace [MPa] in the curved rod case, corresponding time instants, additional to those used in Fig. 7 are:
h t = 1.24 ms, i t = 1.44 ms, j t = 1.55 ms, k t = 1.66 ms, l t = 1.92 ms, the fracture energy is G I

c = 4 Jm−2

ues of this velocity expressed in terms of the Rayleigh
wave speed. It is seen how the parameter τr affects the
crack propagation: the instant of triggering the evolu-
tion of α and also the speed at which the crack elon-
gates.

First, the instants when the cracks start to propa-
gate are observed: approximately t = 30µs for the
smallest values of τr1 gradually increasing tomore than
t = 40µs for the largest selected τr1. The increas-
ing time relaxation parameter has also effect on the
crack propagation. The crack propagates slower, and

also the position of the point where crack changes from
its straight direction to two bifurcated crack moves to
the left. For this symmetric case only one of these two
cracks is obtained and looks like kinking of the original
crack direction.

Four instants were chosen to demonstrate the actual
distribution of the phase-field variable α and pertinent
stress state expressed in terms of stress trace trσσσ and
the norm of the deviatoric stress devσσσ . When plotting
α, the deformations are magnified in order to visualise
the opening character of the crack which is identified
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Fig. 9 Configuration for
the tensile load (a) where
only a half of the domain is
considered in the
calculation (b) exposed to a
prescribed force (c)

( )

( )

μ

(a) (b)

(c)

Fig. 10 Crack propagation velocity in the tensile load case
depending on relaxation time parameter τr1 (the other keeping
zero) in terms of the Rayleigh wave speed vR

insight the light a white zone pertinent to α = 1. The
instants are pertinent, at least approximately, to crack
initiation, straight crack propagation, kinking of the
crack and the end point of the time range t = 100µs.

Graphics in Figs. 11, 12, 13 pertain to the most vis-
cous case. The α plot shows that the crack starts to
kink very early after it starts to propagate. The crack
tip stress concentration tracks the damage towards the
upper face, where later appears compression, caused
by bending. Nevertheless an excess of deviatoric stress
causes the damage to be also initiated at this upper face.

Situation is totally different for the case with small
viscosity shown in Figs. 14, 15, 16. Here, the crack
propagatesmore rapidly and there is a long straight part
of the crack.Only afterwards the crack kinks andfinally
the crack propagation terminates by total separation of
the upper loaded part. The shear stress in the upper layer
is not so large to attract the crack propagation, which
is additionally faster as in the previous case, see also
Fig. 10. Anyhow, the stress concentration close to the
crack tip can be identified with the values correspond-

ing to the formula derived inVodička (2023) for the case
without viscosity. It is used as an simplified approxi-
mation if τri are suffieciently small, and its formula for

the critical stress values: (tr+σσσ)
2
c

2KpG I
c

+ |devσσσ |2c
μG II

c
= −3

2ε	′(0)
is adjusted according to the present data. The relation

(tr+σσσ)
2
c

133.33MPa2mm
+ |devσσσ |2c

80MPa2mm
= 0.75mm−1 is obtained

which is approximately satisfied by the values detected
at the instant of damage initiation: trσσσ ≈ 9 MPa,
| devσσσ | ≈ 3 MPa.

As it was seen, the bifurcated cracks make changes
in the stress distribution possibly leading to zones with
high shear stress where a crackmay be initiated. There-
fore, consideration of the mode mixity in defining the
fracture energy introduced in Eq. (6) is important,
though no detailed description of the phenomenon is
provided here. Additionally, the rheological properties
maymodify the crack formation processes inmaterials.

The results are surely affected by the discretisation.
The mesh size was required to be sufficiently small rel-
ative to the length-scale parameter ε, with the time step
satisfies the CFL condition as mentioned in Sect. 3.3.
Anyhow, it can be checked how the solution behaves for
somehow coarser desicretisations. The solution for the
case with τr1 = 0.1µs (Figs. 14, 15, 16) was recalcu-
lated in two such discretisations and the results in terms
of the phase-field variable α are shown in Figs. 17,
and 18.

Both initiation of the crack propagation and the
crack speed document how mesh refinement improves
the numerical data in refinements made in agreement
with proportionality of time and space discretisation
made in Sect. 3.3.
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Fig. 11 Distribution of the
phase-field variable α in the
tensile load case shown with
a magnified deformation
(×50), corresponding time
instants are: a t = 30µs, b
t = 55µs, c t = 75µs, d
t = 100µs, the time
relaxation parameter
τr1 = 10µs

Fig. 12 Distribution of the
stress trace [MPa] in the
tensile load case,
corresponding time instants
are: a t = 30µs, b
t = 55µs, c t = 75µs, d
t = 100µs, the time
relaxation parameter
τr1 = 10µs

Fig. 13 Distribution of the
norm of deviatoric stress
[MPa] in the tensile load
case, corresponding time
instants are: a t = 30µs, b
t = 55µs, c t = 75µs, d
t = 100µs, the time
relaxation parameter
τr1 = 10µs

4.3 Lateral compression with a shear character

Another situation occurs if the load is applied so that
the pre-crack is loaded as in the shear mode. Such a
case occurs for a known Kalthoff–Winkler experiment,
which is to be considered in this section. The pre-crack
is again supposed to span across a half of the domain
width, shown as �c in Fig. 20. The applied increasing
displacement load is also shown in the same graphics,
the function which controls it is g(t; s) = 16.5 ms−1 ·
1
4 s

(
(t + s)2 − |t − s| · (t − s) − 2 s2

)
for s = 1µs.

Also here, the calculation is simplified by considering
symmetry as shown in part (b) of the figure.

It has to be mentioned that the element size in the
coarsest mesh is larger than the parameter ε, still the
solution seems to be reasonable, only the crack prop-
agation is much smaller. This velocity can also be
checked in Fig. 19.

Similar conditions were also considered in Borden
et al. (2012), Li et al. (2023) and in accordance with
experimental observation a inclined crackwas obtained

computationally. The same situation is considered here,
with a small studyof dependence on the fracture energy.

The initial elastic properties are: Kp = 182.69GPa,
μ = 73.08GPa, the mass density is ρ = 8000 kgm−3.
These parameters cause the P-wave to propagate at the
velocity of 5.65 kms−1, while the Rayleighwave speed
is 2.80 kms−1. The parameters defining the rheology
are γ = 1, τr2 = 1µs, and τr1 = 1µs. The mesh is
regular, made of 62,500 bilinear square elements.

The minimal fracture energy in the domain is G c
c =

2.766kJm−2, so that in calculation there are used the
values G I

c = rG c
c , for r = 1, 2, 4, 8 and respectively

increasedvalue for the shearmode:G II
c = qG I

c, forq =
1, 10. The phase-field length parameter is set to ε =
0.5mm and the same degradation function as before.

The graphs in Fig. 21 contain calculated values of
this velocity expressed in terms of the Rayleigh wave
speed. They show how the fracture energy (expressed
by ratio parameters r and q) affects the crack propa-
gation: the instant of triggering the evolution of phase-
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Fig. 14 Distribution of the
phase-field variable α in the
tensile load case shown with
a magnified deformation
(×50), corresponding time
instants are: a t = 30µs, b
t = 55µs, c t = 75µs, d
t = 100µs, the time
relaxation parameter
τr1 = 0.1µs

Fig. 15 Distribution of the
stress trace [MPa] in the
tensile load case,
corresponding time instants
are: a t = 30µs, b
t = 55µs, c t = 75µs, d
t = 100µs, the time
relaxation parameter
τr1 = 0.1µs

Fig. 16 Distribution of the
norm of deviatoric stress
[MPa] in the tensile load
case, corresponding time
instants are: a t = 30µs, b
t = 55µs, c t = 75µs, d
t = 100µs, the time
relaxation parameter
τr1 = 0.1µs

Fig. 17 Distribution of the
phase-field variable α in the
tensile load case shown with
a magnified deformation
(×50); corresponding time
instants are the same as in
Fig. 14, while the FEM
mesh size and the time step
are four times larger (h = 2
mm τ = 0.4µs)

Fig. 18 Distribution of the
phase-field variable α in the
tensile load case shown with
a magnified deformation
(×50); corresponding time
instants are the same as in
Fig. 14, while the FEM
mesh size and the time step
are two times larger (h = 1
mm τ = 0.2µs)
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Fig. 19 Crack propagation velocity in the tensile load case
depending on discretisation (FEM mesh size h), τr1 = 0.1µs.
The values of the time steps are (in the same order): 0.4µs,
0.2µs, 0.1µs

field variable and also the speed at which the crack
elongates.

It is also observed that decreasing value of frac-
ture energy increases the crack propagation velocity.
Increasing only the G II

c part of the fracture energy also
affects the crack propagation as it suppresses the influ-
ence of the deviatoric part of the stress or strain vari-
ables. With the smallest value of the fracture energy,
there is a different evolution of the analysed crack
speed, which is caused by the change of a crack pat-
tern appearing inside the domain in the calculation:
additionally to the inclined crack which appears at the
pre-crack tip in all cases, there appears also another

Fig. 20 Configuration for
the lateral compression load
(a) where only a half of the
domain is considered in the
calculation (b) exposed to a
given time-dependent force
load (c)

( )

μ

μ

.

.

.

(a) (b)

(c)

Fig. 21 Crack propagation velocity in the lateral compression case depending on fracture energy: a G I
c = rG c

c , keeping G II
c = 10G I

c,
and b G II

c = qG I
c, keeping G I

c = 8G c
c in terms of the Rayleigh wave speed vR
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Fig. 22 Distribution of the phase-field variable α in the lateral compression case, corresponding time the instants: a to j starting for
t = 10µs and the step 100τ = 10µs the fracture energy is G I

c = 2G c
c , G

II
c = 10G I

c

crack caused by the tensile forces at the right side, see
the cracking description in Fig. 34 below.

Crack propagation and pertinent stress distribution
document what affects the processes leading to rup-
ture in this structural element. The first choice of the
parameter pertain to the case of r = 2 and q = 10. It
documents in detail in Figs. 22, 23, 24 how the propa-
gating wave of strain energy inside material causes the
initiation and propagation of the crackwhich is inclined
with respect to the direction of the pre-crack at an angle
of about 2π

5 corresponding to the observations of Bor-
den et al. (2012), Li et al. (2023). In the first of the
figures the series of instants show how the crack prop-
agates. Comparing to the other two where stresses are
shown, it is seenhow theoriginally compressivewave is
reflected as tensional and provokes the crack propaga-
tion initialised by a stress concentration near the crack
tip. Both volumetric and deviatoric stresses contribute
to the overall stress state and thus feed strain energy,
though the contribution of the deviatoric part is reduced
by modifying the shear fracture energy. With an intent
to estimate the strength of the material (with fixed

parameter ε), the general formula of Sect. 4.2 for deter-
mining the critical stress values is used. The current

data provide (tr+σσσ)
2
c

2.021GPa2mm
+ |devσσσ |2c

4.042GPa2mm
= 1.5mm−1

and for damage initiation corresponding to the parts
(b) of Figs. 22, 23, 24 it is verified by the following
values: trσσσ ≈ 1.6 GPa, | devσσσ | ≈ 0.8 GPa. These
values appear approximately near the crack tip for all
snapshots.

The reasonability of the applieddiscretisation is doc-
umented by comparing the results to coarser ones. As
in the previous example, two discretisations with the
doubled mesh size and time step size are used. The
velocity of crack propagation is depicted in Fig. 25 for
three such options.

The results of the finest case, used also in Figs. 22,
23, 24, seem to be adequate for the sequence of refined
meshes and time steps.

The observation is also complemented by plotting
the crack profiles for the coarser meshes in Figs. 26
and 27.

Here, the coarsest mesh result in the former graphic
is larger than the parameter ε, as in the analysis in
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Fig. 23 Distribution of the stress trace [GPa] in the lateral compression case, corresponding time the same instants and fracture energies
as in Fig. 22

Fig. 24 Distribution of the norm of the deviatoric stress [GPa] in the lateral compression case, corresponding time the same instants
and fracture energies as in Fig. 22
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Fig. 25 Crack propagation velocity in the lateral compression
case depending on discretisation (FEM mesh size h), pertinent
to the fracture energy G I

c = 2G c
c , G

II
c = 10G I

c. The values of
the time steps are (in the same order): 0.4µs, 0.2µs, 0.1µs

Sect. 4.2, though the solution is rather satisfactory com-
paring to the finer cases.

The description of cracking ismodified if the param-
eters of fracture conditions are modified, too. If, first,
the fracture energy is increased, then there is not suffi-
cient energy for a massive crack propagation and, com-
paring also to Fig. 21, there appears only a short crack
within the given time range. There are only four snap-
shots selected in Figs. 28, 29, 30 to see that the wave
has passed over the stress concentration at the crack
tip without significant increase of the crack length.

ThemodifiedGc provide
(tr+σσσ)

2
c

8.085GPa2mm
+ |devσσσ |2c

16.17GPa2mm
=

1.5mm−1, and for situation corresponding to the parts
(d) of Figs. 28, 29, 30 it is verified by the values:
trσσσ ≈ 3.3 GPa, | devσσσ | ≈ 1.2 GPa. At the last snap-
shot, the pictures (j), the stresses are substantially lower
so that the crack stopped propagating.

Now, the deviatoric stress part is allowed to con-
tribute to cracking by decreasing the shear fracture
energy. It naturally provides faster crack propagation
documented by the same selected instants (as in the

previous calculation) in Figs. 31, 32, 33. Additionally,
there appears also another crack at the original crack
tip, which, however, is in the compression zone and
thus it is caused by shear. There appears a question
in which physical situation such cracking mechanism
may occur.

Finally, as it was already mentioned, the calculated
crack pattern may be different as obtained in the calcu-
lation with a low fracture energy, where another crack
appeared caused by the tensile forces at the lower right
corner (symmetric case). Such a crackwas not observed
in experimental results, though some numerical data
reference also this Li et al. (2023), one of the rea-
sons might be lowness of the fracture toughness in
calculation. Also this crack, however, is bifurcated as
caused by the tensile force in the previous calculation
in Sect. 4.2. The corresponding graphs for this case are
shown in Fig. 34.

5 Conclusions

A quasi-brittle fracture computational model is intro-
duced for load applied generally causing amixed-mode
cracking. The solution process is controlled by time
dependent displacement or force loadwhich requires to
consider also inertial forces. At the same time, material
is considered with some rheological properties which
includes a kind of damping in strain wave propaga-
tion and alters the process related to crack propagation.
The material viscosity is introduced by an accepted
four parametric model, within which any of the sim-
ple solid-like rheological models like Kelvin-Voigt or
Poynting-Thomson canbe seen as special choiceswhen
the material parameters are accordingly adjusted.

Fig. 26 Distribution of the phase-field variable α in the lat-
eral compression case case shown with a magnified deformation
(×50), the time instants (b), (d), (g), (j) refer to those introduced

in Fig. 22 (compare), the FEM mesh size and the time step are
four times larger (h = 1 mm τ = 0.4µs)
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Fig. 27 Distributionof the phase-field variableα the lateral com-
pression case case shown with a magnified deformation (×50),
the time instants (b), (d), (g), (j) refer to those introduced in

Fig. 22 (compare), the FEM mesh size and the time step are two
times larger (h = 0.5 mm τ = 0.2µs)

Fig. 28 Distribution of the phase-field variable α in the lateral compression case, corresponding time the instants (b), (d), (g), (j) in
Fig. 22, the fracture energy is G I

c = 8G c
c , G

II
c = 10G I

c

Fig. 29 Distribution of the stress trace [GPa] in the lateral compression case, corresponding time the same selected instants and fracture
energies as in Fig. 28

Fig. 30 Distribution of the norm of the deviatoric stress [GPa] in the lateral compression case, corresponding time the same instants
and fracture energies as in Fig. 28
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Fig. 31 Distribution of the phase-field variable α in the lateral compression case, corresponding time the instants (b), (d), (g), (j) in
Fig. 22, the fracture energy is G I

c = 8G c
c , G

II
c = G I

c

Fig. 32 Distribution of the stress trace [GPa] in the lateral compression case, corresponding time the same instants and fracture energies
as in Fig. 31

Fig. 33 Distribution of the norm of the deviatoric stress [GPa] in the lateral compression case, corresponding time the same instants
and fracture energies as in Fig. 31

Fig. 34 Distribution of the phase-field variable α in the lateral compression case, corresponding time the instants (e), (f), (g), (i) in
Fig. 22, the fracture energy is G I

c = G c
c , G

II
c = 10G I

c

The model, of course, requires also parameters per-
tinent to crack formation processes, those which are
stressed by the present approach allow to distinguish
mixity of the fracture mode. Naturally, the values of
such parametersmodify degradation processes inmate-

rials as it was presented within the numerical calcula-
tions, their accurate adjustment and calibration have
to be done in comparison with experimental measure-
ments.
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There were also described some details of the imple-
mentation of the computational approach. Remarking
its basic features, it includes a staggered time stepping
which provided the computational scheme to have a
variational character. And it directly provoked imple-
mentation of sequential quadratic programming to the
algorithm, equipped with the spatial discretisation by a
finite element approach. All such computational details
were put into practice in the in-house MATLAB code.

Following the presented results it is believed that the
computational approach will be adequate also in other
calculations for dynamic crack propagation. Addition-
ally, it is intended to extend the present computational
model to the case which includes also interfacial dam-
age and fracture in a forthcoming paper.
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