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Abstract A multi-phase-field approach for crack
propagation considering the contribution of the inter-
face energy is presented. The interface energy is either
the grain boundary energy or the energy between a pair
of solid phases and is directly incorporated into to the
Ginzburg–Landau equation for fracture. The finite dif-
ference method is utilized to solve the crack phase-
field evolution equation and fast Fourier method is
used to solve the mechanical equilibrium equation in
three dimensions for a polycrystalline material. The
importance of the interface (grain boundary) energy
is analyzed numerically for various model problems.
The results show how the interface energy variations
change the crack trajectory between the intergranular
and transgranular fracture.
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1 Introduction

Interface energy plays an important role in materi-
als science and many engineering applications, such
as adhesion (Yin etal. 2022), void dynamics (Ghaedi
and Javanbakht 2021), wetting (Jafarzadeh et al. 2019),
phase transformations (Levitas and Javanbakht 2011),
and fracture (Jafarzadeh et al. 2019). The interface
energy can be controlled for designing materials with
specific properties and improving the performance
of devices that rely on interfaces, such as electronic
devices, solar cells, and batteries. Understanding the
mechanisms and characteristics of interfacial fracture
is crucial for designing materials and structures with
improved resistance to failure, as well as for develop-
ing strategies to tailor interfacial properties for specific
applications.

The phase-fieldmethod provides a powerful compu-
tational tool to study a range of complex phenomena,
such as plasticity (Levitas and Javanbakht 2012), twin-
ning (Clayton and Knapp 2011, Amirian et al. 2022a,
Amirian et al. 2022b), martensitic phase transforma-
tions (Levitas and Preston 2002, Rahbar et al. 2022,
Shchyglo et al. 2019), damage (Fantoni et al. 2020),
fatigue (Mesgarnejad et al. 2019; Grossman-Ponemon
et al. 2022), and fracture (Msekh et al. 2016; Amiri
et al. 2016; Karma et al. 2001, Hofacker and Miehe
2012, Clayton and Knap 2014, Farrahi et al. 2020,
Jafarzadeh and Mansoori 2020). Within the multi-
phase-field approach for fracture, the crack surfaces
and the solid-solid interfaces each are represented by
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the continuous fields named “order parameter” as a
diffuse boundary with finite thickness, rather than a
sharp and discontinuous surface/interface. The order
parameter in phase-field models have different inter-
pretations. In the context of fracture, cracks represent
narrow regions with a strong variation of the associ-
ated order parameter. Then the phase-field approach is
used to capture crack nucleation, propagation, branch-
ing, and coalescence in a wide range of materials and
structures more efficiently than using sharp interface
methods. The problem of interface energy and inter-
face stresses has been addressed in different phenom-
ena using the phase-field approach (Ghaedi and Javan-
bakht 2021, Jafarzadeh et al. 2019, Levitas and Javan-
bakht 2011). Recently, the surface stresses were incor-
porated into fracture both at small (Levitas et al. 2018,
Jafarzadeh et al. 2020) and large strains (Jafarzadeh
et al. 2022). However, the number of publications con-
sidering the effect of interface energy within the phase-
field approach to fracture is scarce.

Spatschek et al. 2007 presented a continuum the-
ory for elastically induced phase transitions to describe
fracture by using double-well potential. They also gen-
eralized their model to multi-phase simulations. Note
that a comprehensive comparison between single-well
potentials and double-well potentials is presented in
Levitas et al. 2018. A phase-field model for fracture in
ferroelectric polycrystals was presented by Abdollahi
and Arias 2012. They interpolated the critical energy
release rate in a polycrystal between a maximum value
for the inside of the grains and its minimum indicat-
ing the ratio of the critical fracture energy of the grain
boundary to that of the grain interior. By changing this
ratio, they studied the transition between the intergran-
ular and transgranular modes of crack growth. They
used single-well potential for crack in the spirit of
Francfort andMarigo (1998). Oshima et al. (2014) con-
structed a multi-phase-field crack model allowing to
simulate crack propagation in Polycrystalline materi-
als. They used themulti-phase-fieldmodel proposed by
Steinbach and Pezzolla 1999 and utilized the double-
well potential. Hossain et al. 2014 proposed a definition
for the effective toughness of a heterogeneous media
that is a material property, independent of the details of
the boundary condition. They also proposed a numeri-
cal approach to compute the effective toughness. Phase-
field modeling of crack propagation in multi-phase
systems based on Griffith’s theory was presented by
Schneider et al. 2016. They combined the single-

obstacle potential for fracture with a multi-obstacle
potential for multiple grains adopted fromNestler et al.
2005. The comparison between single-obstacle poten-
tial and single-well potential for fracture is made in
Schneider et al. (2016) andmoregeneral andmore com-
prehensive in Jafarzadeh et al. 2022. They concluded
that reaching the grain boundary region, the crack tip
velocity rises because the interfacial energy degrades
additionally Schneider et al. 2016. The same conclu-
sion has been made when crack reached the austenite-
martensite interface (Jafarzadeh et al. 2019). Hansen
Dörr et al. 2019 proposed a phase-field approach for
failure of the interface between two possibly dissimilar
materials where the fracture toughness of an adhesive
interface is smaller than that in the bulk of the mate-
rial. While all previous models use a single-crack order
parameter, a phase-field model with multiple crack
order parameters was introduced by Schöller et al.
2022. Each of the crack order parameters only tracks
the damage in the corresponding phase. This results
in multiple evolution equations, each of which has a
constant crack surface energy. They showed the appli-
cability of themodel to a 3D system. However, all other
studies mentioned above had been conducted in 2D.

Here we propose a new approach based on consid-
ering the interface energy dependent on the fracture
parameter. In the most general case, one can assume
that the interface energy vanishes when crack goes
through the interface. Jafarzadeh et al. 2019 used this
approach to study coupled fracture and martensitic
behaviors.We take themulti-solid-phase potential from
Steinbach 2009 and crack potential from Jafarzadeh
et al. 2022. The current crack potential has the advan-
tages of both single-obstacle potential and single-well
potential.

In the following, vectors and tensors are designated
with boldface symbols. Contractions of tensors A =
Ai j and B = Bi j over one and two indices are A · B =
{Ai j B jk} and A : B = Ai j B jk , respectively. ∇ stands
for the gradient operator.

2 Phase-field approach to fracture in one-phase
material

For the crack order parameter, we introduce φc (sub-
script c stands for crack) and include it later as an
internal variable in the free energy functional. φc char-
acterizes bond weakening in a solid and continuously
describes the sample into the following three regions:
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intact solid (φc = 0), completely broken bonds (φc =
1), and a finite width in which the material is partially
broken (0 < φc < 1). In all these regions the con-
tinuity in displacement field is ensured as a feature
of phase-field approach. The evolution of the dam-
age order parameter occurs mainly in the crack tip
zone. Thus, the damage growth is characterized by the
evolution of the crack phase-field determined by the
Ginzburg-Landau equation.

The free energy density formulation follows the
well-established phase-field approach to fracture (Lev-
itas et al. 2018, Jafarzadeh et al. 2022):

ψ = I (φc)�
e(ε) + A f (φc) + β

2
| ∇φc |2, (1)

where the first term is the elastic free energy as a func-
tion of the strain tensor ε. The second and the third
terms produce fracture energy which are the cohe-
sion and gradient contributions, respectively. �e is
the elastic energy of damage-free strained material.
I (φc) = (1 − φc)

2 is the monotonously decreasing
degradation function from 1 at intact phase (φc = 0) to
0 at the broken phase (φc = 1), which is well-accepted
in the literature (Francfort and Marigo 1998, Levitas
et al. 2018, Jafarzadeh et al. 2022). f (φc) is the interpo-
lation function which is adopted from Jafarzadeh et al.

2022 in the form of f (φc) = kφ2
c+φc
k+1 . However we

choose k = 1 as

f (φc) = φ2
c + φc

2
, (2)

which satisfies the mandatory conditions f (0) = 0
at φc = 0 and f (1) = 1 at φc = 0. This potential
allows for finite region of the damaged zone in con-
trast to the single-well potential f (φc) = φ2

c as a spe-

cial case of f (φc) = kφ2
c+φc
k+1 in the limit of infinite

k. This will be shown in Eq.9 below. In addition, it
producesmore physical equilibrium stress–strain curve
than single-obstacle potential f (φc) = φc as a spe-

cial case of f (φc) = kφ2
c+φc
k+1 where k = 0. The com-

plete analysis can be found in Jafarzadeh et al. 2022. A
and β ≥ 0 are the maximum cohesion energy for the
completely-damaged state and the gradient coefficient,
respectively. Both will be determined below.

The Ginzburg–Landau evolution equation which
describes crack nucleation and propagation reads

φ̇c = −Lδψ/δφc = −L

(
∂ψ

∂φc
− ∇ ·

(
∂ψ

∂∇φc

))

= −L

(
∂ψ

∂φc
− β∇2φc

)
, (3)

where L is the kinetic coefficient and we used the func-
tional derivative δψ/δφc.

The calculation of the elastic energy from unloaded
state to completely damaged state gives us the maxi-
mum cohesion energy, A ( Levitas et al. 2018):

∫ εc

0
σ : dε = A, (4)

where σ = ∂ψ
∂ε

is the stress tensor and εc is the strain
at φc = 1. For uniaxial tension, stress work is equal
to the area under the stress–strain curve (Levitas et al.
2018).

The elastic stressworkwithin the volume S(2d) cor-
responding to two diffuse crack volumes, where d is
defined as surface width length scale, is equal to the
crack resistance energy G which is defined per unit
area. Thus, A(2Sd) = GS and we obtain

A = G

2d
. (5)

The fracture energy resulting from creation of two
surfaces is the non-mechanical energy excess with
respect to the intact phase. On the other hand, the sta-
tionary solution of Ginzburg-Landau equation Eq. 3
results in ψc = ψ∇ , which means that the excess of
the local energy is equal to the gradient energy at equi-
librium (Levitas et al. 2018). Then we can evaluate the
fracture energy in 1D as follows

G =
∫ ∞

−∞
(A f + ψ∇)dζ = 2A

∫ ∞

−∞
f dζ

= 4A
∫ 0

−∞
f dζ = 4A

∫ 1

0
f
dζ

dφ
dφ

= 2
√
2Aβ

∫ 1

0

√
f dφ = 2

√
2AβY, (6)

where ζ is in the direction of normal to the diffuse
planes and Y := ∫ 1

0

√
f dφ is a number less than unity

that can be evaluated, at least numerically, for any inter-
polation function f (φc). It follows fromEq. 6, allowing
for Eq. 5 that:
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β = G2

8AY 2 = Gd

4Y 2 , (7)

where for the current potential, Eq. 2, gives β =
0.708Gd.

Note that at nano scale the elastic stress work within
the volume Sd should be equal to the created sur-
face energy. Thus, ASd = 2γ S, where γ is the sur-
face energy per unit area. In addition,

∫ ∞
−∞(A f +

ψ∇)dξ = 2γ explains the difference between the
nanoscalemodel (Levitas et al. 2018)where the fracture
energy is described purely by surface energy (A = 2γ

d

and β = γ d
4Y 2 ), and macroscale models where (A = G

2d

and β = Gd
4Y 2 ).

Finally, we obtain the free energy as:

ψ = (1 − φc)
2 1

2
ε : C : ε

+ G

2d

(
φ2
c + φc

2
+ 0.708d2 | ∇φc |2

)
, (8)

where quadratic elastic energy is used and C is elas-
tic moduli tensor of the intact state. Here, the elas-
tic energy does not prevent fracture under compressive
loads which is avoided in the following analysis. A new
phase-field approach to fracture which treats the com-
pressive loads as well is currently under development.
The equivalence of the local energy and the gradient
energy at free surfaces (the second and the third terms
in Eq. 8) is analytically solved in 1D which gives the
stationary distribution of φc = φc(ζ ) in the form of

{ √
φc+√

φc+1
1+√

2
= e−0.42 |ζ |

d if ζ < ζt ;
0 if ζ > ζt ,

(9)

where φc = 1 corresponds to the separation plane at
ζ = 0 and ζt = 1.65d is the transition plane from the
damaged state to the intact state. More detailed deriva-
tion of Eq. 9 can be found in Jafarzadeh et al.2022.

3 Multi-phase-field approach for for solid-solid
phase transformation

Multi-phase-field approach is used to deal with an arbi-
trary number of different phases or grains of the same
phase, but distinct by their orientation. In this section,
we do not consider solid-solid phase transformation,
thus the evolution equations for φα is not used. There-
fore, all we need from the multi-phase-field model is

the interface energy contribution and interface profile
which are taken from Steinbach’s model (Steinbach
2009). Figure 1 shows the sharp and diffuse description
of the interfaces and a triple junction in a three-phase
system.

A set of order parametersφα is employed to describe
different phases/grains in a multi-phase/
polycrystalline material. The α = 1, . . . , N subscripts
stand for N number of solid phases. This set of the order
parameters is used to distinguish each grain/phase from
others either by its orientation or phase designation or
both. φα continuously changes in the range from 0 to
1. φα = 1 in the pure phase α, 0 < φα < 1 at the inter-
face between phase α and other phase(s), and φα = 0
elsewhere.

The interface free energy per unit volume is given
by

ψ int =
N−1∑
α=1

N∑
β=α+1

4σαβ

ηαβ

[
φαφβ − η2αβ

π2 ∇φα∇φβ

]
,

(10)
N∑

α=1

φα = 1, (11)

where σαβ and ηαβ are the interface energy and inter-
face width corresponding to each pair of different
phases.

In a 1D case the interface energy for dual phase-
field interfaceψ int

1D (N = 2, φ := φ2 = 1−φ1,∇φ2 =
−∇φ1, η := η12, and σ := σ12) reduces to

ψ int
1D = 4σ

[
1

η
φ(1 − φ) + η

π2

(
∂φ

∂ξ

)2
]

, (12)

where ξ is in the direction of normal to the diffuse
binary interface planes (Steinbach 2009). The equiva-
lence of the local energy and the gradient energy (the
first and the second terms in Eq. 12) at stationary inter-
faces gives the stationary distribution of φ = φ(ξ) in
the form of (Steinbach 2009)

φ(ξ) = 1

2
− 1

2
sin

(
π

η
ξ

)
, (13)

where φ(ξ) = 0 and 1 correspond to the two differ-
ent solid phases (grains) at ξ = η

2 and− η
2 , respectively.
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Fig. 1 Schematics of the a
sharp and b diffuse interface
in multi-phase-field
approach

4 Phase-field approach to fracture in multi-phase
material

4.1 Order parameters

The coupled description of fracture phase-field with
description of the solid ↔ solid phase transformation
by means of the sum convention upon all phase-field
φc + ∑N

α=1 φα = 1 is presented in Schneider et al.
2016. This leads to Allen-Cahn equations for each sin-
gle phase in the multi-phase system, including broken
phase, with different mobilities. In their model, in the
variation of the functional with respect to the crack
phase-fieldφc, the interface energy of any arbitrary pair
of solid phases σαβ is not listed explicitly. However, the
evolution equation for the order parameters is coupled
with the dual interactions between all phases. There-
fore, the interface energy is taken into account for the
evolution of the crack phase-field, even if the mobility
of the solid-solid interfaces vanishes.

The main feature of the current model is to decou-
ple the description of solid ↔ solid phase transfor-
mation from the description of fracture. The kinetic
and thermodynamic coupling of fracture with solid ↔
solid transformation is introduced in terms of energy
description, as will be shown below. The fracture order
parameterφc is equal to 0 in solid and 1 in broken phase.
Solid phases are described by N order parameters φα

such that φα = 1 in phase α and 0 in all other phases
as discussed in the Sect. 3. For the solid ↔ solid phase
transformations the sum constraint is imposed (Stein-
bach 2009)

N∑
α=1

φα = 1. (14)

In Schneider et al. 2016 the fracture order parame-
ter φc is presented geometrically along with all solid

order parameters φα and is included in the summation
rule φc + ∑N

α=1 φα = 1 as shown in Fig. 2a. In con-
trast, in our approach φc is described independent of
φα as shown in Fig. 2b and does not belong to the solid
order parameter plane. Figure 2b shows the geometri-
cal description of Eq. 14 which is a plane in the order
parameter space passing through all the solid phase
order parameters. The φc-line (shown as a vector in
Fig. 2b) starts from the solid plane where φc = 0 and∑N

α=1 φα = 1, and ends at the origin which is the bro-
ken phase with φc = 1 and still

∑N
α=1 φα = 1. In this

waywe treat fracture as bond breaking rather than solid
to crack phase transition or solid to gas phase transfor-
mation (Farrahi et al. 2020). Thus, diffuse crack sur-
face is still a solid material with partially broken state.
This allows us to capture surface induced phenomena
(Jafarzadeh et al. 2019).

4.2 Energy description

We define the interface energy as the excess of the
energy at the interface with respect to bulk, if the inter-
face and bulk are in the same level of damage. The
“if” is because of the surface energy contribution in
the case of damage, as the damaged interface has higher
energy than the intact interface. Based on this defini-
tion, we assume that in the equilibrium state, the excess
of the energy in the interface decreases with increase in
damage. Under such assumption σαβ is replaced with
(1 − φc)

2σαβ as shown in Fig. 3. In the intact solid
where φc = 0 the interface energy is fully established
and it degrades until the full damage happens where
φc = 1 and the interface energy becomes zero. With
such assumptions, the effect of the interface energy on
driving force of the crack propagation is already taken
into accountwhich is especially importantwhen a crack
propagates through the interface. Here we assume that
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Fig. 2 Schematics of the
order parameter space and
the transformation paths. a
Model used in Schneider
et al. 2016, where fracture
and all the transformation
paths lie within the same
plane. The figure is shown
for two solid phases
(N = 2) and one broken
phase at the top corner. b
Current model for which
fracture path is decoupled
from the transformation
paths between solid phases.
The figure is shown for
three solid phases (N = 3)
and one broken phase at the
origin

Fig. 3 Schematic of the interface energy for equilibrium inter-
face. The area under each curve is equal to the degraded interface
energy, (1 − φc)

2σαβ

the interface width does not depend on damage param-
eter i.e., it does not depend on how strong the atomic
bonds are.

Taking into account the above assumptions, the gen-
eral free energy description for fracture and solid ↔
solid phase transformation reads

ψ = (1 − φc)
2 1

2
ε : C : ε

+ G

2d

(
φ2
c + φc

2
+ 0.708d2 | ∇φc |2

)

+(1 − φc)
2
N−1∑
α=1

N∑
β=α+1

×
[
φαφβ − η2αβ

π2 ∇φα∇φβ

]
, (15)

N∑
α=1

φα = 1, (16)

where all material properties are phase-dependent and
interpolated for any intermediate state as follows

C =
N∑

α=1

hαCα, (17)

G =
N∑

α=1

hαGα, (18)

d =
N∑

α=1

hαdα. (19)

The interpolation function for the parameters has the
following general form

hα = g(φα)∑N
β=1 g(φβ)

, (20)

which satisfies

N∑
β=1

hα = 1, (21)

and

∂hα

∂φα

= ġ(φα)∑N
β=1 g(φβ)

. (22)

g(0) = 0 and g(1) = 1 need to be satisfied as well.
Thus, g(φα) can be chosen as

g(φα) = φα, φ2
α, φ2

α(3 − 2α), .... (23)

In fact, g(φα) = φα gives the relative fraction of the
solid phase α and Eq. 15 reduces to Eq. 8 in the bulk
(where without loss of generality φα = 1). In the
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Ginzburg-landau equation for fracture, the interface
energy of the solid phases σαβ is explicitly included
because it is degraded during fracture as shown in
Eq. 15. This is in agreement with the model in Schnei-
der et al. 2016 but treated differently. If the elastic
moduli are constant and homogeneous, then the stress
field is not affected by the grain boundaries, however
by reaching the grain boundary region, the crack tip
velocity rises because the interface energyσαβ degrades
additionally and consequently contributes to the driv-
ing force for crack growth. In a similar way this is
shown for the case with martensitic phase transforma-
tion in Jafarzadeh et al. 2019.

One the other hand, the effect of different material
parameters of different solid phases, such as fracture
energy, on the deriving force for solid-solid phase trans-
formation is taken into account. For example, it was
shown that the difference between surface energies of
martensite and austenite leads to wetting of the crack
surface by martensite (Jafarzadeh et al. 2019).

Finally, we end up with only one evolution equa-
tion for fracture, Eq. 3, with the following free energy
formulation

ψ = (1 − φc)
2 1

2
ε : C : ε

+ G

2d

(
φ2
c + φc

2
+ 0.708d2 | ∇φc |2

)

+(1 − φc)
2
N−1∑
α=1

N∑
β=α+1

8σαβ

ηαβ

φαφβ; (24)

where, for simplicity, the equivalence of the local
potential term and gradient term is taken into account
(Steinbach 2009, Farrahi et al. 2020). If the fracture
is considered in polycrystalline material with equal
grain boundary width η and grain boundary energy σ

between any neighbor grains the Eq. 24 reduces to

ψ = (1 − φc)
2 1

2
ε : C : ε

+ G

2d

(
φ2
c + φc

2
+ 0.708d2 | ∇φc |2

)

+(1 − φc)
2 8σ

η
φ(1 − φ), (25)

where the last term is 0 inside of the grains and has
symmetric variation within the grain boundary. Similar
procedure can be followed if one wants to use double-
well potential for the interface energy which leads to

ψ = (1 − φc)
2 1

2
ε : C : ε

+ G

2d

(
φ2
c + φc

2
+ 0.708d2 | ∇φc |2

)

+(1 − φc)
2 64σ

η
φ2(1 − φ2). (26)

5 Results and discussions

5.1 Computational framework

The complete set of equations is implemented in Open-
Phase [32] and solved to obtain the evolution of the
crack and mechanical fields. The mechanical equi-
librium problem is solved using the Khachatryan’s
elasticity model (Khachaturyan 1983) and the Fourier
solver algorithm similar to Hu and Chen 2001. The
periodic boundary conditions imposed by the Fourier
spacemechanical equilibrium solution require periodic
simulation geometries. Therefore, periodic simulation
geometries have been used in all simulations in this
study. A 3.7 GHz (10 core) CPU was used to con-
duct the simulations. The 2D and 3D simulations lasted
about 1h and 1 day, respectively.

We highlight again that in the following examples
the description of an actual grain growth is avoided and
concentration is on the crack propagation. This is awell
justified assumption because fracture and grain growth
do not necessarily have the same order of kinetics. The
coupled equations are: Ginzburg-Landau equation for
crack in Eq. 3 alongwith the free energy in Eq. 15, kine-
matics ε = 1

2 (∇u+∇uT ), constitutive law σ = C : ε,
and equilibrium equations ∇ ·σ =0. u is displacement
vector and superscript T stands for transpose opera-
tor. The grain structure is introduced by Voronoi tes-
sellation in a periodic 100nm × 100nm unit cell. The
elastic moduli for the linear elastic material are taken
as C11 = C22 = C33 = 169GPa, C12 = C13 =
C23 = 138GPa and C44 = C55 = C66 = 15.5GPa.
The kinetic coefficient is taken a very small value as
L = 0.05(GPa ·s)−1 (Unless otherwise stated.) so that
the crack growth is quasi-static. The strain of ε = 0.023
is applied at the lateral edges perpendicular to the ini-
tial crack line (in 2D examples) or crack surface (in 3D
examples). To account for the interface energy cross
effect with the surface energy we vary interface energy
in different examples but keep the surface energy con-
stant at 1N/m. Interface width and crack surface width
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Fig. 4 Fracture phase-field
for different grain boundary
σ energy and kinetic
coefficient L

are η = 3nm and d = 6nm. Equation 9 is used to
introduce diffuse form of the initial crack surfaces at
the middle of the simulation cells. Equation 13 is used
to introduce a fully established interface in the ini-
tial state of a planar interface. However, for triple and

higher junctions there is no analytical solution avail-
able. Then, the diffuse interface is established numer-
ically by allowing the system reaching its equilibrium
configuration by phase-field evolution.
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5.2 2D example

In the first example we consider a straight crack line
with a length of 10nm (see Fig. 4a and f for the colour
legend). Figure4b–d shows the crack shape at the end
of the load for different values of the interface energy.
In Fig. 4b the interface energy has negligible effect
on the crack path. In this regime crack goes through
the grains leading to transgranular fracture. In Fig. 4c,
crack goes both through the grain and along the grain
boundaries. In this regime, both transgranular and inter-
granular fracture are energetically comparable. How-
ever, in Fig. 4d, crack is mostly going through the
grain boundaries rather than through the grains interior,
which indicates purely intergranular fracture. These
three cases show how the interface energy can affect
the crack propagation direction and crack configura-
tion. The higher interface energy material has the more
deviation of the crack path from a straight line to the
direction of the oblique grain boundary occurs. The
effect of crack kinetics is shown in Fig. 4e where the
damage zone is larger due to increased crack mobility
compared to the example shown in Fig. 4c.

5.3 3D example

In order to emphasize the crack in 3D visualization, in
this section the crack is shown by a red colour contour
where φc < 0.9 and the grain boundaries are shown
in gray with reduced opacity. Figure 5 shows the grain
structure with 15 different colours identifying 15 indi-
vidual grains.

5.3.1 Centre-cracked plate

In this example a straight through-thickness crack sur-
face with a length of 10nm (see Fig. 6a) is considered.
Figures 6b–d show the crack shape at the end of the
load for different values of the interface energy. In
Fig. 4b where the interface energy is small, the crack
is controlled by mechanical stresses and goes straight
through the grains interior. In Fig. 4c,d crack trajec-
tory is controlled both by elastic energy and interface
energy, where higher interface energy leads to more
broken grain boundaries. The fracture regime changes
from transgranular fracture for low grain boundary
energy (interface energy) to intergranular fracture for
high grain boundary energy. The effect of crack kinetics

Fig. 5 Grain structure for fracture simulations

is illustrated by comparing Fig. 4c and Fig. 4e. Similar
to the 2D case the higher crack mobility leads to larger
damage zone.

5.3.2 Penny-shaped crack

In this example a fully embedded circular crackwith the
radius of 10nm is introduced as shown in Fig. 7a. Fig-
ures 7b–d show the crack shape at the end of the load for
different values of the interface energy. Figure 7b shows
that the mechanical load is not sufficient for the crack
to evolve even though there is a little interfacial driving
force σ = 0.1N/m for fracture. Figure 7c shows the
importance of interface energy in fracture: the crack
does not evolve with σ = 0.1N/m but evolves with
σ = 1N/m under the same load. Figure 7d shows
that the larger interface energy leads to larger damaged
area. The effect of kinetic coefficient is shown in Fig. 7e
similar to the previous examples.

6 Conclusion

A multi-phase-field approach for fracture is presented.
Themodel is applicable but not limited to the polycrys-
talline materials where there are solid-solid interfaces
between the grains or phases.

The model has the following novel features:
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Fig. 6 Fracture phase-field
for different value of grain
boundary σ energy and
kinetic coefficient L

(1) The interface energy is included from the very
beginning into the model description. The free
energy includes one additional term for the inter-
face energy which degrades in the crack region.

(2) The contribution of the interface energy is explicitly
taken into Ginzburg-Landau equation for fracture.

Thus, the elastic energy release rate is not the only
driving force for fracture but the relaxation of inter-
face energy during damage evolution also drives the
crack. The results can also be interpreted in terms
of the classical fracture mechanics, Ge > �G,
where Ge is the elastic energy release. There are

123



Multi-phase-field approach to fracture 85

Fig. 7 Fracture phase-field
for different value of grain
boundary σ energy and
kinetic coefficient L

two options for the change in surface energy of the
crack, �G: for crack propagating through the bulk
�G = G and for crack propagating through the
interfaces �G = G − σ . This means that in the
current model the elastic energy threshold for frac-
ture is lower if the interface energy relaxes during
damage.

(3) The finite difference method is utilized to solve the
complete system of the phase-field and mechan-
ics equations in 2D and 3D for a polycrystalline
material. The importance of the interface (grain
boundary) energy is analyzed numerically for var-
ious model problems. The results show how the
intergranular fracture is promoted by the high inter-
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face energy, while for low interface energy, crack
is mostly controlled by the elastic energy release.

Note that other continuum-based approaches like peri-
dynamics have shown promising results in fracture
problems (Mehrmashhadi et al. 2020). Zhang et al.2018
used peridynamics approach to study a computational
polycrystalline structure with the same average grain
size as the samples used in experiments. Their peri-
dynamic results helped explain the reasons behind the
observed failure front supershear propagation speed,
and the subsequent transition to sub-Rayleigh propa-
gating localized cracks. They found that the presence
of microstructure can be “protective” against dynamic
fracture because material interfaces and anisotropy can
slightly disperse waves that cause damage
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