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Abstract In this article, the nonclassical transient

heat propagation process in a cracked strip is inves-

tigated by Guyer–Krumhansl (G–K) model, which

incorporates both the time lagging behavior and the

spatially nonlocal effect. The impulsive thermal

loading as well as cyclic loading exerted on the top

bounding surface are examined to explore the non-

Fourier thermal characteristics. By means of the

Laplace transform and Fourier transform, the govern-

ing partial differential equations subjected to mixed

boundary conditions are converted to a group of

singular integral equations. With the aid of numerical

Laplace inversion, the transient temperatures are

calculated to make comparisons of thermal responses

determined by Fourier’s law, Cattaneo–Vernotte (C–

V) equation, and G–K model. The numerical results

display the specific thermal behaviors of G–K model

in the cracked medium and demonstrate the G–K

model’s capabilities in eliminating the unrealistic

phenomena accompanied by C–V equation. Our

research would contribute to achieving a better

understanding of the transient heat conduction in

small-sized systems or composites at the macroscopic

scale.

Keywords Guyer–Krumhansl model � Crack �
Fourier transform � Laplace transform

1 Introduction

Recent rapid development in a broad range of thermal

management, especially the miniaturizations of mod-

ern devices, demands higher accuracy in quantifying

the transient heat transportation process (Chen 2021;

Wang and Han 2012a). The constitutive law of

classical Fourier’s heat conduction theory, which is

established on the scaling relation between heat flux

and temperature gradient empirically, has been suc-

cessfully employed in most conventional engineering

applications, especially these concerning macroscopic

temporal or spatial scales. However, for some extreme

cases, like the thermal processes involving very low

temperatures, ultrafast heating, micro/nano systems,

or heat conduction in biological composites with

complex inner structures, Fourier’s law may break
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down and fail to estimate the accurate temperature

level (Wang and Li 2013). For instance, as the ultrafast

laser pulse duration shortened to picosecond or

femtosecond, noticeable discrepancies emerged

between the prediction of Fourier’s law and experi-

mental measurement of the surface temperature of

gold films heated by laser beams (Qiu and Tien 1992),

which is attributed to the fact that the processing

period becomes comparable to the time for building

local thermal equilibrium and thus the heat trans-

portation speed cannot be neglected anymore.

The parabolic governing equation of Fourier’s law

inherently implies heat travels at an infinite speed and

any disturbance at one point can be detected instan-

taneously at any distance within the body (Onsager

1931), which was noticed by Onsager as early as 1931.

In 1944, Peshkov first observed the thermal wave

(second sound) in helium II below 2.19 Kevin

(Peshkov 1944). Afterward, the thermal wave heat

transportation phenomena were observed in solid He

(Ackerman et al. 1966), NaF (McNelly et al. 1970;

Jackson et al. 1970), semimetal bismuth (Narayana-

murti and Dynes 1972), and SrTiO3 (Hehlen et al.

1995). Particularly, except for these findings at very

low temperatures, recent experimental progress in

observing the thermal wavelike motion was made in

graphite over 100 K (Huberman et al. 2019) and

200 K (Ding et al. 2022). Apparently, these abnormal

thermal behaviors cannot be explained by Fourier’s

law. In order to take the thermal wave propagation into

consideration, Cattaneo and Vernottee independently

proposed the C–V model by introducing a thermal

relaxation time and assuming the establishment of the

heat flux was behind the temperature gradient by a

finite time (Cattaneo 1958; Vernotte 1958), which is

an intrinsic material property and determined by the

energy carrier’s collisions.

Although C–V theory is able to measure the thermal

inertia effect, some physical contradictions and short-

comings exist in this model. For example, the

temperature solution of C–V theory would predict

very steep wave fronts and overshooting problems,

i.e., the thermal level can exceed the initial and

boundary temperatures, which implies the heat trans-

fer from cold area to hot one occurs and violates the

second law of thermodynamics (Yu et al. 2016). Based

on C–V theory, Tzou (1995) proposed the famous

Dual-phase-lag model via introducing another thermal

relaxation time into the temperature gradient, which

can remove the discontinuous sharp wave fronts (Yu

et al. 2016). By considering the microstructural

interactions and the certain time for achieving the

local thermal equilibrium, DPL theory accommodates

the electron–phonon interactions in metals and pre-

dicts well with the experimental measurements in

ultrafast laser heating of gold films (Tzou 2014).

Another situation where the C–V theory is not

applicable is the very low temperature condition,

where the ballistic transport takes effect. The C–V

model fails to describe the thermal behaviors in the

non-metallic Bi or NaF pure crystals (Zhukovsky and

Srivastava 2017). The ballistic heat transport is more

likely to occur in nano-sized structures, like nanofilms

or nanowires, where the mean free path of phonons or

electrons approaches or exceeds the characteristic

dimensions. By solving the linearized Boltzmann

equation, Guyer and Krumhansl (1966a, b) derived the

nonlocal formulation of C–V model, which incorpo-

rates Fourier’s diffusion, thermal wave as well as

ballistic transportation. The so-called G–K model

prompted the establishment of phonon hydrodynamics

(Xu 2021, 2022). It agrees well with the experimental

observations for heat conduction in semiconductors

and is capable to predict the effective thermal

conductivities of nanowires or silicon films. Sch-

warzwälde et al. (2018) solved the G–K equation for

thermal flux with a slip boundary condition and

demonstrated its ability in capturing the experimental

data for effective thermal conductivity of rectangular

nanowires. Beardo et al. (2019) adopted the finite

element method to study the G–K model and discov-

ered it agreed well with the experimental measure-

ments of thermal conductivity of compact and holey

silicon thin films in a wide range of sizes and

temperatures. Beyond its successful applications in

very low temperature conditions or nano areas, recent

findings suggest G–K model can explain the unclas-

sical heat conduction for macroscopic samples at room

temperature. Ván et al. (2017) conducted a series of

heat pulse experiments at room temperature with

macroscopic-sized samples, like rocks, metal foams,

and porous materials, and noticed the measured

transient temperatures did not follow Fourier’s law

but can be well explained by the G–K model.

It is well-known that microcracks and other imper-

fections can be easily induced in the materials’

fabrication process or loading period, especially

during cyclic heating and cooling. The existence of
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cracks would disturb the original temperature field and

arouses potential overheating in materials, which

should be avoided especially for the small-sized

structures. The intense thermal energy accumulations

around the crack tip may elevate the thermal stresses

to the extent of exceeding the thermal fracture

resistance. Therefore, extensive studies (Jin and Noda

1994; Itou 2000; Choi 2017; Jesch-Weigel et al. 2023)

concerning the crack problem under thermal loading

were performed. In the past decade, non-Fourier heat

conduction received increasing attention and was

adopted to solve the transient thermal and fracture

problems in various materials. Wang and Han (2012b)

utilized the hyperbolic C–V heat conduction theory to

study the heat conduction near an interface crack in bi-

layered media made of platinum and quartz glass.

They found the relaxation time has a pronounced

effect on the thermal propagations by converting the

diffusing behavior to wave behavior. Fu et al. (2014)

adopted the C–V theory to illustrate the thermoelastic

analysis of a long solid cylinder with a circumferential

crack. Guo et al. (2016) employed the DPL theory to

study the inertia effect for heated crack and thermally

insulated crack, which corresponded to the model I

and II crack problem, respectively. The axisymmetric

problem of a penny-shaped crack embedded in an

infinite body was solved by Laplace transform and

Hankel transform. Zhang and Li (2017) applied the

fractional C–V heat conduction theory to solve the

circumferential crack problem in a hollow cylinder,

where the inner surface was subjected to a thermal

shock and the outer surface was adiabatic. Wen et al.

(2022) studied the transient temperature response

influenced by the oblique cracks in composites by

DPL theory. The finite difference method coupled

with an extended boundary correction algorithm was

employed to solve the crack problem in fiber-rein-

forced materials at the macroscale.

It is worth noting the above studies of crack

problems are confined to the C–V theory or DPL

model, while the research investigating the transient

heat conduction in the cracked medium by G–K model

has not been reported yet. The interplay mechanism of

crack’s disturbance and G–K heat conduction remains

unknown, which is indispensable in revealing the

transient thermal behaviors concerning time lagging

and the nonlocal effects. In this work, we consider the

crack problem under impulsive and cyclic loading by

G–K model. The Fourier transform and Laplace

transform are utilized to reduce the problem to a

group of singular integral equations, then the Laplace

numerical inversion is applied to obtain the transient

temperatures.

2 The problem and basic equations

As shown in Fig. 1, consider a typical crack problem

under sudden thermal shock. The strip contains a

completely thermal insulated Griffith crack of length

2c, which prohibits the penetrations of heat flows

across the crack faces and thus perturbing the one-

dimension heat conduction. For simplicity, the coor-

dinate system is established along the crack line with

the origin locates at the crack’s midpoint. Initially, the

whole strip is at the ambient temperature T0. Since

t ¼ 0, sudden thermal shocks are exerted on the top

surface y ¼ h1, while its bottom surface y ¼ �h2

keeps at the ambient temperature T0.

The Heaviside step function type impulsive thermal

shock as well as cyclic thermal loading are examined

in this work, hence the top surface boundary condi-

tions are expressed by:

Tðy ¼ h1; tÞ ¼
TSHðtÞ; Impulsive Loading

TS þ ðTS � T0Þ sin
2p
tp

t

� �
; Cyclic Loading

8<
:

ð1Þ

where HðtÞ is the Heaviside step function and tp is the

Fig. 1 The cracked strip subjected to thermal shocks
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period of sine thermal loading. And the bottom surface

boundary condition is:

Tðy ¼ �h2; tÞ ¼ T0 ð2Þ

To capture the two-dimensional transient heat

conduction process, Fourier’s law provides a satisfac-

tory evaluation for most macroscopic problems.

However, for extreme conditions involving very low

temperature, ultrafast heating process, or heat con-

duction in micro/nano systems, the typical Fourier’s

law breaks down. In this work, we employ the Guyer–

Krumhansl model to investigate the transient heat

conduction problem in the cracked medium, which

obeys (Xu 2021, 2022):

sR
oq

ot
þ q þ krT ¼ n2 r2q þ 2rðr � qÞ

� �
ð3Þ

where sR is the relaxation time, n is the thermal

nonlocal length, r2 is the Laplace operator. It is worth

noting that when n ¼ 0, the model is reduced to C–V

theory, and when sR ¼ n ¼ 0, it can be degraded into

Fourier’s law. To obtain the governing equation of the

temperature field for G–K model, consider the local

energy balance equation without internal heating

source:

�r � q ¼ qcv
oT

ot
ð4Þ

where q is mass density and cv is specific heat.

Substitute Eq. (4) into Eq. (3), and then take the

divergence of both sides, the heat flux vector can be

eliminated. Hence the governing equation in terms of

temperature can be obtained as:

oT

ot
þ sR

o2T

ot2
¼ k

qcv
r2T þ 3n2 o

ot
r2T ð5Þ

At the crack line, the temperature and its gradient

are continuous except for the crack segment, hence the

governing equation needs to satisfy the following

thermal boundary conditions besides Eqs. (1) and (2):

oTðx;0Þ
oy

¼0 ð xj j�cÞ

Tðx;0þÞ¼Tðx;0�Þ; oTðx;0
þÞ

oy
¼oTðx;0�Þ

oy
ð xj j[cÞ

ð6Þ

For the sake of convenience, the non-dimension

variables are introduced:

ðx0; y0; h01; h02; n
0; c0Þ ¼ ðx; y; h1; h2; n; cÞ

lc
;

T 0 ¼ T � T0

TS � T0

;

ðt0; s0R; t0pÞ ¼
ðt; sR; tpÞ
l2c=a

ð7Þ

where lc is the characteristic length, a ¼ k=qcv is the

thermal diffusivity. Then Eq. (5) can be rewritten to:

oT 0

ot0
þ s0R

o2T 0

ot02
¼ ð1 þ 3n02

o

ot
Þr2T 0 ð8Þ

3 Solution procedures

In this section, the partial differential Eq. (8) is solved

by the integral transform method. The employed

Fourier transform and Laplace transform are formu-

lated as:

gðsÞ ¼
Z1

0

gðtÞ e�stdt; gðtÞ ¼ 1

2pi

Z
Br

gðpÞ estds ð9Þ

f ðxÞ ¼
Z1

�1

f ðwÞ e�iwxdw; f ðwÞ ¼ 1

2p

Z1

�1

f ðxÞeiwxdx

ð10Þ

where Br is the Bromwich path, s; w are the Laplace

and Fourier transform variables, respectively. Utiliz-

ing Laplace transform, the dimensionless governing

equation is transformed to:

o2T 0

ox02
þ o2T 0

oy02
¼ 1 þ s0Rs

1 þ 3n02s
sT 0 ð11Þ

And the boundary conditions at the top and bottom

surfaces in the Laplace transformation space are:

T 0ðy0 ¼ h01; sÞ

¼
1=s; Impulsive Loading
1

s
þ

2p=t0p
ð2p=t0pÞ

2 þ s2
; Cyclic Loading

8<
:

ð12Þ

T 0ðy0 ¼ �h02; sÞ ¼ 0 ð13Þ

while the remaining boundary conditions keep the

same with Eq. (6).
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For the crack problem, the solution of Eq. (11) can

be obtained with the help of the superposition

principle (Jin and Noda 1994), shown as:

T 0ðsÞ ¼ T 0
1ðsÞ þ T 0

2ðsÞ ð14Þ

where T 0
1ðsÞ denotes the temperature solution for the

strip subjected to the same boundary conditions but

containing no crack, and satisfying the following

ordinary differential equation and the boundary

conditions:

d2T 0
1

dy02
¼ 1 þ s0Rs

1 þ 3n02s
sT 0

1 ð15Þ

T 0
1ðy0 ¼ h01; sÞ

¼
1=s; Impulsive Loading
1

s
þ

2p=t0p
ð2p=t0pÞ

2 þ s2
; Cyclic Loading

8<
:

ð16Þ

T 0
1ðy0 ¼ �h02; sÞ ¼ 0 ð17Þ

Therefore, the solution is expressed by:

T 0
1ðsÞ ¼ #1ðsÞe�qy0 þ #2ðsÞeqy

0
;

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

1 þ s0Rs

1 þ 3n02s

s
ð18Þ

For the impulsive loading,

#1ðsÞ ¼ � e�qh0
1e�2qh0

2

sð1 � e�2qðh1þh2Þ0 Þ
;

#2ðsÞ ¼
e�qh0

1

sð1 � e�2qðh1þh2Þ0 Þ

ð19Þ

For the cyclic loading,

#1ðsÞ ¼ � e�qh0
1e�2qh0

2

1 � e�2qðh1þh2Þ0
1

s
þ

2p=t0p
ð2p=t0pÞ

2 þ s2

 !
;

#2ðsÞ ¼
e�qh0

1

1 � e�2qðh1þh2Þ0
1

s
þ

2p=t0p
ð2p=t0pÞ

2 þ s2

 !

ð20Þ

T 0
2ðsÞ represents the thermal responses of the

cracked strip without considering the thermal load-

ings, which satisfies:

o2T 0
2

ox02
þ o2T 0

2

oy02
¼ 1 þ s0Rs

1 þ 3n02s
sT 0

2 ð21Þ

oT 0
2ðx0; 0Þ
oy0

¼ � dT 0
1ðy0 ¼ 0Þ
dy0

ð x0j j � c0Þ

T 0
2ðx0; 0þÞ ¼ T 0

2ðx0; 0�Þ; oT 0
2ðx0; 0þÞ
oy0

¼ oT 0
2ðx0; 0�Þ
oy0

ð x0j j[ c0Þ

ð22Þ

Using Fourier transform and considering these

boundary conditions, the solutions are of the form:

T 0
2ðx0; y0; sÞ ¼

Z1

0

½B1ðw; sÞe�ry0 þ B2ðw; sÞery
0 � e�iwx0dw

T 0
2ðx0; y0; sÞ ¼

Z1

0

½B3ðw; sÞe�ry0 þ B4ðw; sÞery
0 � e�iwx0dw

ð23Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

1þs0Rs

1þ3n02s
þ n2

q
and

B2ðw; sÞ ¼ �B1ðw; sÞe�2rh0
1

B3ðw; sÞ ¼ �B4ðw; sÞe�2rh0
2

B4ðw; sÞ ¼ � 1 þ e�2rh0
1

1 þ e�2rh0
2

B1ðw; sÞ

ð24Þ

In order to solve the only unknown term B1ðw; sÞ,
introduce the temperature jump function (Hu and

Chen 2013) across the crack face:

wðx0; sÞ ¼ oT 0
2ðx0; 0þ; sÞ
ox0

� oT 0
2ðx0; 0�; sÞ
ox0

ð25Þ

Considering the boundary conditions, we have

wðx0; sÞ ¼ 0; x0j j[ c0 ð26Þ

Zc0

�c0

wðx0; sÞdx0 ¼ 0 ð27Þ

Plug Eq. (23) into Eq. (25), and apply the inverse

Fourier transform, the unknown term is derived as:

B1ðw; sÞ ¼
i

4pw
1 þ e�2rh0

2

1 � e�2rðh0
1
þh0

2
Þ

Zc0

�c0

wðs; sÞeiwsds

ð28Þ

Substituting the above equation into Eq. (23) and

considering the boundary condition (22), the whole
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problem can be reduced to the following singular

integral equation:

Zc0

�c0

wðs; sÞ½ 1

s� x0
þ Kðx0; s; sÞ�ds

¼ 2pqð#1 � #2Þ; x0j j\c0 ð29Þ

And the kernel function is:

Kðx0; s; sÞ ¼
Z1

0

1 þ 1

w

ð�r � re�2rh0
1Þð1 þ e�2rh0

2Þ
1 � e�2rðh0

1
þh0

2
Þ

� �� �
sin½wðx0 � sÞ� dw

ð30Þ

To solve the above singular integral equation,

introduce:

x ¼ x0

c0
; s ¼ s

c0
ð31Þ

Then Eq. (27) and Eqs. (29–30) become:

Z1

�1

wðx; sÞdx ¼ 0 ð32Þ

Z1

�1

wðs; sÞ½ 1

c0ðs� xÞ þ Kðx; s; sÞ�c0ds

¼ 2pqð#1 � #2Þ; xj j\1 ð33Þ

Kðx; s; sÞ ¼
Z1

0

1 þ 1

w

ð�r � re�2rh10Þð1 þ e�2rh20Þ
1 � e�2rðh10þh20Þ

� �� �
sin½c0wðx� sÞ� dw ð34Þ

Till now, the solution of the above singular integral

equation can be expressed in the form of (Hu and Chen

2013):

wðs; sÞ ¼ Wðs; sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ; sj j � 1 ð35Þ

Then Eqs. (32–33) can be converted to a series of

algebraic equations by employing the Lobatto–Che-

byshev method (Hu and Chen 2013):

Xn
k¼1

p
n
Wðsk; sÞ

1

c0ðsk � xrÞ
þ kðxr; sk; sÞ

� �
c0

¼ 2pqð#1 � #2Þ ð36Þ

Xn
k¼1

p
n
Wðsk; sÞ ¼ 0 ð37Þ

where skðk ¼ 1; 2; :::; nÞ ¼ cos
ð2k�1Þp

2n and

xrðr ¼ 1; 2; :::; n� 1Þ ¼ cos rp
n .

By plugging the numerical results into Eq. (28), the

unknown term B1ðw; sÞ can be determined and the

temperature field in the Laplace domain can be

evaluated by integrations shown in Eqs. (23) and

(18). To acquire the transient temperatures in the time

domain, the fast Laplace inversion method proposed

by Durbin (1974) is employed:

TðtÞ ¼ 2eat

P
� 1

2
RefTðaÞg þ

XNSUM
k¼0

"

RefTðaþ ik
2p
P
Þg cosðk 2p

P
tÞ � ImfTðaþ ik

2p
P
Þg sinðk 2p

P
tÞ

� ��

ð38Þ

In the present work, the parameters in the

above algorithm are selected as: P ¼ 20; aP ¼ 6;

NSUM ¼ 500 during calculations.

4 Verification

The calculation process is implemented by MATLAB

software. For concision, the hats of dimensionless

variables are removed and all the variables shown in

this section and the next one are non-dimensional. As

mentioned in the introduction part, the study of

transient heat conduction in the cracked medium by

the G–K model has not been reported yet. To

guarantee the correctness of our solution, the verifi-

cation is made by comparing the present numerical

results with Li’s work (Li et al. 2016) for Fourier’s

case. In their work, they assumed the impulsive

thermal loading was exerted on the bottom surface and

the top free surface was kept at the ambient temper-

ature. By adopting the same geometry sizes and letting

sR ¼ n ¼ 0, a good agreement is observed in Fig. 2,

which presents the transient temperatures of the two

midpoints of the crack face. It is worth noting that the

temperature of the upper and lower midpoints of the

present work correspond to the lower and upper

midpoints for Li’s work, respectively.

5 Numerical results and discussions

In this section, by comparing the transient tempera-

tures calculated from the above solution, the coupled

effect of the crack’s perturbance and G–K model is

explored. The characteristic length is selected as
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lc ¼ h1. Unless otherwise specified, the non-dimen-

sional variables are supposed to be h1 ¼ 1; h2 ¼
2; c ¼ 1 for the geometry and tp ¼ 4 for the period of

cyclic loading. The transient thermal responses of

Fourier’s law, C–V theory and G–K model are

illustrated graphically for the strip subjected to

impulsive thermal loading as well as cyclic loading.

Parametric studies are conducted to analyze the

impacts of the thermal relaxation time, nonlocal

length, and crack length on temperature evolutions.

To begin with, the crack’s perturbance is examined

for different heat conduction theories. As mentioned in

the second part, G–K model can be degenerated to the

C–V model by letting the nonlocal length equal to

zero, while Fourier’s law corresponds to the case

where both the nonlocal length and the relaxation time

are zeros. Figures 3 and 4 illustrate the transient

temperatures of the origin point (x = 0, y = 0) influ-

enced by the crack’s perturbance under impulsive

loading and cyclic loading, respectively. Summation

of Eqs. (18) and (23) gives out the solution for

temperatures influenced by the crack, while Eq. (18)

alone presents the one-dimensional heat conduction

problem without the crack but under the same thermal

boundary conditions. In these figures, the parameters

for the G–K model are assumed to be sR ¼ 1; n ¼ 1

while these of the C–V model are sR ¼ 1; n ¼ 0. The

crack’s disturbance shows a significant influence on

the transient temperatures, where obvious thermal

jumps occur between the upper crack face and lower

crack face. By comparing Fig. 3a with b, the existence

of a crack obstructs the heat flow across it and elevates

the thermal level of the upper crack midpoint but

depresses the temperatures of the lower crack mid-

point. For the impulsive loading, Fourier’s law

indicates the temperatures always increase gradually

to the steady values and the C–V model predicts there

is a delayed time before the temperature starts to grow

and very steep wave fronts occur, which is unrealistic

since this implies almost infinite temperature gradi-

ents. Another abnormal behavior is the severe over-

shooting, as found in the upper crack midpoint, where

the peak value reaches 1.3 and is higher than the

Fig. 2 Verification of the transient temperatures of two

midpoints of the crack face

Fig. 3 The transient temperatures of the origin (x = 0, y = 0) under different heat conduction theories for impulsive loading
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exerted thermal loading. This demonstrates that the

crack’s obstruction enhances the non-Fourier C–V

effect since no overshooting is found in Fig. 3a. The

occurrence of overshooting means heat can flow from

cold area to hot area, and this unphysical result can be

well eliminated by introducing the nonlocal length in

G–K model, where the temperatures grow gradually

but the heating rate is higher than that of Fourier’s law

in the early stage. Particularly, this interesting finding

is also presented in the heat flux experiments (Both

et al. 2016), where the G–K model agrees well with the

measured data and shows a higher heating rate at the

early stage compared to Fourier’s law. For the cyclic

thermal loading, the transient temperatures always

present wave like oscillations. Compared to Fourier’s

law and G–K model, the C–V heat conduction shows

the delayed time at the beginning and very significant

overshooting. Besides, the negative temperatures

appear for the upper crack midpoint, which indicates

some heat flow from cold to hot area again. Similar to

Fig. 4 The transient temperatures of the origin (x = 0, y = 0) under different heat conduction theories for cyclic loading
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the finding for impulsive loading, the G–K model

displays a higher heating rate at the early stage. In

addition, it is noticed for the cyclic loading, the G–K

model has some effects on the peak and troughs as

well. Compared to Fourier’s law, larger differences

between peak and troughs of transient temperatures

are discovered for both the cracked strip and

uncracked one.

Subsequently, the temperature distributions along

the y-axis are presented for different time instants, as

given by Figs. 5 and 6. The C–V responses are

compared to the G–K solutions to further highlight G–

K model’s advantages. For the impulsive loading, the

temperatures of the top surface at four time instants

keep at one, which is the dimensionless exerted

Heaviside step function. As to the cyclic loading, the

temperatures of the top surface at four time instants

obey the sine function’s variation. The temperatures of

the bottom surface keep at zero, which is consistent

with the dimensionless ambient temperature. These

findings confirm the presupposed thermal boundary

conditions. It is worth noticing the considerable

Fig. 5 The temperature distributions along the y-axis for (a) C–V theory, (b) G–K theory under impulsive loading

Fig. 6 The temperature distributions along the y-axis for (a) C–V theory (b) G–K theory under cyclic loading
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temperature gradient occurs around the crack face. At

t ¼ 2, the C–V model predicts severe overshooting

problems for both impulsive loading and cyclic

loading. Negative temperatures are observed for the

cyclic loading at t ¼ 4. These unphysical predictions

spatially are eliminated again by G–K model, as

shown in Figs. 5b and 6b.

To illustrate the nonclassical transient heat process

governed by G–K model, the influences of the

relaxation time and the nonlocal length are considered

in contrast to Fourier’s heat condition. Figure 7

depicts the transient temperatures of the crack’s

midpoints for impulsive loading with the variation of

different relaxation times and nonlocal lengths, and it

is found they do not influence the steady values.

Fig. 7 The transient temperatures of crack’s midpoints for impulsive loading with different (a) thermal relaxation times (b) nonlocal

lengths

Fig. 8 The transient temperatures of crack’s (a) upper midpoint (b) lower midpoint for different thermal relaxation times under cyclic

loading
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Compared to Fourier’s result, G–K model plays a vital

role in determining the temperatures at the early stage.

For t\2, the G–K’s prediction can be even several

times higher than Fourier’s one, which demonstrates

the necessity to consider these unconventional thermal

processes. Evidently, the increase of thermal relax-

ation time would ‘‘relax’’ the heating rate at the early

stage, while the nonlocal length presents the opposite

effect. Figures 8 and 9 reveal the transient tempera-

tures of crack’s midpoints for cyclic loading influ-

enced by different thermal relaxation times and

nonlocal lengths, respectively. G–K model results in

the phase lag phenomena in the thermal waves. In

addition to these similar findings of relaxation effects

governed by the relaxation times and nonlocal lengths

in the impulsive loading, it is noted the two parameters

alter peak and troughs values for the cyclic loading,

especially for the lower crack midpoints, as shown in

Figs. 8b and 9b. Besides, for different combinations of

the relaxation times and nonlocal length, G–K model

demonstrates it enhances the temperature differences

between peak and troughs compared to Fourier’s law.

Furthermore, to give a better presentation of the

transient temperature evolution process of G–K

model, the whole temperature fields with isothermals

of the cracked strip under impulsive and cyclic loading

are illustrated in Figs. 10 and 11, respectively. The

relaxation time and nonlocal length are supposed to be

sR ¼ 1; n ¼ 1. The crack obstructs the heat flow and

intense thermal energies accumulate around the crack

face. The maximum temperature gradient exists

between the midpoints of crack faces, and large

temperature gradients can also be observed at the two

crack tips. For the impulsive loading, the heat flow

from the top surface to the bottom surface and heat the

whole strip gradually. However, for the cyclic loading,

due to the variations of exerted boundary conditions at

the top surface, the temperatures below the crack face

can be higher than those above the upper crack face.

Finally, the impacts of the crack length on the

temperatures are explored. Figure 12 plots the tran-

sient temperatures of crack’s midpoints with the

variation of different crack lengths. Figure 13 shows

the temperature’s spatial distribution along the x-axis

for different crack lengths at one fixed time instant. It

is discovered that the larger crack length enhances the

temperature jumps between upper and lower crack

faces. The increase in crack length elevates the

temperature of the upper crack face but lower that of

the lower crack face. Server thermal concentrations

occur with larger crack length, which suggests more

attention should be paid to avoid overheating in small-

sized systems and the associated fracture risk. Besides,

the heating rates of the upper crack midpoint in the

early stage seem to be not affected by the crack lengths

for both types of thermal loadings. However, a larger

crack length tends to decrease the heating rate of lower

crack midpoints for the early stages. In addition,

Fig. 13 indicates that the larger crack length lowers

Fig. 9 The transient temperatures of crack’s (a) upper midpoint (b) lower midpoint for different nonlocal lengths under cyclic loading
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the thermal level at the extension line except for the

crack segment.

6 Conclusions

The purpose of this article is to investigate the

transient heat conduction process in the cracked

medium by the nonclassical G–K model. The integral

transforms technique and the singular integral equa-

tions are employed to solve the complex boundary

value problems. By the comparisons of thermal

responses determined by Fourier’s law, C–V equation

and G–K model, the interplay mechanism of the

relaxation time, nonlocal length and the crack’s

Fig. 10 Temperature evolution with isothermals at different time instants for the impulsive loading
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obstruction are examined. Some conclusions are

drawn:

(1) The crack obstructs the heat flow across the

crack face, and elevates the thermal level of the

upper crack midpoint but depresses the temper-

ature of the lower crack midpoint.

(2) The unphysical results predicted by the C–V

equation can be well eliminated by introducing

the nonlocal length in the G–K model.

(3) The increase of thermal relaxation time would

‘‘relax’’ the heating rate at the early stage, while

the nonlocal length presents the opposite effect.

Fig. 11 Temperature evolution with isothermals at different time instants for the cyclic loading
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(4) The temperatures below the crack face can be

higher than those above the upper crack face for

the cyclic thermal loading.

(5) It is discovered that the larger crack length

enhances the temperature jumps between upper

and lower crack faces.
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Vernotte P (1958) La véritable équation de la chaleur. C R Acad

Sci 247:2103

Wang B, Han J (2012a) A crack in a finite medium under

transient non-Fourier heat conduction. Int J Heat Mass

Transf 55(17–18):4631–4637

Wang B, Han J (2012b) Non-Fourier heat conduction in layered

composite materials with an interface crack. Int J Eng Sci

55:66–75

Wang B, Li J (2013) Hyperbolic heat conduction and associated

transient thermal fracture for a piezoelectric material layer.

Int J Solids Struct 50(9):1415–1424

Wen Z, Hou C, Zhao M, Wan X (2022) Transient heat transfer

analysis of an orthotropic composite plate with oblique

cracks using dual-phase-lagging model. Int J Solids Struct

254:111844

Xu M (2021) Thermal oscillations, second sound and thermal

resonance in phonon hydrodynamics. Proc R Soc A

477(2247):20200913

Xu M (2022) Heat flow wave in suspended graphene. Proc R Soc

478(2266):20220195

Yu Y, Li C, Xue Z, Tian X (2016) The dilemma of hyperbolic

heat conduction and its settlement by incorporating spa-

tially nonlocal effect at nanoscale. Phys Lett A

380(1–2):255–261

Zhang X, Li X (2017) Transient thermal stress intensity factors

for a circumferential crack in a hollow cylinder based on

generalized fractional heat conduction. Int J Therm Sci

121:336–347

Zhukovsky K, Srivastava H (2017) Analytical solutions for heat

diffusion beyond Fourier law. Appl Math Comput

293:423–437

123

Transient heat conduction in the cracked medium by Guyer–Krumhansl model 159



Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner)

holds exclusive rights to this article under a publishing

agreement with the author(s) or other rightsholder(s); author

self-archiving of the accepted manuscript version of this article

is solely governed by the terms of such publishing agreement

and applicable law.

123

160 W. Yang et al.


	Transient heat conduction in the cracked medium by Guyer--Krumhansl model
	Abstract
	Introduction
	The problem and basic equations
	Solution procedures
	Verification
	Numerical results and discussions
	Conclusions
	Acknowledgements
	Author contributions
	References




