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Abstract We introduce a nonlocal model of peridy-
namic type for fracture evolution in the quasistatic
regime.Nonlocal quasistatic fracture evolution is devel-
oped and supporting numerical examples are presented.
The approach is implicit and is based on local station-
ary and fixed point methods. Here a smooth cohesive
force-strain model is used. Initially the force increases
with strain then softens and decreases to zero. It is
proved that the fracture evolution decreases stored elas-
tic energy with each displacement step as the cracks
advance; provided the displacement increments are
chosen sufficiently small. These results apply to any
system of multiple cracks. This is also seen in the
numerical examples. The numerical examples include
evolution of a straight crack, a crack propagating inside
an L-shaped domain, and two offset inward propagat-
ing cracks.
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1 Introduction

The hallmark of Peridynamic (PD) simulations is that
dynamic fracture patterns emerge from the nonlocal
model and are not prescribed (Silling 2000; Silling et al.
2007). The time evolution of the PDmodel is driven by
temporally and spatially nonlocal forces. In this arti-
cle the nonlocal forces acting between points are of
cohesive type (Lipton 2014, 2016). The length scale of
nonlocal interaction relative to domain size is denoted
by ε. This length scale is referred to as the horizon
as a point in the domain can only interact with other
points within the horizon. Here forces between points
are referred to as bonds.

In the absence of inertia one considers quasistatic
or rate independent evolution. The quasistatic evolu-
tion can be unstable or correspond to an evolution over
local minimizers of a nonconvex energy (Bhattacharya
and Lipton 2023). This is distinct from other nonlocal
methods for which evolutions are found as global min-
imizers of a nonconvex surface/bulk energy (Bourdin
et al. 2008).

Motivated by these considerations the paper devel-
ops implicit methods to describe quasistatic fracture
as an evolution over stationary points associated with
local equilibria. It is clear that one can not use a linear-
elastic brittle bond model in an implicit scheme since
its abrupt failure leads to a discontinuity that prevents
computation of the Hessian. Instead the state of the art
model (Ni et al. 2018) applies the sequentially linear
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analysis, where for a given load step a linear peridy-
namic elastic analysis is applied to find the bond with
the highest stretch greater than the critical stretch. Once
a linear elastic solution is found then the bond with the
highest stretch is removed from the stiffnessmatrix and
one repeats the process until nomore bonds are broken.
Then the load (applied force or imposed displacement)
is incremented and the process is repeated until the final
load is reached.

The approach developed here uses a differentiable
cohesive constitutive law that is initially elastic and
then softens. Because the constitutive law is differen-
tiable a Hessian is defined and one can proceed with
a well posed implicit approach. For each displacement
increment we use Newton iteration to recover the local
equilibrium solution of fully nonlinear PD in response
to the applied displacement.

We rigorously show that the fracture evolution pre-
dicted by the model decreases stored elastic energy in
the undamaged material as the cracks advance; pro-
vided the displacement increments are chosen suffi-
ciently small.We provide a rigorous existence theory of
quasistatic nonlocal fracture evolution usingfixed point
methods. This method is new as the fracture advances
with increasing displacement increment as a result of
a fixed point iteration using a smooth non-convex con-
stitutive law.

There is now a large literature on dynamic simula-
tions usingPD, e.g., see the reviews (Bobaru et al. 2016;
Javili et al. 2019; Isiet et al. 2021; Diehl et al. 2019,
2022). Building on this, dynamic relaxation methods
have been applied to quasistatic PD, see for exam-
ple (Kilic and Madenci 2010; Yaghoobi et al. 2017;
Zhang et al. 2016; Wu et al. 2020; Mehrmashhadi
et al. 2019). On the other hand, dynamic relaxation
for can take numerous iterations to converge. Because
of this reason, one advantage of implicit methods for
quasistatic nonlocal problems is that convergence is
achieved using relatively few iterations (Ni et al. 2018;
Huang et al. 2015; Mikata 2012; Zaccaritto et al. 2015;
Wang et al. 2019; Breitenfeld 2014; Kilic andMadenci
2010; Rabczuk and Ren 2017; Freimanis and Paeglitis
2017; Sheikhbahaei et al. 2023). Recently, several tech-
niques to reduce the computational costs for quasistatic
simulations are available. These include the adaptive
use of linear elastic and peridynamic meshes (Ni et al.
2018), the fast convolution method (Jafarzadeh et al.
2022), fast Galerkin methods (Wang and Tian 2012),
a multi-threaded approach for generating sparse stiff-

ness matrices (Prakash and Stewart 2020), a combined
implicit-explicit method (Hu and Madenci 2016; Hu
et al. 2018), and the fire algorithm (Shiihara et al. 2019).

The nonlocal force viewed as a function of strain
admits a closed-form analytical expression that is used
directly to compute the Hessian. This is employed in
the numerical implementation of the Newton–Raphson
scheme to find the elastic displacement field and crack
for each displacement step (Diehl and Lipton 2022;
Bhattacharya et al. 2021), seeSect. 5.1. The shape of the
force strain law can be adjusted to any analytic elastic-
then-softening profile. This is done using splines or
piecewise trigonometric functions. Unlike local frac-
ture theories involving an explicit crack and elastic
equilibrium equations off the crack, the nonlocal equa-
tions of equilibrium are well-defined everywhere. Here
the elastic constants are determined by the slope of the
force strain curve at the origon, see Eqs. (6), (7). Away
from the crack the nonlocal solutions are close to local
solutions of the elastic equilibrium equation. This is
provably true for the nonlocal modeling of cracks in
the limit of vanishing non-locality (Lipton 2014, 2016;
Lipton and Jha 2021; Lipton et al. 2019). The frac-
ture toughness of the nonlocal model introduced here
is the energy per unit length required to create new sur-
face and it is independent of horizon size (Lipton 2014,
2016), see (8). The horizon size is taken small enough
to resolve flaws associated with stress concentrations
according to Grifith’s failure criterion (as in eqs. (21)
and (22) of Diehl et al. 2016). This is illustrated in Sect.
6.3 for the L-shaped panel where no pre-crack is given
and the fracture is required to nucleate from a re-entrant
corner. We compare this to recent work given in Niazi
et al. (2021).

Here, we prove that the fracture evolution decreases
stored elastic energy with each displacement step as
the cracks advance; provided the displacement incre-
ments are chosen sufficiently small, see Sect. 3. In
Sect. 4, existence of nonlocal bond breaking evolution
and emergence of a fracture evolution are proved. Our
theoretical results in Sects. 3 and 4 are valid for any
system of growing cracks.

We apply the nonlocal model to simulate the frac-
ture evolution of a straight mode-I crack inside a square
plate, capture the emergent crack growth at the re-
entrant corner of an L-shaped panel as seen in exper-
iment, and model the interaction of two inward prop-
agating cracks as they approach each other. Nonlocal
simulations show that the energy inside the undamaged
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Quasistatic fracture evolution 27

material decreases with the displacement step while
cracks propagate. In earlier work Diehl et al. (2022)
this constitutive model is used in a simple compari-
son of quasistatic damage evolution between force and
displacement loading and is in line with the theory of
crack resistance (Anderson 2017).

Last we point out that in this model the potentials
are scaled so that the fracture toughness is independent
of ε (see (8)). The fracture toughness of the specimen
is used to calibrate the area under the force strain curve.
Under this scaling the nonlocal energy density is lin-
ear elastic for small strains and independent of horizon
to leading order in ε, see (6.104) of (Lipton 2016). see
alsoProposition 1of (Silling andLehoucq2008).Using
these features it is shown that the non-local energy con-
verges to the Griffith fracture energy in the limit of van-
ishing peridynamic horizon, see (Lipton 2014, 2016;
Lipton and Jha 2021; Lipton et al. 2019). The dynamic
version of this model can be thought of as a nonlo-
cal regularization of classic sharp fracture mechanics,
(Lipton and Jha 2021) and (Jha and Lipton 2020).

A direct consequence of the aforementioned scaling
is that the nonlocal traction conditions provably con-
verge as ε → 0 to the local traction conditions of linear
elasticity (Lipton and Jha 2021). In addition the elas-
tic fields surrounding regions with broken bonds con-
verge to linear elastic fields. The regions with broken
bonds converge to time evolving cracks with zero trac-
tion conditions on the crack lips. This is theoretically
shown for straight cracks in Lipton and Jha (2021). For
this model the bulk elasticity constant is described by
the slope of the bond force at zero strain (see (7)) and
is the same everywhere in the domain. In general terms
we have calibrated the “collapsed” or “ε = 0” peri-
dynamic elasticity tensor (Silling and Lehoucq 2008)
to material properties. Because of this the peridynamic
surface effects (Li and Bobaru 2016) are not present,
this is elaborated on in the conclusion.

The paper is structured as follows: Sect. 2 introduces
the nonlocal model and displacement controlled bond
breaking and fracture. In Sect. 3 continuity and asymp-
totic energy reduction for displacement controlled frac-
ture evolution is established. The rigorous existence
theory of nonlocal fracture evolution is presented in
Sect. 4. The algorithm and discritization for the implicit
method is given in Sect. 5. In Sect. 6 numerical results
are presented.

2 Nonlocal model and displacement controlled
bond breaking and fracture

A displacement controlled fracture evolution is
addressed. We provide a nonlocal mesoscopic model
for quasistatic fracture. The Dirichlet data for the pre-
scribed displacement is specified on an interaction
domain Ωd . We introduce Ω , with Ωd ⊂ Ω and the
cracking body D = Ω \ Ωd . The interaction domain
Ωd is of thickness equal to the length scale of non-
local interaction ε. HereΩ is a bounded domain in two
or three dimensions. Nonlocal interactions between a
point x and its neighbors y are confined to the sphere
(disk) Hε(x) = {y : |y−x| < ε}. The radius ε is called
the horizon and is chosen an order ofmagnitude smaller
than the length scale of the domain Ω . We introduce
the nonlocal strain S(y, x,u) between the point x and
any point y ∈ Hε(x) given by

S(y, x,u) = u(y) − u(x)
|y − x| · ey−x,

where ey−x is the unit vector given by

ey−x = y − x
|y − x| .

Force is related to strain using the constitutive relation
given by the cohesive force law as in Lipton (2014,
2016).Under this law the force is linear for small strains
and for larger strains the force begins to soften and
then approaches zero after reaching a critical strain. The
force function is g′ is shown in figure 1. The nonlocal
force density f is given in termsof the nonlocal potential
W(S) by

f(y, x,u) = 2∂SW(S(y, x,u))ey−x, (1)

where

W(S(y, x,u)) = J ε(|y − x|)
εn+1ωn |y − x|

g(
√|y − x|S(y, x,u)). (2)

Here, J ε(r) = J ( r
ε
), where J is a non-negative

bounded function supported on [0, 1]. J is called the
influence function as it determines the influence of the
bond force of peridynamic neighbors y on the center x
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of Hε(x). The volume of unit ball in R
n is denoted by

ωn .
As figure 1 illustrates, we assume that g(r) and the

derivatives g′(r), g′′(r), and g′′′(r) are bounded for
−∞ < r < ∞. It is required is that g(0) = 0 and
g(r) > 0 otherwise, g(r) together with its first three
derivatives must be bounded, and that g be convex in
the interval re < 0 < rc and concave outside this
interval with finite limits limr→−∞ g(r) = C− and
limr→∞ g(r) = C+. Additionally max{|g′′(r |)} =
g′′(0). Here we note that in the peridynamic taxonomy
our cohesive model is classified as a bond-based or
ordinary state based peridynamic material model out-
lined in Silling et al. (2007). The peridynamic force is
given by

L(u) =
∫

Hε (x)∩Ω

(T(x)(y − x) − T(y)(x − y)) dy,

(3)

where

T(y)(y − x) = ∂SWε(S(y, x,u(t)))ey−x, (4)

T(x)(x − y) = ∂SWε(S(x, y,u(t)))ex−y. (5)

The influence function and g are calibrated for a
given material with known Lamé modulus μ and crit-
ical energy release rate Gc using the relations (Lipton
2014, 2016),

μ = g′′(0)/10
∫ 1

0
r3 J (r)dr, n = 3, , (6)

μ = g′′(0)/8
∫ 1

0
r2 J (r)dr, n = 2. (7)

and

Gc = 2
ωn−1

ωn
g∞

∫ 1

0
rn J (r)dr, n = 2, 3, (8)

where n is the dimension and we consider plane stress
for n = 2. In general terms we have calibrated the
“collapsed” peridynamic elasticity tensor to the elastic
properties of the material (Silling and Lehoucq 2008).
Here we are using bond based nonlocal interactions
so for plane stress ν = 1/3 and in three dimensions
ν = 1/4 and λ = μ in both cases. We can also apply

Fig. 1 The potential function g(r) and derivatives g′(r) and
g′′(r) for tensile force. Here C+ and C− are the asymptotic
values of g. The derivative of the force potential goes smoothly
to zero at r+ and r−

more general force interactions as in state based nonlo-
cal interactions for softening models, see (Lipton et al.
2018).

2.1 Bond breaking evolution

It is clear from figure 1 that g′′(r) ≤ 0 for

re > r = √|y − x|S(y, x,u) or
√|y − x|S(y, x,u)

= r > rc, (9)

and we say that the bond is broken between y and x
when

g′(
√|y − x|S(y, x,u))=0 and the strain satisfies (9).

(10)

Initially the characteristic function for all intact bonds
between points y ∈ Ω inside Hε(x) and x ∈ D is
denoted by χ0(y, x) and initially the whole domain is
intact so χ0(y, x) = 1.

The nonlocal force density L0 is defined for all
points x in D and y in Ω is given by

L0[u](x) = −
∫

Hε (x)∩Ω

2χ0(y, x)
J ε(|y − x|)

εn+1ωn
√|y − x|

g′ (√|y − x|S(y, x,u)
)
ey−xdy. (11)
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Quasistatic fracture evolution 29

The solution to the nonlocal boundary value problem
is given by a function u1 = U1 on Ωd for which

L0[u1](x) = 0, for x in D. (12)

Given the solution, u1 consider all pairs (y, x) with
y ∈ Ω inside Hε(x) and x ∈ D for which the bond
between them is broken. This set of pairs is called the
setΔS1. Denote the new operatorL1(u) obtained from
(11) by deleting all bond pairs in ΔS1, let χ1(y, x)
denote the indicator function of unbroken bonds and
the solution u1 of (12) is also a solution of

L1[u1](x) = 0, for x in D, (13)

where

L1[u](x) = −
∫

Hε (x)∩Ω

2χ1(y, x)
J ε(|y − x|)

εn+1ωn
√|y − x|

g′ (√|y − x|S(y, x,u)
)
ey−xdy. (14)

Next we increment the boundary displacement toU2

to get the solution u2 of

L1[u2](x) = 0, for x in D. (15)

where u = U2 onΩd . Again given u2 consider all pairs
(y, x) of points in Ω × D \ ΔS1 for which |y− x| < ε

and the bond is broken. Call this set of pairs ΔS2. Now
set S1 = ΔS1, and set S2 = S1 ∪ ΔS2. Denote the new
operator L2(u) obtained from (11) by deleting bond
pairs S2 and note that the solution u2 of (15) is also a
solution of

L2[u2](x) = 0, for x in D. (16)

We can iterate this process withM prescribed displace-
ments {UN }MN=1 and set SN = SN−1 ∪ ΔSN to get a
sequence of operators

LN [u](x) = −
∫

Hε (x)∩Ω

2χN (y, x)
J ε(|y − x|)

εn+1ωn
√|y − x|

g′ (√|y − x|S(y, x,u)
)
ey−xdy, (17)

solutions {uN }MN=1, and debonding sets {SN }MN=1, with
S1 ⊂ S2 · · · ⊂ SM . This constitutes the displacement

Fig. 2 The internal boundary C1 = ΔC1 after 1st displacement
step given by the line segment of length 
1 after N steps it grows
to length 
N . The set of broken bonds for the non-local model
are given by the grey regions. The set D0 = D is the interior of
the rectangle, the set DN is obtained by removing CN at step N ,
see Sect. 2.2

controlled bond breaking evolution for both two and
three-dimensional problems.

2.2 Fracture evolution

It is crucial to observe that in a peridynamic model
crack evolution is not prescribed and only bonds
between points are allowed to break. However, a bond
breaking evolution can emerge that is a nonlocal frac-
ture evolution. We now illustrate how a bond breaking
evolution be can be understood as a nonlocal fracture
evolution. In what follows we focus on S1 and illustrate
the ideas for the 2-dimensional problem since the three-
dimensional problem is similar. Suppose the geometry
of S1 is characterized by a straight line segment ΔC1

of length 
1 across which all bonds of length less than ε

are broken. For this case S1 corresponds to the union of
all neighborhoods that intersectΔC1. This is illustrated
by the gray region in Fig. 2. We delete ΔC1 from D to
form the cracked region D1 with new internal bound-
ary C1 = ΔC1. This kind of bond breaking geome-
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try is identical to introducing a new internal boundary
C1 associated with a nonlocal traction free boundary
condition. In this way a crack appears as an internal
boundary C1 with zero nonlocal traction forces act-
ing on either side. So for any x in D, we define the
set H1

ε (x) to be all y in |y − x| < ε for which the
bonds connecting y and x do not intersect C1. The set
Ω1 = Ωd ∪ D1. Here D1 has internal boundary C1.
The operatorL1[u](x) for x on D can now be rewritten
as

L1[u](x) = −
∫

H1
ε (x)∩Ω1

2
J ε(|y − x|)

εn+1ωn
√|y − x|

g′ (√|y − x|S(y, x,u)
)
ey−xdy, (18)

where u = U1 on Ωd . The nonolocal traction free
boundary conditions are natural boundary conditions.
They are given in (18) through the choice of the inte-
gration domain H1

ε (x)∩Ω1. More generally, one has a
similar formula forL1 for the casewhen S1 given by the
collection of all bonds that intersect a smooth curve seg-
mentΔC1. As before, we delete the smooth curve from
D to get D1 and the formula forL1 given by (18). Sim-
ilarly, we can suppose the same for ΔS2, . . . , ΔSM to
get a growing crackCN = CN−1∪ΔCN , with decreas-
ing sets DN ⊂ DN−1 · · · ⊂ D1, DN = DN−1 \ ΔCN

and operators

LN [u](x) = −
∫

HN
ε (x)∩ΩN

2
J ε(|y − x|)

εn+1ωn
√|y − x|

g′ (√|y − x|S(y, x,u)
)
ey−xdy, (19)

with ΩN = Ωd ∪ DN . Here DN has internal boundary
CN and HN

ε (x) are all y in |y − x| < ε for which the
bonds connecting y and x do not intersect CN . This
constitutes the displacement controlled fracture evolu-
tion.

The solution uN to LN [uN ] = 0 for each displace-
ment loading UN in the fracture evolution is found
numerically using the Newton–Raphson method. This
is addressed in Sect. 5. The next section shows that the
elastic energy stored in the intact material decreases
with each displacement step when the displacement
step is sufficiently small.

3 Continuity and asymptotic energy reduction for
displacement controlled fracture evolution

Here, it is shown that the fracture evolution decreases
stored elastic energy with each displacement step as
the cracks advance; provided the displacement incre-
ments are chosen sufficiently small. This is illustrated
when we work on the space of essentially bounded dis-
placements u on Ω denoted by L∞(Ω,Rn), n = 2, 3.
It is assumed that any prescribed displacement U on
Ωd belongs to this space and takes the value 0 in D.
This set of boundary displacements is a subspace of
L∞(Ω,Rn) andwe denote it byB. Any displacementu
where u = U inΩd can be written as u = v+Uwhere
v belongs to V = {v ∈ L∞(Ω,Rn), v = 0 on Ωd}
andU belongs to B. Adopting standard convention one
has u inV+B.We extendLN [u] by 0 for all x inΩ \D.

The operator LN satisfies several properties (Bhat-
tacharya and Lipton 2023):
The operator LN is uniformly Lipschitz continuous on
L∞(Ω,Rn), i.e.,

‖LN [u + Δu] − LN [u]‖∞
≤ C ‖Δu‖∞ for C independent of u + Δu, (20)

here ||·||∞ is the L∞(Ω,Rn) norm. It now follows that
LN [u] belongs to V and for fixed U in B the operator
LN [v] is a bounded operator from V into itself.

The operator LN [u] is Fréchet differentiable and
is the bounded linear functional acting on Δu ∈
L∞(Ω,Rn) given by

L′
N [u]Δu =
−

∫

HN
ε (x)∩ΩN

J ε(|y − x|)
εn+1ωn

g′′ (√|y − x|S (y, x,u)
)

S(y, x,Δu)ey−xdy. (21)

The operator LN [u] is continuously Fréchet differen-
tiable, i.e.,

lim‖Δu‖∞→0

‖LN [u + Δu](x) − LN [u](x) − L′
N [u]Δu‖∞

‖Δu‖∞
= 0,

(22)
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Quasistatic fracture evolution 31

and the derivative is Lipshitz continuous in u, i.e., for
δ, Δu ∈ L∞(Ω,Rn) there is a constantC independent
of δ such that

‖L′
N [u + δ]Δu − L′

N [u]Δu‖∞
‖Δu‖∞

≤ C‖δ‖∞. (23)

From (23) we have a K independent of u − w in
B + V such that

|||L′
N [u] − L′

N [w]||| < K ||u − w||∞ (24)

Here ||| · ||| is the operator norm for the linear function-
als defined on L∞(Ω,Rn).

Remark 1 (Bond breaking evolution) In summary the
operator L′

N for u in V + B is given for both bond
breaking and nonlocal fracture by

L′
N [u]Δu(x) =
−

∫

Hε (x)∩Ω

χN (y, x)
J ε(|y − x|)

εn+1ωn
g′′ (√|y − x|

S(y, x,u)
)
S(y, x,Δu)ey−xdy, (25)

and properties (22) through (24) hold.

The crackdomain at the Nth displacement step isCN

and the set of broken bonds is SN . The set of broken
bonds SN is given by the grey zone in Fig. 2. We define
the set of intact material by D̃N = D \ SN . The elastic
energy density stored at a point x in D̃N is given by

WN (x,uN ) =
∫

Hε (x)∩Ω

|y − x|W(y, x, S(y, x,uN )) dy.

The indicator function of the set D̃N taking the value 1
inside D̃N and 0 elsewhere is denoted by χD̃N

(x). The
elastic energy of displacement inside the intactmaterial
D̃N for prescribed boundary displacement UN on Ωd

is given by

EN =
∫

D
χD̃N

(x)WN (x,uN ) dx. (26)

Energy inequality inside undamaged material
We suppose that L′

N [uN ]−1 exists and is bounded for
each solution uN in the fracture evolution. When there

is crack propagation, i.e., χD̃N
> χD̃N+1

, the elastic
energy satisfies,

EN > EN+1 + ωN+1, (27)

If no crack propagation χD̃N
= χD̃N+1

, then

EN = EN+1 + ωN+1, (28)

In both cases

ωN+1 → 0, as ||UN+1 − UN ||∞ → 0. (29)

This shows that the fracture evolution decreases stored
elastic energywith eachdisplacement step as the cracks
advance; provided the displacement increments are
chosen sufficiently small.

One can use these arguments to recover an asymp-
totic statement about energy reduction. At the com-
pletion of displacement step N consider a family of
displacement increments ΔU
, 
 = 1, 2, . . . with
||ΔU
||∞ → 0 that can be be applied as the N + 1
displacement step. Let E
 to be the elastic energy of
the undamaged material corresponding the applied dis-
placement at the N+1 displacement step isUN +ΔU
,
then (27), (28), and (29) imply

Asymptotic energy reduction

EN ≥ lim sup
||ΔU
||∞→0

E
. (30)

We establish (27) and (29) noting that (28) follows.
We write the difference as

EN − EN+1 =
∫

D
[χD̃N

(x) − χD̃N+1
(x)]WN (x, uN ) dx

+
∫

D
χD̃N+1

(x) [WN (x, uN ) − WN+1(x, u
N+1)] dx,

the first term is positive since χD̃N
(x) > χD̃N+1

(x) and

WN (x,uN ) ≥ 0. The second term can be written as

∫

D
χD̃N+1

(x) [WN (x, uN ) − WN+1(x, u
N+1)] dx = ωN+1

where

ωN+1 =
∫

D
χD̃N+1

(x)
(∫

Hε (x)∩Ω

J ε(|y − x|)
εn+1ωn |y − x|
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32 D. Bhattacharya et al.

[
g(

√|y − x|S(y, x,uN ))

−g(
√|y − x|S(y, x,uN + Δu))

]
dy

)
dx,

Using the fundamental theorem of calculus, we have

ωN+1 =
∫

D
χD̃N+1

(x)
∫ 1

0
T (x, t) dt dx,

where

T (x, t) =
∫

Hε (x)∩Ω

J ε(|y − x|)
εn+1ωn |y − x|g

′ (√|y − x|r(t)
)

√|y − x|S(y, x,Δu) dy,

with r(t) = √|y − x|S(y, x,uN + tΔu) and ṙ(t) =√|y − x|S(y, x,Δu). Noting that g′ is bounded and
estimating as in Bhattacharya and Lipton (2023) gives

|T (x, t)| ≤ C ||uN+1 − uN ||∞

where C will always denote a generic constant inde-
pendent of uN+1 − uN . From this we deduce

|ωN+1| ≤ C ||uN+1 − uN ||∞ ≤ C
(
||vN+1 − vN ||∞

+||UN+1 − UN ||∞
)

. (31)

To conclude (29) we show ||vN+1 − vN ||∞ ≤
C ||UN+1−UN ||∞. Sinceonehas that |||L′

N [uN ]−1||| ≤
∞ one sees from Banach’s lemma and Lipschitz con-
tinuity (24) that there exists a closed ball B(R,uN ) =
{u : ||u − uN ||∞ ≤ R} of radius R and center
uN for which L′

N [u]−1 is well defined. and conse-
quently, a positive constant KN > 0 determined at
step N for which KN ||v||∞ ≤ ||L′[u]v||∞ for any
fixed u in B(R,uN ) and for all v ∈ V . We now
can choose ||UN+1 −UN ||∞ sufficiently small so that
u0 = vN + UN+1 lies inside u in B(R,uN ).

Noting that LN [uN ] = 0 and LN [uN+1] = 0 on
DN+1 gives

A = LN [uN+1] − LN [u0] = LN [uN ] − LN [u0] = B

on DN+1. Here uN+1 − u0 = vN+1 − vN := ΔvN+1

and u0 − uN = UN+1 −UN := ΔUN+1 and from the
fundamental theorem of calculus as in Bhattacharya

and Lipton (2023),

||A||∞ = ||
∫ 1

0
L′
N [r(t)]dtΔv||∞

with r(t) = √|y − x|S(y, x,uN + tΔv). From (20)

||B||∞ ≤ C ||ΔUN ||∞

Applying the mean value theorem and calculating as in
Ortega (1968) we get

||A||∞ = ||L′
N [r(t)] Δv||∞,

for some 0 ≤ t ≤ 1. Since r(t) is in the ball B(R,uN )

we get

KN ||Δv||∞ ≤ ||A||∞,

so

KN ||vN+1 − vN ||∞ ≤ ||A||∞ = ||B||∞
≤ C ||UN+1 − UN ||∞

where KN is independent of ||vN+1 − vN ||∞ and
||UN+1 − UN ||∞ can be chosen small independently
of KN so (29) is established.

4 Existence of nonlocal bond breaking evolution
and emergence of a fracture evolution

We begin by stating two conditions that when taken
together are sufficient for the existence of an inverse of
L′[u] on V by showing thatL′[u] satisfies the hypothe-
ses of (Bhattacharya andLipton 2023, Theorem8).One
condition involves the stability tensor defined by:

Definition 1 Stability tensor

AN [u](x)

=
∫

HN
ε (x)∩ΩN

J ε(|y − x|)
εn+1ωn|y − x|g

′′ (√|y − x|S (y, x,u)
)

ey−x ⊗ ey−xdy. (32)

For a fixed bases AN [u](x) is an n × n symmetric
matrix, AN [u](x) = A

T
N [u](x)). We write A

2
N [u] −

γ 2
I > 0 when for all x ∈ D and all v ∈ R

n ,
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A
2
N [u](x)v · v − γ 2|v|2 > 0. The stability tensor for

nonlocal modeling arises in many contexts including
dynamic fracture (Silling et al. 2010; Lipton 2014; Lip-
ton et al. 2019) and elasticity (Du et al. 2013;Mengesha
and Du 2014, 2013).

To get the conditions, we set u = v + U for v in
V and U in B and integrate by parts as in (Lemma 5.3
of Bhattacharya and Lipton 2023) to find that L′

N [u]
is symmetric on the L2(Ω,Rn) closure of V . More-
over, from (Bhattacharya and Lipton 2023) we have
that L′

N [u] is a bounded operator on the L2(Ω,Rn)

closure ofV . Collecting these results and applyingThe-
orem8 of (Bhattacharya andLipton 2023) the sufficient
conditions for an inverse are given by:

Proposition 1 (Sufficient conditions for an inverse)
Given u = v + U for boundary data U in B and v
in V , if K er{L′

N [u]} = 0 for L′
N [u] regarded as an

operator on the L2(Ω,Rn) closure of V and if there
exists γ > 0 such thatA2

N [u]−γ 2
I > 0 thenL′

N [u]−1

is a bounded operator on V .
The condition that there exists γ > 0 for which
A
2
N [u] − γ 2

I > 0 is equivalent to saying that all
eigenvalues of AN [u] lie outside an interval about 0.
In Bhattacharya and Lipton (2023) it is shown that
Ker{AN [u](x)} = {0} on D is a necessary condition
for invertibility.

Now we establish the existence of a bond break-
ing evolution described in Sect. 2.1 from which a frac-
ture evolution described in Sect. 2.2 can emerge. This
is done in two steps. First we prove that if the displace-
mentuN is a solution to the boundary value problem for
prescribed displacement UN and if it satisfies suitable
hypotheses then one can find a solution uN+1 to the
boundary value problem for an appropriately chosen
prescribed displacement UN+1; this is the statement of
Proposition 2. In the following step we establish ini-
tialization. Here we show that the evolution starts with
the initial choice u0 = 0 and for this choice we show
it is possible to apply Proposition 2, to find a solution
u1 to the boundary value problem for an appropriately
chosen prescribed displacement U1. To conclude we
give criteria for when the evolution terminates.

Displacement increment step
We introduce a ball of radius t∗ surrounding a point

vN in V given by B(t∗, vN ) = {v ∈ V : ||v−vN ||∞ <

t∗} and denote its closure by B(t∗, vN ). Now we state
the existence theorem for a displacement increment in
the evolution.

Proposition 2 (Solution for displacement step N + 1)
Given LN (uN ) = 0 for x in D and uN = vN + UN

with vN in V and UN in B. If there exists γ > 0 such
thatA2

N [uN ] > γ 2
I and Ker{L′

N [uN ]} = 0 forL′
N [u]

regarded as an operator on the L2(Ω,Rn) closure of
V then there exists a displacement UN+1 and initial
deformation u0 = vN + UN+1 such that L′

N [u0]−1

exists and is a bounded linear transform on V . More-
over there is a ball of radius t∗ centered at vN denoted
by B(t∗, vN ) such the unique fixed point vN+1 of the
Newton map T (v) : B(t∗, vN ) → B(t∗, vN )

T (v) = v − L′
N [v + UN+1]−1LN [v + UN+1] (33)

belongs to the closed ball B(t∗, vN ). This fixed point is
isolated as there exists a radius t∗∗ > t∗ and closed ball
B(t∗∗, vN ) for which no other fixed point lies. Thus,
LN [uN+1] = 0 and breaking bonds according to (10)
with u = uN+1 delivers the new operatorLN+1[v+U]
acting on V + B and LN+1[uN+1] = 0.

We establish the proposition using the Newton-
Kantorovich theorem (Kantorovich and Akilov 1964;
Ortega 1968; Gragg and Tapia 1974). We have from
(24) for UN+1 fixed and v in V

|||L′
N [v + UN+1] − L′

N [u0]||| < K ||v − vN ||∞. (34)

From the hypothesis of Proposition 2 and Proposition
1 we have a finite β such that

|||L′
N [u0]−1]||| < β. (35)

Now LN [uN ] = 0 and from (20)

||LN [uN ] − LN [u0]||∞ ≤ C ||UN+1 − UN ||∞, (36)

so we can chooseUN+1 so that ||UN+1−UN ||∞ is suf-
ficiently small so that ||L′

N [u0]−1LN [[u0||∞ ≤ η with
h = βKη ≤ 1/2. Then from the Newton-Kantorovich
theorem we can choose radii t∗ and t∗∗ such that

t∗ = 1

βK
(1−√

1 − 2h), t∗∗ = 1

βK
(1+√

1 − 2h),

(37)

and the Newton iterates converge to the unique fixed
point vN+1 in the closed ball B(t∗, vN ). Moreover,
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LN [uN+1] = 0 and breaking bonds according to (10)
with u = uN+1 delivers the new operatorLN+1[v+U]
acting on V +B and LN+1[uN+1] = 0. Last, the fixed
point is isolated and no other fixed points lie inside the
larger closed ball B(t∗∗, vN ).

Initial displacement step
We now start with the initial choice u0 = 0 and show
that there exists a solution u1 to the boundary value
problem for appropriate nonzero boundary data U1.

Proposition 3 On choosing u0 = 0 we have that
L′[u0]−1 exists and is a bounded linear operator map-
ping V onto V moreover there is a radius R > 0 for
which u0 = 0 is the unique solution of the boundary
value problem

L[u0](x) = 0, for x in D and u0 = 0 on Ωd , (38)

among all functions in the ball B(R, 0).

Proposition 3 shows that the initialization u0 = 0,
satisfies the hypotheses of Proposition 2 so there is a
least one choice of nonzero boundary displacementU1

for which there is a solution u1 of the boundary value
problem (12). Breaking bonds if needed according to
Proposition 2 gives the new operator L1 on V +B and
L1[u1](x) = 0 for x in D. The proof of Proposition 3
is given in the Appendix.

Terminal displacement step
The displacement increment is terminated when
Ker{L′

N+1[uN+1]} �= 0 or when AN+1[uN+1] van-
ishes on a set of finite volume. Here it is found that
L′
N+1[uN+1]−1 does not exist when the stability ten-

sor AN+1[uN+1](x) vanishes on a set of finite volume
inside D, see (Bhattacharya and Lipton 2023).

5 Numerical algorithm for fracture evolution

It is clear that one can not use a linear-elastic brittle
bond model in an implicit scheme since its abrupt fail-
ure leads to a discontinuity that prevents computation
of theHessian. Instead the state of the art implicitmodel
applies the sequentially linear analysis (Ni et al. 2018),
where for a given load step a linear peridynamic elas-
tic analysis is applied to find the bond with the highest
stretch greater than the critical stretch. The bond with
the highest stretch is removed from the stiffness matrix

and one repeats until equilibrium if reached. An alter-
nate scheme is also used where one can break several
bonds at every iteration of the procedure to speed things
up.

In the numerical examples given in this paper we use
the softening bonds constitutive law for which the Hes-
sian is defined. For each displacement incrementweuse
Newton iteration to recover the equilibrium solution of
fully nonlinear PD in response to the applied displace-
ment. It is important to point out that these equilibrium
solutions are local energyminima, not globalminima. It
is only after convergence to equilibrium thatwe remove
fully softened bonds. In the second and third numerical
examples we remove all softened bonds but again only
after convergence to the PD equilibrium solution.

The solution uN to LN [uN ] = 0 for each displace-
ment UN in the fracture evolution is found numer-
ically using the Newton-Raphson method. We pre-
scribe an increment of boundary displacement ΔU =
UN − UN−1 and starting with the initial guess uN

0 =
vN−1 + UN , for all k solve for Δu

−L′
N−1[uN

k ]Δu = LN−1[uN
k ], (39)

and set uN
k+1 = uN

k + Δu. The approximate root
obtained after the Newton iteration uN satisfies

LN−1[uN ](x) ≈ 0, (40)

and uN = vN + UN = UN on Ωd . Here the approxi-
mate equality “≈ 0” is measured by ||LN−1[uN ]||∞ ≤
τ , with τ a preset tolerance. After reaching equilibrium
we now we break all bonds for which the bond is com-
pletely softened after the Newton iteration correspond-
ing to (10). The initial guess for the next increment
UN+1 is u0 = vN +UN+1 and the process is repeated.

5.1 Discretization

Expanding S(y, x,w) = w(y)−w(x)
|y−x| · y−x

|y−x| we can write

(L ′
N−1[u]w(x))i

=
2∑

j=1

⎛

⎜
⎝

∫

Hε (x)∩ΩN−1

σi j (y, x,u)w j (y)dy − w j (x)
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∫

Hε (x)∩ΩN−1

σi j (y, x,u)dy

⎞

⎟
⎠ (41)

where

σi j (y, x,u) = J ε (|y − x|)
εn+1ωn |y − x|g

′′ (√y − xS(y, x,u)
)

yi − xi
|y − x|

y j − x j
|y − x| .

The domain Ω is discretized at finitely many points.
Let the set of points within the interior DN−1 be given
by {Xi }Mi=1. Let Vi be the volume element associated
with the point Xi . For k = 1, . . . , M , denote the set
of neighboring indices by I N−1

k = {l : |Xk − Xl | ≤
ε, Xl ∈ ΩN−1, l �= k}. Define Wk

i := wi (Xk) and
Uk
i := ui (Xk).
The discrete version of (41) is given by the linear

operatorK acting on the 2M-dimensional vectorW =
{Wk

i : i = 1, 2 and k = 1, . . . , M} as

(KW)ki =
2∑

j=1

∑

l∈I N−1
k

σi j (Xl ,Xk,U)Wl
j Vl

−
2∑

j=1

Wk
j

∑

l∈I N−1
k

σi j (Xl ,Xk,U)Vl ,

where the vector of nodal displacements U = {Uk
i :

i = 1, 2 and k = 1, . . . , M}.
Similarly, denoting Bk

i := (LN−1[u](Xk))i the dis-
crete description of LN−1[u] is given by

Bk
i = 2

εn+1ωn

∑

l∈I N−1
k

J ε(|Xl − Xk |)√|Xl − Xk | g′ (√|Xl − Xk |

S (Xl ,Xk,U)
) Xl,i − Xk,i

|Xl − Xk | Vl .

Solving the 2M×2M system of linear equations given
by

−KW = B

with u = uN−1
k one obtains the discretizationW of the

solutionΔu to (39). TheNewton iteration is terminated

with the residual
∥∥∥L[uN−1

k ]
∥∥∥∞ is below a prescribed

tolerance.

6 Numerical examples

Here, we consider a set of numerical examples and
recover stable crack growth under displacement con-
trolled loading. We consider a straight crack growth
under uniaxial tension. We observe a reduction of
energy in the intact material once the cracks starts to
grow. Inspired by experiment, we consider an L-shaped
panel subjected to an in-plane loading. As expected, the
crack starts to grow from the re-entrant corner. Finally,
we consider a rectangular panel with two pre-notches
with variable offsets. Under uniaxial tension, the cracks
start to grow inward. The offset distance of the pre-
cracks affects the interaction of the growing cracks.

In the discrete setting, the quantitydamage is defined
as

d(x) = 1 − #intact bonds connected to x

#total bonds connected to x in the reference configuration
.

We give two types of plots for the fracture evolu-
tion. Figures5a displays intact bonds (straight line seg-
ments) and in Figs. 5b, 8, and 10 we plot the damage
d.

6.1 Material model

The force function g′ is modelled using a piecewise
trigonometric function ensuring continuity of g′′ at
zero, rc, re, r+, and r−. For symmetry, we assume
re = −rc, r− = −r+, and C+ = C−. The potential
function is therefore given by

g(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C−, if r ≤ r−
N
2 sin( π(r−rc)

r−−re
)
r−−re

π + M
2 r + Cc

1, if r− ≤ r < re

− M
π
2rc

cos
(

πr
2rc

)
+ Cs

0, if re ≤ r ≤ rc

M
2 sin( π(r−rc)

r+−rc
)
r+−rc

π + M
2 r + Cc

0, if rc ≤ r < r+
C+, if r ≥ r+

where M = C+
r+−rc

2 +2 rc
π

, N = C−
r−−re

2 +2 re
π

, and

Cs
0 = 2Mrc

π

Cc
0 = Mrc

(
2

π
− 1

2

)
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Fig. 3 The force function g′ used in Subsection 6.3. Here, r+ =
0.001 = −r− and rc = 0.15r+ = −re

Cc
1 = Nre

(
2

π
− 1

2

)
.

The first and second derivatives of g are given by

g′(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N
2 cos

(
π(r−re)
r−−re

)
+ M

2 if r− ≤ r ≤ rc

M sin
(

πr
2rc

)
, if re ≤ r ≤ rc

M
2 cos

(
π(r−rc)
r+−rc

)
+ M

2 if rc ≤ r ≤ r+
0, otherwise

and

g′′(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− Nπ
2(r−−re)

sin
(

π(r−re)
r−−re

)
+ M

2 if r− ≤ r ≤ r−
Mπ
2rc

cos
(

π
2rc

r
)

, if re ≤ r ≤ rc

− Mπ
2(r+−rc)

sin
(

π(r−rc)
r+−rc

)
+ M

2 if rc ≤ r ≤ r+
0, otherwise.

Note that, g′′ continuous everywhere. The force func-
tion The force function g′ associated with the mate-
rial parameters described in Subsection 6.3 is shown
in Fig. 3. In the following examples, we take J ≡ 1.

6.2 Straight crack propagation

We consider a square-shaped domain length L with a
horizontal pre-notch of length L

4 on the left edge of the
domain, where L = 260mm (see Fig. 4). A regular rect-
angular grid is considered with meshsize h = 2.5 mm.
The peridynamic horizon is taken to be ε = 3h. The
material parameters are taken to be E = 210 GPa and
Gc = 2700 J/m2. The domain is subjected to uniaxial

Fig. 4 Square domain with a single horizontal pre-notch

tension in the vertical direction via a displacement on
the nonlocal boundary, which is taken to be a layer of
thickness ε adjacent to the top and the bottom edge of
the rectangle.Weapply avertical outwarddisplacement
ofU 0 = 2.7× 10−3 mm. To keep the nonlocal bound-
ary Ωd from experiencing damage, the bonds within
Ωd are made tougher throughout the simulation. The
displacement is incremented by ΔU = 1.4×10−3 mm
at each displacement step. The crack grows at the tip of
the pre-notch and extends horizontally in a straight line.
Figure5 shows the crack path evolution at displacement
steps N = 40, 70, and 99. In the crack front, a pro-
cess zone is seen where several bonds are intact. The
load increment is chosen carefully so that the process
zone remains the same length throughout the simula-
tion. Beyond the process zone, all bonds are broken.

6.3 L-shaped panel test

We consider an L-shaped domain with geometry and
boundary given in Fig. 6. The material parameters are
chosen to beμ = 10.95 GPa and Gc = 1000 J/m2. The
meshfree numerical approach followed here allows us
to consider a non-uniform distribution of peridynamic
nodes while ignoring quadrature errors when the maxi-
mumdistance between the nodes is small enough.Here,
an unstructured grid with 8931 nodes is used to dis-
cretize the domain. Since there is no pre-notch in the
sample, we choose the strength of the material given by
σF = 24 MPa, resulting in a peridynamic horizon of
ε = 15mm. Here as in Diehl et al. (2016), the strength
determines the horizon size and we have selected the
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Fig. 5 Straight crack propagation in a square domain

peridynamic horizon according to the Griffith’s crite-
rion given by the formula

ε ≤ GcE

πσ 2
F

. (42)

This constraint on horizon size based on strength is seen
to be a factor of π2 smaller than the one developed for
the bi-linear bond model in Niazi et al. (2021), in equa-
tion (17). The bottom edge of the domain is clamped
while a vertical displacement is applied in the bottom-
right corner of the domain. The initial displacement
is taken to be U 0 = 0.005mm, and it is incremented
by ΔU = 0.00076mm at each displacement step. In
this numerical implementation, we apply the Newton
method until convergence for each displacement step.
Then we break all bonds that are on the decreasing
branch of the force - strain curve. Fig. 8 shows the dam-
age for the displacement steps N = 33, 45, and 56. The
crack pattern is consistent with the crack pattern seen
in experiment (Winkler 2001). The energy EN with
respect to the displacement step N is shown in Fig. 7a.

In Fig. 7b, we plot the residuals
∥∥L[uN

k ]∥∥L∞(Ωd )
asso-

ciated with the Newton iteration for two different dis-
placement steps. We plot the residual versus Newton
step for a displacement step after the crack has pro-
gressed significantly (N = 88). The residuals lie below
a tolerance of 10−10 after 4 iterations for displacement
step (N = 10) and after 5 iterations for displacement
step (N = 88).

6.4 Double-notched tension test

We consider a double-notched rectangular domain
given in Fig. 9, which was considered in Zhao et al.
(2018). The material parameters are taken to be E =
203 GPa and Gc = 2700 J/m2. The domain is a rect-
angle of dimension 40mm × 50mm. Two horizontal
pre-notches of length 10mm are present on the left and
the right edges of the rectangle. The vertical distance
of the pre-notches are taken to be 0mm, 10mm, and
20mm apart, respectively. A regular grid is used and
the mesh size is taken to be h = 0.5 mm. The peridy-
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Fig. 6 L-shaped domain geometry and prescribed displacement
loading

Fig. 7 L-shaped domain

namic horizon is taken to be ε = 5h. The domain is
loaded under uniaxial tension in the vertical direction.
The initial applied displacement loading is taken to be

U 0 = 9.23× 10−5 mm. At each displacement step N ,
the displacement is increased by ΔU = 2.4 × 10−5

mm. In this numerical implementation, we apply the
Newton method until convergence for each displace-
ment increment. Thenwe break all bonds that are on the
decreasing branch of the force - strain curve. The frac-
ture patterns are shown in Fig. 10. In the domain with
pre-notcheswith zero vertical distance, the cracks grow
inward in straight lines. When the pre-notch distance
is 10mm, the cracks initially grow inward and even-
tually merge. When the pre-notches are too far apart
(20mm), the cracks grow inward, bend slightly toward
the center, but they do not merge. The elastic energy of
the intact material shown in Fig. 11.

7 Conclusion

In this paper a nonlocal quasistatic approach is devel-
oped for the evolution of multiple cracks. Using this
model, a numerical method is presented and exam-
ples are given. The approach is implicit and the well-
posedness of the model is proved using fixed point
methods. For each displacement step it is seen that
the Newton convergence of the residual as measured
by the maximum norm is fast. For the straight crack it
takes at most four iterations in the presence of crack
growth before the residual lies below a tolerance of
10−5. We have rigorously proved that the fracture evo-
lution decreases stored elastic energy of the intactmate-
rial with each displacement step as the cracks advance.
This holds true theoretically provided the displacement
increments are chosen sufficiently small. This is borne
out in the numerical examples. The numerical examples
show that crack patterns emerge from the field theory
in the quasistatic context.

This paper uses the limit calibration approach to
PD modeling developed in Lipton (2014, 2016). This
approach calibrates the collapsed or “ε = 0,” PD ten-
sor to the prescribed elastic properties of the specimen.
For this choice the nonlocal model is used to solve for
the emergent evolution of quasistatic fracture inside the
material specimen. Here we solve a boundary value
problem for the displacement inside the material. This
is done for each increment in the prescribed boundary
displacement. The horizon length scale is constrained
to lie below the flaw length scale characterizing the
material’s strength and the collapsed peridynamic ten-
sor is calibrated to the materials Young’s moduli. Non-
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Fig. 8 Fracture in L-shaped domain: the damage plot

Fig. 9 Double-notched domain under uniaxial tension loading

local traction conditions are given on the boundary
away from where the prescribed displacement incre-
ments are prescribed. The condition is described by
a layer or interaction zone where no force is exerted
on the center point of a neighborhood by any point
within the neighborhood out side the specimen, see (Du
et al. 2013). A similar condition holds for any internal
boundary generated by the fracture process as outlined
in Sect. 2.2. The nonlocal traction conditions provably
converge as ε → 0 to the local traction conditions
of linear elasticity (Lipton and Jha 2021). Most impor-
tantly the elastic fields surrounding internal boundaries
converge to linear elastic fields. The internal bound-
aries converge to time evolving cracks with zero trac-
tion conditions on the crack lips. This is shown rig-
orously for straight cracks in Lipton and Jha (2021).
For this model the bulk elasticity constant is described
by the slope of the bond force at zero strain (see (7))
and is the same everywhere in the domain. In general
terms we have calibrated the “collapsed” peridynamic

elasticity tensor (Silling and Lehoucq 2008) tomaterial
properties. The fracture toughness of the specimen is
used to calibrate the area under the force strain curve
and the PD energy Γ -converges to the Griffith fracture
energy (Lipton 2014, 2016).

In a different interpretation of the model a peridy-
namic material is defined. Here the PD energy den-
sity associated with a fixed horizon size is calibrated
to the elastic modulus of the material (Silling and
Ascari 2005). When the horizon is close to the bound-
ary its energy density decreases due to bonds crossing
the specimen boundary and the calibration to mate-
rial properties becomes problematic, this gives rise to
the surface effects systematically analyzed in Li and
Bobaru (2016). On the other hand in the limit cali-
bration approach it is the nonlocal traction free condi-
tions at external or internal boundaries that captures the
effect of bonds crossing the specimen boundary.

Using the limit calibration approach we have pur-
sued the theory further and for the dynamic model of
(Lipton 2014, 2016) we surround the tip of the dynam-
ically propagating crack with a box of finite diameter.
We multiply the nonlocal equation of motion by the
velocity field inside the box and integrate over the area
(volume) of the box. After an integration by parts and
application of Reynolds transport theorem we send the
PD horizon to zero and let the diameter of the box go to
zero.Noassumptions aremade and this procedure auto-
matically delivers the celebrated formula relating crack
tip velocity and critical energy release rate to stress
intensity factor given in Freund (1972), Willis (1975).
This observation and procedure was developed in Jha
and Lipton (2020) and shows that the relation between
crack velocity, change in internal energy and elastic
energy flowing into the crack tip follows directly from
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Fig. 10 Fracture patterns in double-notched tension test

Fig. 11 Elastic energy in the intact material for the double-notched tension tension with 0mm, 10mm, and 20mm offset
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the nonlocal model. Future work will address energy
flow and energy release rate for the quasistatic case.
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19-1-0245.

Appendix

We provide the proof of Proposition 3 below. Substitu-
tion of u0 = 0 into (25) gives

L′
0[u0]Δu(x) = −

∫

Ĥε (x)∩Ω

J ε(|y − x|)
εn+1ωn

g′′ (0)

S(y, x,Δu)ey−xdy, (43)

and we directly verify as in Bhattacharya and Lipton
(2023) that Ker{L′[u0]} = 0 and A[u0] − γ I > 0 for
some γ > 0. SoL′[u0]−1 exists and is a bounded linear
operator mapping V onto V .

Now proceeding as in Sect. 3 we conclude there is a
closed ball surrounding u0 given by B(R,u0) = {u :
||u − u0||∞ ≤ R} of radius R > 0 and center for
which L′

N [u]−1 is well defined. Consequently there is
a positive constant K0 > 0 for which K0||w||∞ ≤
||L′[u]w||∞ for any fixed u in B(R,u0) and for all
w ∈ V . With this in hand, we now show that u0 = 0 is
the only solution of the boundary value problem among
all functions in B(R,u0). To see this suppose there is
another solution u in B(R,u0) to the boundary value
problem L[u0](x) = 0, for x in D and u = 0 on Ωd .
Applying the fundamental theorem of calculus and the
mean value theorem gives a 0 ≤ t̃ ≤ 1 for which

0 = ||L0[u] − L0[u0]|| = ||
∫ 1

0
L′[tu]u dt ||

= ||L′[t̃u]u|| ≥ K0||u||, (44)

so u = 0. Hence u0 = 0 is the only solution in this
ball.
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