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Abstract A fracture energy-based constitutive model
of concrete in the framework of continuum damage
mechanics is formulated. Elastic, viscoelastic, and vis-
coplasticmechanisms are defined in a fictitious undam-
aged material state, the so-called effective configura-
tion. A linear spring and a linear dashpot characterize
the viscoelastic response of concrete. The viscoplas-
tic behavior is also described using a linear spring,
a nonlinear dashpot, and a slider with constant fric-
tional resistance. The nonlinear dashpot of the vis-
coplastic body is formulated using a logarithmic func-
tion so that the model can reproduce valid strength
magnifications under a wide range of strain rates. As a
result, a consistency viscoplastic approach is obtained
wherein, in contrast to the so-called overstress vis-
coplastic laws, the rate effects are induced in the yield
surface of the model. A fracture energy-based regular-
ization is employed to adjust the rate of damage growth
to obtainmesh-objective results. The directional degra-
dation of concrete is also characterized by a frame-
independent tensorial description of damage. Next, a
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fully implicit return-mapping algorithm based on the
Newton–Raphson scheme is proposed. The presented
model is then assessed by validating its results with
a series of experimental tests. In addition, the mixed-
mode fracture of concrete is investigated under differ-
ent strain rates, verifying the experimentally observed
transition of the failure mode from a ductile flexural to
a brittle diagonal failure.

Keywords Fracture mechanics · Damage mechan-
ics · Rate-dependent cracking · Viscoelasticity ·
Viscoplasticity · Anisotropic damage

1 Introduction

Dissipative mechanisms can occur in solids even when
they undergo reversible infinitesimal deformations. In
isothermal conditions, those dissipations can be linked
to a time-dependent responsewherein the deformations
are reversible, yet they require time to disappear com-
pletely. The inelastic response of solids is also a time-
dependent phenomenon. The inertia effects in their
microstructure redistribute the stress more uniformly,
reducing the stress concentration around the voids
and defects. Besides the time-dependent reversible and
irreversible deformations, the growth of micro-voids
and micro-cracks is another dissipative mechanism in
solids, which has more prominent effects when quasi-
brittle materials are of interest. This material degra-
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2 A. Daneshyar

dation is anisotropic in nature, meaning that different
magnitudes of damage can occur on different planes.

The simultaneous incorporation of viscoelastic, vis-
coplastic, and damage-growth mechanisms in formu-
lating the mechanical behavior of quasi-brittle solids
has been pursued infrequently. Sercombe et al. (1998)
proposed a constitutive model using a rate-dependent
Rankine-type yield criterion, yet they did not consider
the material degradation. Bažant et al. (2000b) formu-
lated a material model based on the microplane the-
ory wherein the viscoelastic response of concrete is
resembled using the Maxwell configuration. Gatuingt
and Pijaudier-Cabot (2002) reproduced the viscoplas-
tic response of concrete using the Gurson-type crite-
rion of Needleman and Tvergaard (1984). Employing
a dynamic elastic modulus in conjunction with a rate-
dependent measure of elastic strain energy, Lu and
Xu (2004) simulated the dynamic behavior of concrete
under different strain rates. Pedersen et al. (2008) uti-
lized the Perzyna overstress model (Perzyna 1971) for
considering the viscous hardening pertaining to the Ste-
fan effect (Peschel 1968). They used a simple isotropic
formulation to resemble the uniaxial response of con-
crete in tension and disregarded the effects of unilateral
contact.

Concrete shows different responses in tension and
compression.This aspect of its behavior hinders describ-
ing a smooth admissible elastic limit in the three-
dimensional Haigh–Westergaard stress space. Instead
of the Lode angle, Lubliner et al. (1989) defined the
yield surface of their model using the maximum prin-
cipal stresses and streamlined the identification of the
concrete inelastic response. Lee and Fenves (1998)
introduced two damage internal variables to the for-
mulation of Lubliner et al. (1989) and resembled the
unilateral effects. Employing the orthogonal projection
ofOrtiz (1985),Wuet al. (2006) used one damage index
for the tensile part of stress and one for its compres-
sive part. Instead of defining different magnitudes of
damage in tension and compression, Grassl and Jirásek
(2006) used a scalar damage index for both parts. A
strain-based damage evolution law was employed by
Häussler-Combe and Hartig (2008) for characterizing
the distribution of microscopic defects. However, they
used the elastic strain tensor for defining the damage
indices of their model. Červenka and Papanikolaou
(2008) used the smeared crack approach for resembling
the tensile behavior of concrete, while the compres-
sive response was governed by the theory of plastic-

ity. Employing damage dissipation potential functions,
Cicekli et al. (2007); Voyiadjis et al. (2008) assembled
anisotropic damage tensors for the tensile and com-
pressive parts of stress. Grassl et al. (2013) formulated
a damage-plastic model by defining an isotopic dam-
age index for each tensile and compressive part. Brünig
and Michalski (2017) proposed a constitutive model
by utilizing the additive decomposition of the strain
tensor. They used the concept of yield surface along
with a non-associative flow rule to describe the rate
of damage growth. Daneshyar and Ghaemian (2017)
proposed a microplane-based plastic-damage formula-
tion. By defining an independent damage internal vari-
able in every possible direction, they assembled fully
anisotropic damage tensors for the tensile and com-
pressive parts of stress. All the mentioned works were
focused on formulating the concrete behavior in the
absence of the rate effects. However, concrete shows
rate-dependent responses in both reversible and irre-
versible regimes. The former manifests itself in stiff-
ness magnification as well as hysteresis loops, and the
latter causes strength amplification. These two mecha-
nisms must be included in the concrete response if one
is to formulate a constitutive model for general loading
conditions.

Similar to concrete, asphalt materials exhibit a
rate-dependent response at all deformation stages.
Despite their complex heterogeneous mesostructure,
phenomenological approaches have been widely used
for predicting the mechanical behavior of asphalt con-
crete since those approaches can be efficiently uti-
lized for practical purposes. In an early attempt toward
the continuum modeling of asphalt concrete, Sides
et al. (1985) decomposed the strain tensor into elas-
tic, plastic, viscoelastic, and viscoplastic parts. They
also conducted a parametric study regarding the depen-
dence of strain components on the number of repeti-
tions and stress magnitudes. Lu and Wright improved
the model by modifying its constitutive equations
(Lu and Wright 1998) and adding the temperature
effects (Lu and Wright 2000). Presenting an associ-
ated and a non-associated viscoplastic model, Florea
(1994a, b) deduced that the volumetric expansion and
rate-dependency of plastic deformations must be con-
sidered to reach a rigorous formulation for asphalt con-
crete. By decomposing the strain tensor into viscoelas-
tic and viscoplastic parts, Uzan (2005) introduced an
isotropic damage model with two damage functions
in which Schapery’s model (Schapery 1969) describes
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A damage model for rate-dependent cracking of concrete 3

the viscoelastic part and a strain hardening function
governs the viscoplastic part. González et al. (2007)
developed a viscoplastic model that uses few mechan-
ical constants which can be easily obtained by simple
experiments. Utilizing Schapery’s viscoelasticity and
Perzyna’s viscoplasticity, Huang et al. (2011a, b) pre-
sented a constitutive model of which the calibration
process only needs one creep-recovery test. Further
improvements regarding the constitutive modeling of
asphalt materials were made by Darabi et al. (2011);
Al-Rub and Darabi (2012); Darabi et al. (2012) and
Shakiba and coworkers (Shakiba et al. 2013, 2015a, b).
Those studies included the different characteristics of
asphalt materials such as thermoelasticity, viscoelastic-
ity, viscoplasticity, damage growth, and even moisture
effects. Regarding the anisotropy of asphalt concrete,
Tashman et al. (2004) used a modified Drucker–Prager
yield function in conjunction with Perzyna’s formula-
tion to consider the material viscoplasticity. Yu et al.
(2014) developed an anisotropic model to study the
effects of direction-dependent damage growth as well
as the effects of aggregates directional distribution on
the rutting phenomena in asphalt pavements. Zhang
et al. (2015) presented a smooth octahedral yield sur-
face based on the generalized Drucker–Prager function
that can account for internal friction angles from 0 to
90 degrees. Their model eliminated the limitation of
its predecessors regarding the range of internal friction
angles. Balieu and Kringos (2015) presented a con-
stitutive model of which the plastic and damage flow
rules were extracted within a thermodynamical frame-
work. A second-order tensor was used to define the
anisotropic degradation, and the multiplicative decom-
position of strain gradient was employed. They utilized
their model to emphasize on the anisotropy of dam-
age evolution in asphalt concrete. It should be men-
tioned that although the heterogeneous mesostructure
of concrete and asphalt materials are rather similar,
their mechanical characteristics are different to a great
extent. Owing to its cementitious binder, concrete is
more of a sturdy and solid nature than asphalt materi-
als,making it suitable for construction purposes.On the
other hand, asphaltmaterials aremore useful for paving
purposes since they are cheaper, softer, and easier to
work with. In this regard, each of these two materials
demands constitutive models that are specifically for-
mulated based on their applications and indeed their
characteristics.

Despite the abundant efforts toward the modeling of
damage and cracking processes in quasi-brittle mate-
rials, the topic is still an active area of study (see for
example Ožbolt and Gambarelli (2018); Jirásek and
Allix (2019); Jirásek and Desmorat (2019); Fu et al.
(2022); Liu et al. (2022b); Gambarelli and Ožbolt
(2020); Sciegaj et al. (2020); Abdullah and Kirane
(2021); Konate et al. (2021); Mihai et al. (2021); Liu
et al. (2022a)). In particular, many authors have incor-
porated the rate effects for reproducing reversible and
irreversible strains in concrete, such as Coussy and
Ulm (1996), Sercombe et al. (1998), and Pedersen
and coworkers (Pedersen et al. 2006, 2008, 2013),
to name a few. This paper introduces damage-induced
anisotropy to their formulations. It has been revealed
that isotropic damage models overestimate the inten-
sity of damage, leading to the premature failure of
specimens (Jansson and Stigh 1985; Chow and Wang
1987). It also has been shown that this deficiency affects
the damaging process to the extent that the resulting
crack profiles are influenced (Daneshyar andGhaemian
2017). The reason lies behind the fact that damage tends
to grow on planes that are perpendicular to the princi-
pal stresses (Lu and Chow 1990). However, isotropic
models ignore the directional dependency of damage so
that degradation on a specific plane reduces the load-
bearing capacity of the material in all directions. As
a result, the weakness of isotropic damage models is
uncovered in mixed-mode tests in which the principal
cracking plane must rotate during the failure process
(Trampczynski et al. 1981; Wang and Chow 1989).
Thus, this paper aims to redress this drawback by
including the damage anisotropy in conjunction with
the viscoelastic and viscoplastic responses of concrete.
To this end, an idealized model for describing the elas-
tic, viscoelastic, and viscoplastic responses of concrete
is presented first. Then a proper damage growth law is
introduced, and the objectivity of the global responses
with respect to the width of the fracture process zone
is established by linking the rate of damage growth to
the fracture energy of concrete. Then, the formulation
is generalized for three-dimensional problems, and the
numerical aspects regarding the incremental integra-
tion of the nonlinear equations are presented. Next, the
model is verified by means of a series of experimental
tests, and some concluding remarks are presented at the
end.
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4 A. Daneshyar

Fig. 1 Rheological model consists of an elastic, a viscoelastic,
and a viscoplastic body in the effective (undamaged) configura-
tion

2 Constitutive formulation

2.1 Idealized one-dimensional behavior

The constitutive behavior of concrete in the effective
configuration can be characterized using the elastic,
viscoelastic, and viscoplastic responses. These three
mechanisms are idealized here by means of the rheo-
logical model of Fig. 1. The model consists of a serial
arrangement of an elastic, a viscoelastic, and a vis-
coelastic body. As a result, the additive decomposition
of the total strain reads

ε = εe + εve + εvp, (1)

where ε, εe, εve, and εvp are the total, elastic, vis-
coelastic, and viscoplastic strains, respectively. All of
the springs are linear as well as the dashpot in the vis-
coelastic body. On the other hand, the dashpot of the
viscoplastic body is nonlinear. In addition, the slider in

Fig. 2 Unloading branches of a typical stress-strain curve based
on the damage, plasticity, and damage-plasticity formulations. It
is evident that the latter one reproduced a valid unloading slope

the viscoplastic body determines the irreversible strain-
ing threshold. Since the magnitude of stress is equal in
all three bodies, the following expressions hold in the
absence of the rate effects:

σ = E1ε
e, (2)

σ = E2ε
ve, (3)

σ ≤ σy + hεvp, (4)

where E1 and E2 are respectively the stiffness of the
elastic and viscoelastic bodies, σy is the yield stress,
and h is a positive constant that is interpreted as the
hardening of the viscoplastic body.

The stiffness degradation of concrete is induced by
the growth of micro-cracks, whereas the frictional slid-
ing along the faces of those micro-cracks leads to irre-
versible straining (Jason et al. 2006; Zhu et al. 2010).
Bothmechanismsmanifest themselves in the unloading
branch of stress-strain curves. The permanent deforma-
tions shift the unloading branch horizontally, whereas
the stiffness degradation reduces its slope. The former
can be defined by the plasticity theory, and the latter
in the framework of damage mechanics. However, as
shown in Fig. 2, none of these two theories are ade-
quate in the absence of the other. As can be seen in the
figure, a combination of those two is required to repro-
duce a valid unloading branch. Hence, the underlying
mechanisms of damage and plasticity are interwoven
and these two phenomena occur concurrently. As a
result, the magnitude of the viscoplastic strain controls
the damaging process in this model. By assuming an
exponential damage growth law, the relation between
the effective stress and its macroscopically observed
counterpart, the nominal stress, is given by
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A damage model for rate-dependent cracking of concrete 5

σ̃ = exp (−αεvp)σ, (5)

where σ̃ is the nominal stress and α is a constant that
controls the rate of damage growth. Note that the tilde
denotes a quantity in the damaged configuration in the
following.

Numerical treatments of localization and failure
problems can be categorized into two classes of discrete
and continuum models. Cracks are explicitly modeled
by the former one through injecting strong discontinu-
ities within the medium. As a result, special treatments
are required to reproduce the energy dissipated across
the fracture process zone. Cohesive models replicate
this dissipation by means of surface traction acting on
the crack faces. Themagnitude of this traction is related
to the relative displacement of the crack faces through a
cohesive law.Assuming amixed-mode planar problem,
the cohesive law must be defined in accordance with
the fracture energies of the first and second modes of
cracking. Since both normal and tangential relative dis-
placements exist, their corresponding traction vectors
are required to replicate the actual energy dissipation.
On the other hand, continuummodels preserve the con-
tinuity of the medium even for completely degraded
regions. This postulation streamlines the spatial dis-
cretization process but hinders the description of the
constitutive model. Continuum damage models are of
this type. They use idealized one-dimensional constitu-
tive laws to characterize the degradation process, while
themultidimensional effects are considered through the
continuity of stress and strain fields. This approach is
similar to that of the plasticity theory wherein a one-
dimensional response describes the post-linear regime
of the stress-strain curve, and the multidimensional
effects are injected by means of the flow rule of the
model.

The variations of the effective stress, nominal stress,
and damage index with respect to the magnitude of
the total strain are plotted in Fig. 3. The area under
the nominal stress curve (shaded in gray) represents
the energy required for a complete cracking process
(Oliver 1989). This process occurs in a finite thickness
depending on the microstructure of the material (de
Borst 2013). In the nonlocal and gradient-enhanced for-
mulations wherein the governing equations of the sys-
tem are regularized, this thickness is explicitly defined
through a parameter called the characteristic length �

(de Borst et al. 1995; de Borst and Verhoosel 2016;
Iacono et al. 2020). Here, although the rate-dependent

Fig. 3 Effective stress and nominal stress curves. The area under
the nominal stress–total strain curve from zero to infinity (shaded
area) represents the dissipated energy due to a complete cracking
process

inelastic response can lead to increasing the order of
time derivatives, the rate effects are not significant in
concrete and the field equations remain unregularized.
As a result, the localized zone spreads across the width
of finite element spaces, and �must be defined in accor-
dance with the geometry of elements (Bažant and Oh
1983; Bazoant and Pijaudier-Cabot 1989; Bažant and
Pijaudier-Cabot 1988).

The classical continuum mechanics concerns con-
tinua with perfect structure. The underlying theory is
devoid of any parameter incorporating the character-
istics of the material microstructure. Hence, no mat-
ter whether a medium has dimensions of meters or
microns, it is treated the same by the theory (Daneshyar
et al. 2022). However, due to its underlyingmicrostruc-
ture, the material response is essentially nonlocal. In
enriched continua, this feature is incorporatedbymeans
of the characteristic length, an internal length parame-
ter themagnitude of which follows from the correlation
properties of the material (Askes and Aifantis 2011).
The physical meaning of the characteristic length per-
tains to the phenomenon involved. In gradient elas-
ticity it can be related to the size of unit cells (Fish
et al. 2002b, a), dimensions of the representative vol-
ume element (Gitman et al. 2005), or dislocation core
size (Kioseoglou et al. 2008). In gradient plasticity, it
can be described in accordance with the grain size in
polycrystals (Menzel and Steinmann 2000) or disloca-
tion spacing (Al-Rub and Voyiadjis 2006). In fracture
problems, it represents the width of the fracture process
zone, i.e., itself can be linked to the size of aggregates
in case of concrete cracking (Bazoant and Pijaudier-
Cabot 1989).
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6 A. Daneshyar

With the characteristics length � at hand, the energy
dissipation during a process of cracking is linked to the
fracture energy of concrete, G f , through the following
relation:

G f = �

∫ ∞

0
σ̃ (e)dε = �

∫ εy

0
σ̃ (ε)dε + �

∫ ∞

εy

σ̃ (ε)dε, (6)

where εy is the total strain at the onset of damage. From
(2) and (3) we can deduce that

E1ε
e = E2ε

ve. (7)

In the absence of the viscoplastic strain we have

dε = dεe + dεve. (8)

Hence,

dε = E1 + E2

E2
dεe, (9)

which, by utilizing the relation in (2), can be rewritten
as

dε = E1 + E2

E1E2
dσ = Cadσ, (10)

where

Ca = E1 + E2

E1E2
(11)

is the compliance of the equivalent spring for the elastic
and viscoelastic bodies. As a result, the first integral on
the right-hand side of (6) is computed as
∫ εy

0
σ̃ (ε)dε = Ca

∫ σy

0
σdσ = Ca

σ 2
y

2
. (12)

On the other hand, the nonlinear branch of the nominal
stress is governed by the relation in (4). Thus, based on
(2), (3), and (4) we have

E1ε
e = σy + hεvp, (13)

E2ε
ve = σy + hεvp. (14)

Hence,

dεe = h

E1
dεvp, (15)

dεve = h

E2
dεvp. (16)

Using the additive decomposition of the total strain in
(1), we have

dε = dεe + dεve + dεvp. (17)

Substituting (15) and (16) into (17) gives

dε = hE1 + hE2 + E1E2

E1E2
dεvp = hCbdεvp, (18)

where

Cb = hE1 + hE2 + E1E2

hE1E2
(19)

is the complianceof the equivalent spring for the elastic,
viscoelastic, and viscoplastic bodies.Hence, the second
integral on the right-hand side of (6) is written in terms
of the viscoplastic strain as∫ ∞

εy

σ̃ (ε)dε = hCb

∫ ∞

0

exp (−αεvp)(σy + hεvp)dεvp, (20)

which is computed as follows:∫ ∞

εy

σ̃ (ε)dε = hCb

(
σy

α
+ h

α2

)
. (21)

By substituting the expressions in (12) and (21) into
(6), the unknown constant α is related to the fracture
energy of concrete through

G f = �Ca
σ 2
y

2
+ �hCb

(
σy

α
+ h

α2

)
. (22)

By introducing

q = G f

�hCb
− Caσ

2
y

2hCb
, (23)

the relation in (22) is rewritten as

q = σy

α
+ h

α2 . (24)

Rearranging the above relation gives the following sec-
ond degree algebraic equation for α:

qα2 − σyα − h = 0. (25)

As a result, the unknown constant α is computed as

α =
σy ±

√
σ 2
y + 4hq

2q
. (26)

To have an exponential decay, α must be positive. As
a result, two possibilities exist based on the sign of q.
For the positive values of q, the plus sign in front of
the square root is acceptable. On the other hand, for the
negative values of q, the numerator is always positive
and the denominator is negative, indicating that q must
remain positive to have the desired exponential decay.
According to the definition of q in (23), the following
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A damage model for rate-dependent cracking of concrete 7

admissible limit can be defined for the characteristic
length �:

� <
2G f

Caσ 2
y
. (27)

The above requirement can be easily satisfied by defin-
ing a proper discretization across the possible crack
propagation path. Employing the relation in (26) guar-
antees the objectivity of the energy dissipation with
respect to the spatial discretization of the problem.

2.2 Generalized three-dimensional behavior

2.2.1 Viscoelasticity

According to the idealized rheological model of Fig. 1,
the spring and dashpot of the viscoelastic body are con-
nected in parallel. Hence, the equivalent stress of the
body can be decomposed into a viscous and a restoring
part through (Pedersen et al. 2008):

‖si j‖ = ηξ̇ + E2ξ, (28)

where si j is the deviatoric part of the effective stress ten-
sor, ‖si j‖ is the Euclidean norm of si j , η is the viscosity
of the dashpot, which ranges from few megapascal-
second to hundreds of gigapascal-second based on the
concrete degree of saturation (Pedersen et al. 2008), ξ
is the viscoelastic internal variable, and ξ̇ is the time-
derivative (rate) of ξ . Note that the elastic, viscoelastic,
and viscoplastic behaviors of concrete are defined in the
effective configuration. Hence, for the sake of brevity,
the effective stress tensor is simply called the stress ten-
sor hereafter, unless otherwise noted. The evolution of
viscoelastic stain, ε̇ve, is given by the following flow
rule (Sercombe et al. 1998):

ε̇ve
i j = ξ̇

si j
‖si j‖ , (29)

which implies that the viscoelastic part of strain does
not contribute in the volume change of concrete. This
property is also observed in laboratory tests (Sercombe
et al. 1998).

2.2.2 Viscoplasticity

The overstress viscoplastic models are formulated
based on the assumption that the state of stress can
be located outside the admissible region defined by the
yield surface. As a result, they violate the Kuhn-Tucker

conditions and impair the convergence of numerical
integration. In addition, the linear behavior of the vis-
coplastic dashpot in the overstress models does not suf-
fice to provide valid strength magnifications if a wide
range of strain rates is of interest. A remedy is to define
a rate-dependent yield surface that incorporates both
the hardening and strain rate effects. This approach is
more appealing from the computational point of view
due to its better convergence properties (Wang et al.
1997). As a result, the yield surface of the model is
given by (Lee and Fenves 1998)

F = √
3J2 + aI1 + b〈σmax 〉 − (1 − a)σ−

d , (30)

where J2 is the second invariant of the deviatoric stress
tensor, I1 is the first invariant of the stress tensor, σmax

is the maximum principal stress, 〈σmax 〉 returns σmax

for the positive values and zero for the negative ones,
a is a dimensionless material constant, which is equal
to 0.12 for most concretes (Lubliner et al. 1989),

b = (1 − a)
σ−
d

σ+
d

− (1 + a), (31)

σ+
d is the dynamic strength of concrete in tension, and

σ−
d is the dynamic strength of concrete in compression.

Note that in the remainder of the text, theminus andplus
superscripts denote the compressive and tensile parts
of a quantity, respectively. By assuming a logarithmic
strength magnification, we have

σ±
d = (

1 + c1 ln (c2γ̇
± + 1)

)
σ±
s , (32)

where

σ±
s = σ±

y + h±γ ± (33)

is the static strength, γ ± is the viscoplastic internal
variable, γ̇ ± is the time-derivative of γ ±, σ±

y is the
yield strength, h± is the hardening parameter, and c1
and c2 are the material constants that define the rate-
sensitivity of concrete. Many authors have employed
functions similar to those in (32) for describing the rate-
dependent response of concrete, such as Bažant et al.
(2000a), Bažant et al. (2000b), Ožbolt et al. (2006),
and Ožbolt et al. (2011), to name a few. Based on the
calibration of Ožbolt et al. (2006), the constants of the
logarithmic function are chosen as c1 = 0.032 and
c2 = 500 × 103 second. Assuming different strength
magnifications, Fig. 4 illustrates the yield surface of
themodel in the three-dimensionalHaigh–Westergaard
stress space.
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8 A. Daneshyar

Fig. 4 Yield surface of themodel in the three-dimensional space
of principal stresses (in MPa) for tensile strength of 2 MPa and
compressive strength of 10MPa under the rate-independent con-
ditions (inner surface), rate-dependent conditions with a magni-
fication factor of 2 (middle surface), and with a magnification
factor of 4 (outer surface)

The viscoplastic flow rule of the model is defined by
means of a Drucker–Prager type function so that (Lee
and Fenves 1998)

ε̇
vp
i j = γ̇

( si j
‖si j‖ + apδi j

)
(34)

where ap is the dilation constant. Note that by set-
ting ap = 0.2, the non-associative flow rule in (34)
reproduces realistic magnitudes of inelastic volumetric
expansion.

The yield function F and the rate of viscoplastic
internal variable γ̇ are subjected to the Kuhn–Tucker
conditions with the following definition:

F ≤ 0, γ̇ ≥ 0, γ̇ F = 0. (35)

The rate of viscoplastic internal variable γ̇ is obtained
by satisfying the above relations. As a result, the evo-
lution of viscoplastic strain ε̇

vp
i j can be computed using

the flow rule of the model. With ε̇
vp
i j at hand, the rate of

tensile and compressive viscoplastic internal variables
γ̇ + and γ̇ − are given by (Lee and Fenves 1998)

γ̇ + = r(σi j )ε̇
vp
max , (36)

γ̇ − = −(
1 − r(σi j )

)
ε̇
vp
min, (37)

where ε̇
vp
max and ε̇

vp
min are respectively the maximum

and minimum principal viscoplastic strain rates and r
is a weight function, which is defined by means of the
principal values of the stress tensor as follows:

r(σi j ) =
∑3

k=1〈σk〉∑3
k=1 |σk |

. (38)

2.2.3 Anisotropic damage

Concrete is a heterogeneous solid with an almost
isotropic response prior to the onset of damage. Once
its degradation begins, it starts to exhibit a direction-
dependent response. Since damage tends to grow on
the aggregate boundaries, this direction-dependency
is more dominant in concrete than in a homogeneous
solid.

Tensorial damage growth is formulated here based
on the work of Bažant et al. (1996). According to their
theory, the virtual work of the stress tensor inside a
unit sphere is equal to the virtual work of the traction
vectors over the surface of the same sphere. Hence,
4π

3
σi jδεi j =

∫
Ss
Tiδei dSs, (39)

where Ti and δei are the traction and virtual strain vec-
tors, respectively, and Ss denotes the surface of the unit
sphere. The virtual strain vector δei is related to the vir-
tual stain tensor δεi j through the following kinematic
constraint (Jirásek 1999):

δei = δεi j n j , (40)

where ni is the unit outward vector to the surface of the
sphere. Employing the kinematic constraint in (40), the
relation in (39) yields

σi jδεi j = 3

4π

∫
Sh

(Tin j + Tjni )δεi j dSh, (41)

wherein, due to the symmetry of the traction vectors,
the integral on the right-hand side is defined over the
surface of a unit hemisphere, Sh . As a result, the stress
tensor is related to the traction vectors through the fol-
lowing relation:

σi j = 3

4π

∫
Sh

(Tin j + Tjni )dSh . (42)

On the other hand, by decomposing the stress tensor
into its tensile and compressive parts, we have (Wu
et al. 2006)

σi j = σ+
i j + σ−

i j , (43)
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A damage model for rate-dependent cracking of concrete 9

where

σ±
i j = P±

i jklσkl , (44)

and P±
i jkl is a projection tensor with the following ten-

sile and compressive parts:

P+
i jkl =

3∑
r=1

H(σr )n
(r)
i n(r)

j n(r)
k n(r)

l , (45)

P−
i jkl = Ii jkl − P+

i jkl , (46)

wherein n(r)
i is the direction of r th principal stress,

Ii jkl = 1

2
(δikδ jl + δ jkδil) (47)

is the fourth-order identity tensor, and

H(x) =
{
1 x > 0
0 x ≤ 0

(48)

is the Heaviside step function. As a result, the relation
in (42) can be rewritten for the tensile and compressive
parts of the stress tensor as

σ±
i j = 3

4π

∫
Sh

(T±
i n j + T±

j ni )dSh . (49)

On the other hand, the traction vector T±
i is related

to its nominal counterpart, T̃±
i , through the following

relation (Jirásek 1999):

T±
i = ψ±T̃±

i , (50)

where ψ± is called the inverse integrity, which can be
related to the damage index ϕ± by

ψ± = 1

1 − ϕ± . (51)

According to the exponential damage growth law in
(5), the inverse integrity ψ± is defined as

ψ± = exp (α±evp±), (52)

where

ėvp+ = r(σi j )ε̇
vp
i j ni n j , (53)

ėvp− = −(
1 − r(σi j )

)
ε̇
vp
i j ni n j . (54)

Substituting the traction vector T±
i from (50) into (49)

results in

σ±
i j = 3

4π

∫
Sh

(ψ±T̃±
i n j + ψ±T̃±

j ni )dSh . (55)

On the other hand, the tensile and compressive traction
vectors in the damaged configuration are related to the
nominal tensile and compressive stress tensors by

T̃±
i = σ̃±

i j n j . (56)

Substituting the above expression into (55) results in

σ±
i j = 3

4π

∫
Sh

(ψ±σ̃±
ik nkn j + ψ±σ̃±

jknkni )dSh . (57)

Finally, the effective stress tensors are related to their
nominal counterparts by

σ±
i j = 1

2
(σ̃±

ikψ
±
k j + σ̃±

jkψ
±
ki ), (58)

where

ψ±
i j = 3

2π

∫
Sh

ψ±nin j dSh (59)

is the inverse integrity tensor. The relation between the
effective and nominal stress tensors can be rewritten as

σ±
i j = M±

i jkl σ̃
±
kl , (60)

where

M±
i jkl = 1

2
(ψ±

ikδ jl + ψ±
jkδil) (61)

is the fourth-order mapping tensor. According to the
stress decomposition in (43) we arrive at

σi j = M+
i jkl σ̃

+
kl + M−

i jkl σ̃
−
kl , (62)

or, equivalently,

σi j = Mi jkl σ̃kl , (63)

where

Mi jkl = M+
i jrs P

+
rskl + M−

i jrs P
−
rskl (64)

is the total fourth-order mapping tensor.

2.3 Return-mapping algorithm

A fully implicit Euler scheme is proposed here to
discretize the constitutive equations in the temporal
domain. The typical incremental procedure between
the time interval [tn, tn+1] is used to discretize the equa-
tions, wherein the subscript n and n+1 refer to the pre-
vious and current states, respectively. Since the equa-
tions are subjected to the Kuhn–Tucker conditions, a
two-step algorithm consisting of a viscoelastic predic-
tor and a viscoplastic corrector is required. With the
solution of the return-mapping equation at hand, the
updated mapping tensor can be computed at the end of
the time interval.
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10 A. Daneshyar

2.3.1 Viscoelastic predictor

Given the total strain increment Δεi j , the trial elastic
strain tensor can be defined in the absence of the vis-
coelastic and viscoplastic responses as follows:

(εei j )
tr ial
n+1 = (εei j )n + Δεi j . (65)

Assuming a pure viscoelastic loading state, we have

(εei j )n+1 = (εei j )
tr ial
n+1 − Δεve

i j . (66)

Based on the backward Euler scheme, the viscoelastic
flow rule in (29) is discretized as follows:

Δεve
i j = Δξ

(si j )n+1

‖si j‖n+1
. (67)

According to the Hooke’s law, the deviatoric stress ten-
sor is related to the elastic strain tensor through

(si j )n+1 = 2G
(
(εei j )n+1 − 1

3
(εekk)n+1δi j

)
, (68)

where G is the elastic shear modulus of the material.
Substituting the relations in (66) and (67) into the above
expression results in

(si j )n+1 = 2G
(
(εei j )

tr ial
n+1 − 1

3
(εekk)

tr ial
n+1 δi j − Δξ

(si j )n+1

‖si j‖n+1

)
. (69)

The above expression can be rewritten as follows:

(si j )n+1 = (si j )
tr ial
n+1 − 2GΔξ

(si j )n+1

‖si j‖n+1
, (70)

or, equivalently,

(si j )
tr ial
n+1 = (si j )n+1

(
1 + 2GΔξ

‖si j‖n+1

)
. (71)

By equating the Euclidean norm of the both sides of
the above relation we can deduce that

‖si j‖tr ialn+1 = ‖si j‖n+1 + 2GΔξ. (72)

Substituting the above expression into (71) and per-
forming some straightforward manipulations give

N ve
i j := (si j )tr ialn+1

‖si j‖tr ialn+1

= (si j )n+1

‖si j‖n+1
, (73)

where N ve
i j is the viscoelastic flow direction. The above

expression implies the co-linearity of the trial and
updated deviatoric stress tensors,whichmeans that N ve

i j
is a priori known direction. This property substantially
streamlines the numerical integration process.

By applying the incremental procedure on the
expression in (28), the following discretized relation
is obtained:

‖si j‖n+1 = η
Δξ

Δt
+ E2(ξ)n+1, (74)

wherein

(ξ)n+1 = (ξ)n + Δξ. (75)

By substituting the relation in (72) into (74) and
employing the above expression we arrive at

‖si j‖tr ialn+1 − 2GΔξ = η
Δξ

Δt
+ E2

(
(ξ)n + Δξ

)
. (76)

Solving the above equation for the increment of vis-
coelastic internal variable Δξ gives

Δξ = ‖si j‖tr ialn+1 − E2(ξ)n

η/Δt + 2G + E2
. (77)

As a result, the deviatoric stress tensor is updated as
follows:

(si j )n+1 = (si j )
tr ial
n+1 − 2GΔξN ve

i j . (78)

On the other hand, the hydrostatic stress is given by

(p)n+1 = (p)tr ialn+1 = K (εekk)
tr ial
n+1 , (79)

where K is the elastic bulk modulus of the material.
Finally, the updated stress tensor is computed as fol-
lows:

(σi j )n+1 = (si j )n+1 + (p)n+1δi j . (80)

The updated stress tensor in (80) is obtained by
assuming a pure viscoelastic loading state. However,
the admissibility of the solution has to be assessed by

(F)n+1 ≤ 0, (81)

which means that the stress state lies within the yield
surface and the assumption is correct. As a result, the
elastic and viscoelastic solution variables are updated
by

(ξ)n+1 = (ξ)n + Δξ, (82)

(εve
i j )n+1 = (εve

i j )n + Δεve
i j , (83)

(εei j )n+1 = (εei j )n + Δεi j − Δεve
i j , (84)

whereas the other variables remain unchanged during
the increment.
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A damage model for rate-dependent cracking of concrete 11

2.3.2 Viscoplastic corrector

The violation of the stress admissibility indicates that
the step is not purely viscoelastic. Hence, the updated
elastic strain tensor is defined as

(εei j )n+1 = (εei j )
tr ial
n+1 − Δεve

i j − Δε
vp
i j . (85)

According to the viscoplastic flow rule in (34), we have

Δε
vp
i j = Δγ

( (si j )n+1

‖si j‖n+1
+ apδi j

)
. (86)

Using the increments of viscoelastic and viscoplastic
strains, the updated deviatoric stress tensor reads

(si j )n+1 =2G
(
(εei j )

tr ial
n+1 − 1

3
(εekk)

tr ial
n+1 δi j

)

− 2G(Δξ + Δγ )
(si j )n+1

‖si j‖n+1
,

(87)

or, equivalently,

(si j )n+1 = (si j )
tr ial
n+1 − 2G(Δξ + Δγ )

(si j )n+1

‖si j‖n+1
. (88)

As a result, the trial deviatoric stress tensor can be given
by

(si j )
tr ial
n+1 = (si j )n+1

(
1 + 2G(Δξ + Δγ )

‖si j‖n+1

)
. (89)

By equating the Euclidean norm of the both sides of
the above relation we arrive at

‖si j‖tr ialn+1 = ‖si j‖n+1 + 2G(Δξ + Δγ ). (90)

Substituting the above relation into (89) andperforming
some algebraic manipulations result in

N vp
i j := (si j )tr ialn+1

‖si j‖tr ialn+1

= (si j )n+1

‖si j‖n+1
, (91)

where N vp
i j is the viscoplastic flow direction. By utiliz-

ing the expression in (90), the equivalent stress of the
viscoelastic body in (28) reads

‖si j‖tr ialn+1 − 2G(Δξ + Δγ )

= η
Δξ

Δt
+ E2

(
(ξ)n + Δξ

)
. (92)

Hence, the increment of the viscoelastic internal vari-
able is obtained as follows:

Δξ = ‖si j‖tr ialn+1 − 2GΔγ − E2(ξ)n

η/Δt + 2G + E2
. (93)

On the other hand, the updated deviatoric stress tensor
in (88) can be rewritten as

(si j )n+1 = (si j )
tr ial
n+1 − 2G(Δξ + Δγ )N vp

i j . (94)

The hydrostatic stress is also updated as follows:

(p)n+1 = (p)tr ialn+1 − 3KapΔγ. (95)

Consequently, the updated maximum principal stress
reads

(σmax )n+1 =(σmax )
tr ial
n+1 − 2G(Δξ + Δγ )N vp

max

− 3KapΔγ.
(96)

In addition, the first invariant of the stress tensor is
updated as follows:

(I1)n+1 = (I1)
tr ial
n+1 − 9KapΔγ. (97)

By substituting the updated values into the yield func-
tion, the following fully implicit return-mapping equa-
tion is obtained:

(F)n+1 =√
3(J2)n+1 + a(I1)n+1

+ (b)n+1〈σmax 〉n+1

− (1 − a)(σ−
d )n+1 = 0.

(98)

According to the Newton–Raphson scheme, the incre-
ment of the viscoplastic internal variable is updated
through the following relation:

(Δγ )k+1 = (Δγ )k − (F)kn+1

(F ′)kn+1

, (99)

wherein the superscripts denote the iteration number.
By taking the derivative of the return-mapping equation
with respect to Δγ we have

F ′ = ∂F

∂Δγ
+ ∂F

∂Δξ

∂Δξ

∂Δγ
+ ∂F

∂b

∂b

∂σ+
d

∂σ+
d

∂γ +
∂γ +

∂Δγ

+ ∂F

∂b

∂b

∂σ−
d

∂σ−
d

∂γ −
∂γ −

∂Δγ
+ ∂F

∂σ−
d

∂σ−
d

∂γ −
∂γ −

∂Δγ
,

(100)

where, for briefness, the subscripts and superscripts are
dropped. The partial derivatives in the above expression
are

∂F

∂Δγ
= −√

6G − 9Kapa

−(b)kn+1

(
2GN vp

max + 3Kap
)
H(σmax )

k
n+1,

(101)
∂F

∂Δξ
= −√

6G − (b)kn+1

(
2GN vp

max
)
H(σmax )

k
n+1,

(102)
∂Δξ

∂Δγ
= − 2G

η/Δt + 2G + E2
, (103)

∂F

∂b
= 〈σmax 〉kn+1, (104)
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12 A. Daneshyar

∂b

∂σ+
d

= −(1 − a)
(σ−

d )kn+1(
(σ+

d )kn+1

)2 , (105)

∂b

∂σ−
d

= (1 − a)
1

(σ+
d )kn+1

, (106)

∂σ±
d

∂γ ± = c1c2
c2Δγ ± + Δt

(
σ±
y + h±(γ ±)kn+1

)

+
(
1 + c1 ln

(
c2

Δγ ±

Δt
+ 1

))
h±, (107)

∂γ +

∂Δγ
= r(σi j )

k
n+1

(
N vp
max + ap

)
, (108)

∂γ −

∂Δγ
= −(

1 − r(σi j )
k
n+1

)(
N vp
min + ap

)
, (109)

∂F

∂σ−
d

= −(1 − a), (110)

where

Δγ + = r(σi j )
k
n+1Δγ

(
N vp
max + ap

)
, (111)

Δγ − = −(
1 − r(σi j )

k
n+1

)
Δγ

(
N vp
min + ap

)
. (112)

Finally, with the increment of viscoplastic internal
variable at hand, the solution variables are updated as
follows:

(ξ)n+1 = (ξ)n + Δξ, (113)

(γ )n+1 = (γ )n + Δγ, (114)

(γ ±)n+1 = (γ ±)n + Δγ ±, (115)

(εve
i j )n+1 = (εve

i j )n + Δεve
i j , (116)

(ε
vp
i j )n+1 = (ε

vp
i j )n + Δε

vp
i j , (117)

(εei j )n+1 = (εei j )n + Δεi j − Δεve
i j − Δε

vp
i j . (118)

On the other hand, according to the expressions in (53)
and (54), we have

Δevp+ = r(σi j )n+1Δε
vp
i j ni n j , (119)

Δevp− = −(
1 − r(σi j )n+1

)
Δε

vp
i j ni n j . (120)

Hence, the viscoplastic strain vector evp± is updated
by means of the following relation:

(evp±)n+1 = (evp±)n + Δevp±. (121)

As a result, based on the expressions in (52) and (59),
the updated inverse integrity tensor is computed as fol-
lows:

(ψ±
i j )n+1 = 3

2π

∫
Sh
exp

(
α±(evp±)n+1

)
nin j dSh .

(122)

In practice, the integral on the right-hand side of the
above expression is numerically approximated using a
cubaturemethod. Hence, the above relation is rewritten
as (Daneshyar and Ghaemian 2017, 2020)

(ψ±
i j )n+1 ≈ 3

2π

m∑
r=1

exp
(
α±(evp±)

(r)
n+1

)
n(r)
i n(r)

j ω(r),

(123)

wherem is the number of cubature points, (evp±)
(r)
n+1 is

the viscoplastic strain vector of the r th cubature point,
n(r)
i is the unit vector to the surface of the sphere at the

r th cubature point, and ω(r) is the r th cubature weight.
To summarize the proposed incremental procedure,

the viscoelastic predictor and viscoplastic corrector
algorithms are presented in a pseudo-code format in
Algorithms 1 and 2, respectively. It should be men-
tioned that ABAQUS finite element software is utilized
for performing the simulations and the proposed con-
stitutive model is introduced to the software through
the user-subroutine UMAT.

begin evaluate the trial state
given Δεi j , compute the trial stress;
(εei j )

tr ial
n+1 = (εei j )n + Δεi j ;

(si j )tr ialn+1 = 2G
(
(εei j )

tr ial
n+1 − 1

3 (εekk)
tr ial
n+1 δi j

)
;

compute Δξ ;

‖si j‖tr ialn+1 =
√

(si j )tr ialn+1 (si j )tr ialn+1 ;

Δξ = ‖si j ‖tr ialn+1 −E2(ξ)n

η/Δt+2G+E2
;

update the stress tensor;
(p)n+1 = K (εekk)

tr ial
n+1 ;

(si j )n+1 = (si j )tr ialn+1 − 2GΔξ
(si j )tr ialn+1

‖si j ‖tr ialn+1
;

(σi j )n+1 = (si j )n+1 + (p)n+1δi j ;
end
if (F)n+1 ≤ 0 then

update the internal variables;
(ξ)n+1 = (ξ)n + Δξ ;
(εve

i j )n+1 = (εve
i j )n + Δεve

i j ;

(εei j )n+1 = (εei j )n + Δεi j − Δεve
i j ;

else
go to the viscoplastic corrector algorithm;

end

Algorithm 1:viscoelastic predictor
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A damage model for rate-dependent cracking of concrete 13

begin solve the return-mapping equation
set k = 0 and (Δγ )k = 0;
while |(F)kn+1| > εtol do

compute Δξ ;

‖si j‖tr ialn+1 =
√

(si j )tr ialn+1 (si j )tr ialn+1 ;

Δξ = ‖si j ‖tr ialn+1 −2GΔγ−E2(ξ)n

η/Δt+2G+E2
;

update the stress tensor;
(p)n+1 = (p)tr ialn+1 − 3KapΔγ ;

(si j )n+1 = (si j )tr ialn+1 − 2G(Δξ + Δγ )
(si j )tr ialn+1

‖si j ‖tr ialn+1
;

(σi j )n+1 = (si j )n+1 + (p)n+1δi j ;
update Δγ ;

(Δγ )k+1 = (Δγ )k − (F)kn+1

(F ′)kn+1
;

end
update the internal variables;
(ξ)n+1 = (ξ)n + Δξ ;
(γ )n+1 = (γ )n + Δγ ;
(γ ±)n+1 = (γ ±)n + Δγ ±;
(εve

i j )n+1 = (εve
i j )n + Δεve

i j ;

(ε
vp
i j )n+1 = (ε

vp
i j )n + Δε

vp
i j ;

(εei j )n+1 = (εei j )n + Δεi j − Δεve
i j − Δε

vp
i j ;

end
set (ψ±

i j )n+1 = 0;

for r = 1 to m do
compute (Δevp±)(r);

(Δevp+)(r) = r(σi j )n+1Δε
vp
i j n

(r)
i n(r)

j ;

(Δevp−)(r) = −(
1 − r(σi j )n+1

)
Δε

vp
i j n

(r)
i n(r)

j ;

update the viscoplastic strain vector;

(evp±)
(r)
n+1 = (evp±)

(r)
n + (Δevp±)(r);

update the inverse integrity tensor;

(ψ±)
(r)
n+1 = exp

(
α±(evp±)

(r)
n+1

)
;

(ψ±
i j )n+1 = (ψ±

i j )n+1 + 3
2π (ψ±)

(r)
n+1n

(r)
i n(r)

j ω(r);

end
update the mapping tensor;
(M±

i jkl )n+1 = 1
2

(
(ψ±

ik )n+1δ jl + (ψ±
jk)n+1δil

)
;

Algorithm 2:viscoplastic corrector

3 Uniaxial response

Aset of uniaxial experimental tests is simulated here by
means of the presented method. To this end, the param-
eters of the model need be calibrated first. Due to the
rate-dependent response of concrete in both reversible
and irreversible regimes, a single stress-strain curve
does not provide enough information for obtaining a
unique set of viscoelastic and viscoplastic parameters.
Unlimited combinations of E1, E2, andη can reproduce
the desired initial slope of the stress-strain curve. How-
ever, these three can be adjusted such that the hysteresis

loops of the numerical curve conform with the experi-
mental ones. This also stands for the viscoplastic con-
stants c1 and c2 since at least two magnification factors
are needed to find the correct combination. In addition,
both tensile and compressive responses are required
for a full set of parameters. As a result, the parameters
of concrete are calibrated by means of the laboratory
tests of Gopalaratnam and Shah (1985) and Karsan and
Jirsa (1969), which were carried out respectively on
the tensile and compressive responses of concrete, and
also the comprehensive surveys of Malvar and Ross
(1998) and Bischoff and Perry (1991) regarding the
tensile and compressive magnification factors of con-
crete under different strain rates. The calibration pro-
cedure starts by adjusting the stress-strain curves with
the data reported in Gopalaratnam and Shah (1985)
and Karsan and Jirsa (1969). A prescribed strain with
a rate of 2 μstrains per second is considered in the ten-
sile test. The compressive test is also simulated using a
strain rate of 20μstrains per second. Note that strength
magnification is almost negligible for such low rates.
Hence, the viscoplastic constants c1 and c2 do not affect
the results. First, a combination of E1, E2, and η that
gives the desired initial slope is chosen. Then, by per-
forming a trial and error process, a tensile strength
of 3.4 MPa and compressive strength of 15 MPa are
found in accordance with the peak value of the respec-
tive curves. Next, the nonlinear branch of the curves
is utilized to find the tensile and compressive fracture
energies G+

f and G−
f , and hardening parameters h+

and h−. Since the tests are one-dimensional and the
local response of concrete, i.e., the stress-strain curve,
is of interest, the characteristic length must be defined
explicitly. Otherwise, by varying the element size, the
post-peak branch is affected. Note that the area under
the stress-strain curve (whether in tension or compres-
sion) is equal to the ratio of the fracture energy to the
characteristic length. Hence, these two always appear
as a division and their ratio can be considered as an
independent parameter. As a result, based on the works
of Lee and Fenves (1998), Cicekli et al. (2007), Nguyen
and Houlsby (2008), and many others, the characteris-
tic length is set to a reasonable value of 75 mm, and the
fracture energies G+

f and G−
f , and hardening parame-

ters h+ and h− are found to be 45 N/m, 4350 N/m, 100
Mpa, and 50 Gpa, respectively. Next, by means of a
trial and error process, the combination of E1, E2, and
η that reproduces acceptable hysteresis loops is found
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Table 1 Parameters of concrete for the uniaxial tests

Parameter Value

Stiffness of the elastic body E1 (Pa) 70×109

Stiffness of the viscoelastic body E2 (Pa) 30×109

Viscosity of the viscoelastic body η (Pa.s) 200×109

Viscoplastic constant c1 0.032

Viscoplastic constant c2 (s) 500×103

Poisson’s ratio ν 0.2

Dimensionless constant a 0.12

Dilation constant ap 0.2

Tensile strength σ+
y (Pa) 3.4×106

Tensile hardening h+ (Pa) 100×106

Tensile fracture energy G+
f (N/m) 45

Compressive strength σ−
y (Pa) 15×106

Compressive hardening h− (Pa) 50×109

Compressive fracture energy G−
f (N/m) 4350

Characteristic length � (m) 0.075

to consist of 70 Gpa, 30 Gpa, and 200 Gpa.s. The vis-
coplastic constants c1 and c2 can be defined by means
of the surveys of Malvar and Ross (1998) and Bischoff
and Perry (1991). However, based on the calibration
of Ožbolt et al. (2006), these two are set to 0.032 and
500×103 second, respectively, and the obtainedmagni-
fication factors are validated bymeans of the surveys of
Malvar andRoss (1998) andBischoff and Perry (1991).
The calibrated parameters are presented in Table 1.

The tensile stress-strain curve resulted by means of
the presented model is plotted against the experimen-
tal curve of Gopalaratnam and Shah (1985) in Fig. 5.
The initial slopes, as well as the unloading slopes, are
in good agreement. The hysteresis loops are also of
similar shapes. However, the unloading branch of the
experimental curve is steeper during the initial stages of
damage growth, while the opposite can be observed for
the latter stages. It can be claimed that fracture energies
are somehow close since the area under the curves will
be evened out if the loading process continues. Figure
6 presents the experimental and numerical compres-
sive curves. Note that the experimental data is extracted
from the work of Karsan and Jirsa (1969). The agree-
ment between the initial slopes is acceptable. The area
under the curves is also in good agreement and the over-
all trends are similar. Some discrepancies between the
slope of the unloading branches can be observed. The

Fig. 5 Stress-strain curve of the model under the uniaxial ten-
sile loading against the experimental result of Gopalaratnam and
Shah (1985)

Fig. 6 Stress-strain curve of the model under the uniaxial com-
pressive loading against the experimental result of Karsan and
Jirsa (1969)

presentedmodel reproduced hysteresis loops, however,
the experimental ones are of different shapes. It isworth
mentioning that, since countless unknown factors and
random phenomena are involved, capturing the exact
features of an experimental curve is impossible, espe-
cially if a phenomenological model is utilized. How-
ever, the overall trends are in good agreement from the
viewpoint of an engineer. The stress-strain curve of a
cyclic test is plotted against the monotonic response in
Fig. 7. Note that the strain rate was 2 μstrains per sec-
ond in the cyclic test. The crack closing and reopening
effects are reproduced by the model.

The rate-dependent response of concrete leads to
an energy enhancement that manifests itself in the
form of strength magnification. The magnitude of this
enhancement can be characterized by a magnification
factor, which is the ratio of the dynamic strength to
the static strength of concrete. Malvar and Ross (1998)
and Bischoff and Perry (1991) conducted comprehen-
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A damage model for rate-dependent cracking of concrete 15

Fig. 7 Monotonic and cyclic responses of concrete. The unilat-
eral constraint that prevents penetration between themicro-crack
faces causes a sudden change in stiffness during the transition
from a tensile to a compressive stress state. The model has prop-
erly resembled this behavior

sive surveys on the tensile and compressive magnifi-
cation factors of concrete under different strain rates.
Their studies are employed in Fig. 8 and 9 to validate
the proposed model. It can be seen in the figures that
the model has reproduced realistic values of strength
magnification in both conditions. It should be men-
tioned that the experimental values have progressively
increased for the strain rates larger than 1 strain per
second, while the numerical values have followed a
linear trend. By increasing the loading rate of experi-
ments, the inertia effects, which are caused by the stress
wave propagation, are pronounced and the shape and
configuration of the specimens dominate the magni-
tude of recorded peak values. Hence, the progressive
increase in the experimental data is synthetic and does
not pertain to the local constitutive response of con-
crete, but can be related to the inertia effects at the
global structural scale. It has beendemonstrated that the
local behavior of concrete follows its linear trend when
the rate effects are increased, and the rate-dependency
of the concrete response is not responsible for this pro-
gressive increase (Ožbolt and Reinhardt 2005; Ožbolt
et al. 2006; Travaš et al. 2009; Reinhardt et al. 2010;
Ožbolt et al. 2011; Ožbolt and Sharma 2012). Here,
the numerical tests are one-dimensional and the stress
wave propagation is neglected in order to show the
local behavior of concrete. If one wants to obtain the
same progressive increase, multi-dimensional condi-
tions must be considered and the inertia effects have to
be included in the tests.

An important feature of the formulation is its abil-
ity in reproducing direction-dependent damage growth.

Fig. 8 Dynamic magnification factor of concrete in tension on
a log-log plot against the experimental data of Malvar and Ross
(1998)

Fig. 9 Dynamicmagnification factor of concrete in compression
on a log-log plot against the experimental data of Bischoff and
Perry (1991)

This aspect, which is visualized by means of the pre-
sented model, is illustrated in Fig. 10. The figure shows
damage densities along different directions considering
four different loading conditions. Note that the closer
a point to the surface, the more damage in that direc-
tion. For the uniaxial tension, the prescribed strain is
imposed along the x3-axis. It can be observed that the
maximum damage growth occurred along that direc-
tion. The biaxial tension test is simulated by imposing
equal strains along x2 and x3 axes. A donut-shaped dis-
tribution is obtained for this case. The prescribed shear
strain ε13 is assumed in the uniaxial shear test. The biax-
ial shear test is also simulated using equal prescribed
shear strains ε13 and ε23. Peanut-shaped distributions
are reported for the latter two. It is worth mention-
ing once again that since isotropic formulations are
not capable of capturing such details, the rotation of
the principal cracking direction, which occurs during

123



16 A. Daneshyar

Fig. 10 Damage densities along different directions under four
different loading conditions

mixed-mode tests, is completely neglected, leading to
inaccurate or even incorrect results.

4 Rate-independent mixed-mode cracking

Before proceeding to the rate-independentmultidimen-
sional case, the robustness of the model under mixed-
mode conditions in the absence of the rate effects is
examined here. To this end, the mixed-mode experi-
ments of Gálvez et al. (1998) are chosen. The problem
consists of two beams of similar concretes under dif-
ferent mixed-mode conditions. The test setup, which is
shown in Fig. 11, was designed such that the cracking
modes of the first and second tests are more of an open-
ing and a shearing type, respectively. First, the material
properties are calibrated by the load-CMOD curve of
the first test, then they are validated by means of the
curve of the second test. To this end, the finite ele-
ment meshes shown in Fig. 12 are employed. Note that
square-shaped elements are used across the possible
crack propagation path.

The calibrated parameters are presented in Table 2.
Note that the stiffness of the viscoelastic body E2 is
chosen to be 1000 times larger than E1 so that it acts
as a penalty factor to bypass the viscoelastic body. It

Fig. 11 Geometry and boundary conditions of the beams in
the rate-independent mixed-mode cracking problem. The beams
have 50 mm width, and a notch with 2 mm width is induced
at their midspan. By variating the stiffness of the spring k and
depth of the notch d, two different setups were defined in Gálvez
et al. (1998). For the first test, k was considered to be zero and a
notch of a depth of 37.5 mmwas considered. The second test was
also defined by assuming k = in f t y, meaning that the beam is
vertically constrained at the location of the spring, and the notch
depth d was assumed to be 45 mm

is worth mentioning that all the other parameters do
not affect the results, hence they are not reported in
the table. The calibration procedure is performed on
the first setup of the beams. To this end, E1 is adjusted
such that a valid initial slope for the load-CMOD curve
is obtained. Then σ+

y is defined in accordance with the
peak value of the experimental curve. Finally, the ten-
sile fracture energy G+

f and tensile hardening h+ are
adjusted by means of the post-peak response. Note that
the dimensionless constant a and the dilation constant
ap are respectively about 0.12 and 0.2 for most con-
cretes. Poisson’s ratio of concrete is also taken as 0.2
in most applications. Hence, these parameters are not
calibrated and the reported values are used. The result-
ing curve is plotted on the experimental envelope in
Fig. 13. With the calibrated parameters at hand, the
second setup of which the load-CMOD curve is shown
in Fig. 14 is then analyzed. The resulting crack paths
are also presented in Fig. 15. It can be seen that by per-
forming the calibration process on the first setup of the
tests, the second one is simulated with a good level of
accuracy.

5 Rate-dependent mixed-mode cracking

The experimental tests revealed that the rate effects
influence the concrete response to such an extent that
the failure mode of specimens is affected. John and
Shah (1990) conducted a comprehensive study regard-
ing this observation, which is revisited numerically in
this work. Since their study covers a wide range of
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Fig. 12 Finite element meshes of the rate-independent mixed-mode cracking problem for the first type (left) and the second type (right)
of the tests

Table 2 Parameters of concrete for the tests of Gálvez et al.
(1998)

Parameter Value

Stiffness of the elastic body E1 (Pa) 38×109

Poisson’s ratio ν 0.2

Dimensionless constant a 0.12

Dilation constant ap 0.2

Tensile strength σ+
y (Pa) 2.8×106

Tensile hardening h+ (Pa) 5×106

Tensile fracture energy G+
f (N/m) 30

Fig. 13 Comparison of the numerical load-CMOD curve with
the experimental envelope for the first setup of the rate-
independent mixed-mode problem

Fig. 14 Comparison of the numerical load-CMOD curve with
the experimental envelope for the second setup of the rate-
independent mixed-mode problem

strain rates, their results are used here for assessing the
robustness of the proposed constitutive model.

5.1 Problem description

The tests are performed on notched beams under dif-
ferent loading rates. The geometry and boundary con-
ditions of the beams are presented in Fig. 16. As shown
in the figure, each beam is notched with an offset fac-
tor (denoted by β) ranging from 0 to 1. For β = 0 the
notch is located at the midspan, and by increasing β the
offset is increased to the extent that β = 1 means that
the beam is un-notched. Four different strain rates were
reported by John and Shah (1990), including 5×10−7,
1×10−4, 5×10−2, and 3×10−1 strain per second. As
explained in John and Shah (1990), these strain rates
were defined by means of the initial slope of the exper-
imentally recorded strain-time curve at the location of
the notch tip. These four cases with their respective
applied velocities, which are obtained by a numerical
trial and error process, are presented in Table 3.

5.2 Calibration procedure

The parameters of concrete are calibrated in differ-
ent steps. First the static response of the first mode
of cracking (case 1 with the offset factor β = 0) along
with the reported values of the elastic modulus, crit-
ical stress intensity factor of the first mode of crack-
ing, and critical crack tip opening displacement is used
to find the stiffness of the elastic body E1, the stiff-
ness of the viscoelastic body E2, the tensile strength
σ+
y , the tensile hardening h+, and the tensile fracture

energy G+
f . Note that the viscosity parameter η must

be calibrated simultaneously with E1 and E2 using
the four cases since the desired initial slope can be
reproduced by unlimited combinations of E1 and E2 if
the rate effects be neglected. The viscoplastic parame-
ters are then calibrated by means of peak loads. Once

123



18 A. Daneshyar

Fig. 15 Contours of the maximum principal tensile damage for the first type (left) and the second type (right) of the tests

again, the dimensionless constant a, the dilation con-
stant ap, and Poisson’s ratio are chosen to be 0.12,
0.2, and 0.2, respectively. In addition, the parameters
that define the compressive response, which include
the compressive strength σ−

y , the compressive harden-

ing h−, and the compressive fracture energyG−
f are not

applicable here; hence, they are not reported. The only
remaining parameter is the characteristics length �. The
ABAQUS solver calls the user-subroutine UMAT for
each Gauss point of each element. This subroutine pro-
vides a parameter named celent, which is the square
root of the area of the element in two-dimensional
cases, and the cubic root of the volume of the element
in three-dimensional ones. Due to the material soften-
ing response, strain localization occurs and the fracture
process zone gets limited to the width of the softened
element. As a result, the provided parameter can be
considered as an estimation of the width of the fracture
process zone. As a result, the characteristic length � is
defined automatically by the ABAQUS solver based on
the geometry of the elements. It is worth mentioning
that all the calibration process is performed by means
of the midspan-notched beam, and the finite element
model shown in Fig. 17 is used for this purpose.

5.2.1 Viscoelastic parameters

The calibration procedure starts by finding the elastic
modulus of concrete. At this point, since the viscosity
parameter η is unknown, unlimited combinations of
E1 and E2 can reproduce the desired response. Hence,
E1, E2, and η have to be calibrated at the same time.
Using all four cases, these there parameters are cali-
brated as 35 MPa, 115 MPa, and 250 MPa.s, respec-
tively. The resulting elastic modulus are compared wth
the reported data in Fig. 18, showing that the calibrated
parameters provide acceptable elastic response in all
four cases.

5.2.2 Fracture parameters

The two parameter fracture model of Jenq and Shah
(1985), which is briefly discussed in the following, is

Fig. 16 Geometry and boundary conditions of the beams in the
rate-dependent mixed-mode cracking problem. The beams have
228.6 mm width, 76.2 mm height, and 25.4 mm thickness. The
span of the beams (denoted by l) is 203.2 mm and a notch with
19.05 mm depth and 2 mm width with a semi-circular tip is
induced with an offset factor (denoted by β) ranging from 0
(midspan-notched beam) to 1 (unnotched beam). The beams are
loaded by imposing a constant velocity on 20 mm of the middle
part of their upper edge

Table 3 Load cases of the rate-dependent mixed-mode tests.
Each case is identified by a strain rate (second column), which is
the initial slope of the experimentally recorded strain-time curve
at the notch tip (John andShah 1990). Similar to the reference, the
first and last cases are hereafter referred to as the static and impact
rates, respectively. Note that the applied velocities (third column)
are obtained by a trial and error process using the numerical
model

Case Strain rate Velocity
Number (1/s) (m/s)

1 5 × 10−7 1.25 × 10−8

2 1 × 10−4 2.50 × 10−6

3 5 × 10−2 1.25 × 10−3

4 3 × 10−1 7.50 × 10−3

used in the reference (John and Shah 1990) for deter-
mining the fracture properties of the beams. Accord-
ing to the linear elastic fracture mechanics, the follow-
ing relations hold for the three-point bending test of a
midspan-notched beam:

KI = σ
√

πd f1, (124)

δm = 4σd

E
f2, (125)
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Fig. 17 Finite element model of the midspan-notched beam.
The beams are discretized by means of plane stress bi-linear
quadrilateral finite elements and a full integration scheme using
fourGauss points is employed. Note that square-shaped elements
are used across the possible crack propagation path

Fig. 18 Comparison of the numerically- and experimentally-
obtained elasticmodulus of concrete under different loading rates

δ = δm f3, (126)

where KI is the stress intensity factor of the first mode
of cracking, d is the depth of crack, δm is the crack
mouth opening displacement, E is the elastic modulus,
δ is the crack opening displacement, and

σ = 3pl

2tw2 , (127)

f1 = 1.99 − λ(1 − λ)(2.15 − 3.93λ + 2.7λ2)√
π(1 + 2λ)(1 − λ)3/2

,

(128)

f2 = 0.76 − 2.28λ + 3.87λ2 − 2.04λ3 + 0.66

(1 − λ)2
,

(129)

f3 = (
(1 − ρ)2 − (1.149λ − 1.081)(ρ − ρ2)

)1/2
,

(130)

where p is the applied load, l, w, and t are respectively
the span, height and thickness of the beam, and

Fig. 19 Typical load-CMOD curve of a three-point bending test

λ = di
w

, (131)

ρ = x

d
, (132)

wherein di is the initial depth of crack (i.e., equal to the
depth of the notch) and x is the vertical distance from
the bottom edge of the beam. As a result, the relation
in (126) gives the crack mouth opening displacement
δm for x = 0 and the crack tip opening displacement
δt for x = d.

The typical load-CMOD response of a three-point
bending test is shown in Fig. 19. As shown in the figure,
the initial complianceCi and the critical complianceCc

can be defined on the curve. On the other hand, by sub-
stituting the relation in (127) into (125) and performing
some algebraic manipulations, the compliance C reads

C = δm

p
= 6ld

Etw2 f2. (133)

Hence, the elastic modulus of concrete can be obtained
by substituting the initial compliance Ci into the above
relation as follows:

E = 6ld

Ci tw2 f2. (134)

During the pre-peak nonlinear regime, crack growth
occurs within the specimen. Hence, the critical com-
pliance Cc is employed to find the depth of crack at the
peak load, dc, as follows:

dc = ECctw2

6l f2
. (135)

Hence, according to the relations in (124) and (125),
the critical stress intensity factor of the first mode of
cracking KIc is obtained By

KIc = Eδmc f1
4 f2

√
π

dc
, (136)
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Fig. 20 Finite element meshes of the beam. Note that the ele-
ments of the possible crack propagation path have 2 mm side
length in the left mesh and 1 mm side length in the right mesh.

For briefness, thesemeshes are simply denoted by the coarse and
fine meshes hereafter

Fig. 21 Comparison of the numerical and experimental load-
COD curves. Note that CODs are measured at 1.6 mm above the
crack mouth

wherein δmc is extracted from the curve. Finally, the
critical crack tip opening displacement reads

δtc = δmc
(
(1 − ρc)

2 − (1.149λ − 1.081)

×(ρc − ρ2
c )

)1/2
, (137)

where

ρc = di
dc

. (138)

The first mode of cracking under the static loading
conditions is employed for the calibration process. The
elastic modulus of concrete was estimated between 28
and 30 GPa in John and Shah (1990). The critical stress
intensity factor of the first mode of cracking was also
approximated between 880 and 1000 kPa

√
m. On the

other hand, in plane stress conditions we have (Zehnder
2012)

G f = K 2
I c

E
. (139)

Hence, the fracture energy of concrete is estimated
between 25 and 35 N/m. Using the static load-COD
response of the beam, the tensile strength σ+

y , tensile

hardening h+, and tensile fracture energy G+
f are cali-

brated as 4.5 MPa, 10 MPa, and 25 N/m, respectively.
Themeshobjectivity of theglobal responses is also ana-
lyzed by means of the meshes shown in Fig. 20. The
resulting load-COD curves are plotted on the experi-
mental data in Fig. 21. The crack profiles are also pre-
sented in Fig. 22. Although the localized band of the
coarse mesh is twice thicker than that of the fine mesh,
the post critical branch of the load-COD curves shows
no sign of mesh dependency. In addition to the numer-
ical and experimental curves, the values of the elastic
modulus E , critical stress intensity factor of the first
mode of cracking KIc, and critical crack tip opening
displacement δtc are compared in Table 4.

5.2.3 Viscoplastic parameters

The final step of the calibration process is to find the
viscoplastic constants c1 and c2. Referring to the loga-
rithmic plots in Fig. 8 and 9, the first constant defines
the slope of the curve while the second one defines
its offset from the horizontal axis. Finding the correct
combination of these two constants requires at least two
magnification factors. However, John and Shah (1990)
only reported the peak loads of the static (case 1) and
impact (case 4) rates. As a result, only one magnifica-
tion factor is available and one of the constants must
be chosen arbitrarily. Hence, only the viscoplastic con-
stants c1 is adjusted and the calibrated value of the
uniaxial tests (Fig. 8 and 9) is chosen for c2. Accord-
ing to the reference (John and Shah 1990), the peak
load of the static and impact loading rates were 1449
and 1718 kPa, respectively. Hence, the magnification
factor under the strain rate ε̇ = 0.3 was 1.1856, which
is reproduced numerically by setting c1 = 0.018 and
c2 = 500 × 103 second.
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Fig. 22 Contours of the maximum principal tensile damage for the coarse (left) and fine (right) meshes

Table 4 Comparison of the experimental and numerical values
of the elastic modulus E , critical stress intensity factor of the first
mode of cracking KIc, and critical crack tip opening displace-
ment δtc under the static loading conditions

Test E KIc δtc
Method (GPa) (MPa

√
m) (μm)

Experimental 28.1 0.88 8.74

29.1 0.97 9.97

Numerical 30.3 1.00 10.4

28.3 0.97 9.05

Table 5 Parameters of concrete for the rate-dependent mixed-
mode problem

Parameter Value

Stiffness of the elastic body E1 (Pa) 35×109

Stiffness of the viscoelastic body E2 (Pa) 115×109

Viscosity of the viscoelastic body η (Pa.s) 250×106

Viscoplastic constant c1 0.018

Viscoplastic constant c2 (s) 500×103

Poisson’s ratio ν 0.2

Dimensionless constant a 0.12

Dilation constant ap 0.2

Tensile strength σ+
y (Pa) 4.5×106

Tensile hardening h+ (Pa) 10×106

Tensile fracture energy G+
f (N/m) 25

5.3 Inertia effects

With all of the required parameters at hand, which are
summarized in Table 5, we can investigate the dynamic
cracking of concrete by means of the proposed consti-
tutive model. To this end, the effects of wave prop-
agation on the global responses are analyzed first. It
has been pointed out by John and Shah (1990) that the
wave propagation effects can be neglect for the strain
rates under 0.5 strain per second. A similar deduction

Fig. 23 Load-COD curve of case 4 under the quasi-static and
dynamic conditions. Although the result of the dynamic case
oscillates about the quasi-static response, the overall trends are
similar. As a result, the inertia effects can be neglected without
losing accuracy. It is alsomentioned by John andShah (1990) that
the wave propagation phenomenon does not affect the solutions
for the strain rates under 0.5 strain per second

is made here by loading the midspan-notched beam
using the impact strain rate (case 4). For this purpose,
the test is simulated twice, once under the quasi-static
conditionswherein the inertia effects are neglected, and
once under the dynamic conditions with realistic wave
propagation effects. The load-COD curves of both sim-
ulation are presented in Fig. 23, showing that although
the result of the dynamic case is of oscillatory nature,
the overall trends are similar. Hence, all of the future
simulations are made under the quasi-static assump-
tion.

5.4 Rate effects

The load versus COD responses of the midspan-
notched beam assuming different strain rates (the cases
of Table 3) are plotted in Fig. 24. The peak values as
well as the initial slope of the curves are affected by the
loading rate.
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Fig. 24 Load versus COD curve of the concrete beam under
different loading rates

5.5 Failure mode transition

It has been experimentally observed by John and Shah
(1990) that two possible failure modes exist for a
notched beam under mixed-mode conditions. Depend-
ing on the notch offset, the failure may occur at the
notch tip or at the midspan. They showed that an off-
set factor exists for which the measured peak load is
the same whether the beam fails at either of those two
locations. This offset factor, denoted byβt , corresponds
to a transition stage wherein both failure mechanisms
demand equal energies. The mode of failure is more
of a brittle one for β < βt since a diagonal crack
grows from the notch tip and the beam undergoes a
tension-shear failure. On the other hand, for β > βt ,
a flexural failure occurs wherein the crack grows from

the midspan along an almost straight path. John and
Shah (1990) also showed that the loading rate affects
the failure mechanism so that larger values of βt would
be obtained if the rate effects are increased. Here, the
reported failure mode transition is studied by means
of the presented model. To his end, the geometry of
the beam is defined by assuming different locations for
the notch, and the beams are loaded under the static
and impact strain rates. The crack profiles for offset
factors of 0.65, 0.70, 0.75, and 0.80 are reported in
Fig. 25. According to the profiles, it can be deduced
that the offset factor of the transition stage is some-
where between β = 0.65 and β = 0.70 for the static
loading rate, while it is found to be between β = 0.75
and β = 0.80 for the impact loading rate. The peak
values are also compared with the predicted values of
John and Shah (1990) in Fig. 26. The offset factors of
the transition stage, which are at the points where the
horizontal lines intersect with the curves, are shown in
the figure. Note that John and Shah (1990) used a linear
elastic fracture mechanics approach for their predic-
tions. They reported the same failure mode transition,
but with slightly smaller values of βt .

If the well-posedness of field equations is preserved,
e.g., through nonlocal or gradient-enhanced theories,
the localized region can run freely across the medium
regardless of the element shapes. It should be men-
tioned that a fine mesh whose elements are small
enough to resolve a fracture process zone of width � is
needed, otherwise, the well-posedness of equations is

Fig. 25 Crack profiles for offset factors of 0.65, 0.70, 0.75, and
0.80 under the static and impact loading rates. The failure mode
transition reported in John and Shah (1990) occurred between

β = 0.65 and β = 0.70 for the static lading rate, while it hap-
pened between β = 0.75 and β = 0.80 for the impact loading
rate
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Fig. 26 Predicted and approximated values of the peak load for
different values of β under the static and impact loading rates.
Note that the predicted curves were obtained based on a linear
elastic fracture mechanics approach by John and Shah (1990).
The offset factors of the transition stage for both static and impact
loading rates are at the points where the horizontal lines intersect
with the curves

invalidated. Here, no regularization is assumed and the
ill-posedness of the field equations remains untreated.
Hence, the crack is obliged to follow a path that con-
forms with the mesh. In the presented numerical tests,
the beams are discretized in a structured fashion and
square-shaped elements are used across the possible
crack propagation path. Hence, the crack tends to fol-
low a vertical or horizontal line. This tendency can
be observed at the latter stages of cracking under the
impact loading rates for which straight diagonal cracks
are expected. This directional bias can be treated by
decreasing the size of elements and/or changing the
shape and type of elements.

6 Conclusion

A constitutive model for the rate-dependent cracking
of concrete was formulated. The viscoelastic response
was included for resembling the dissipative mecha-
nisms pertaining to rate-dependent reversible straining.
Rate-dependency was introduced to the yield surface
by means of a proper logarithmic function, providing
the capability of reproducing valid strength magnifica-
tions under a wide range of strain rates. An exponential
damage growth functionwas considered to characterize
the degradation of concrete, and the mesh-objectivity
of responses was guaranteed by establishing a rela-
tion between the fracture energy of concrete and the
rate of damage growth. The effective stress tensor was
decomposed to the tensile and compressive parts, and

damage-induced anisotropy was included by assem-
bling a damage tensor for each part. Next, the temporal
discretization of the constitutive equationswas pursued
by means of a backward Euler scheme, a fully implicit
two-step viscoelastic predictor/viscoplastic corrector
algorithmwas presented, and the iterative procedure of
the Newton–Raphson scheme was outlined for finding
the solution of the nonlinear return-mapping equation.
Finally, the constitutive model was used for simulating
some laboratory experiments, which showed the capa-
bility of the formulation in reproducing the cracking of
concrete under different loading rates. In addition, the
experimentally observed transition of the failure mode
from a ductile flexural failure to a brittle diagonal fail-
ure was properly reproduced by the model.

The presented model benefits from a frame-indepe-
ndent tensorial damage description that is absent in its
predecessors. This feature renders the inducedmechan-
ical damage anisotropic, providing a more reliable
approach with respect to the isotropic ones in terms
of predicting the global response and crack profile of
specimens. The reason lies in the fact that isotropic
models are incapable of distinguishing damage growth
direction. As a result, excessive loading along a spe-
cific axis affects the material integrity in all directions.
Hence, they overestimate damage intensity, especially
in mixed-mode conditions. This leads to erroneous
stress redistribution and may affect the crack profiles.
The presented model, on the other hand, includes the
damage-induced anisotropiy through a set of damage
tensors. The robustness of this assumption was demon-
strated by means of an experimental observation in
which two beams of similar concretes are loaded under
different mixed-mode conditions.

In conclusion, the different aspects of the presented
model are summarized as follows: the stiffness degra-
dation is reproduced through the damage growth, irre-
versible strains are defined by means of the plasticity
theory, the unilateral contact effects are resembled by
the stress tensor decomposition, stiffness magnifica-
tion and strength amplification due to the rate effects
are included by considering the viscoelastic and vis-
coplastic behaviors, and last but not least, the damage-
induced anisotropy is added bymeans of tensorial dam-
age growth.
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