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Abstract A generic smeared crack modeling frame-
work predicated on the deformation gradient decompo-
sition (DGD) approach is proposed for use in dynamic
fracture problems at finite strains, accommodating fail-
ure along multiple mutually orthogonal fracture planes
embedded within an independently defined bulk mate-
rialmodel.Within this constitutive framework, the trac-
tion equilibrium conditions imposed at each failure sur-
face are used to determine the associated crack dis-
placements stored as internal state variables. In gen-
eral, the enforcement of interfacial equilibrium entails
the implicit solution of a non-linear system of equa-
tions within the constitutive update procedure. How-
ever, if inertial effects arising due to the relative motion
of the fractured material are incorporated within the
model, the traction equilibrium conditions are shown to
give rise to corresponding dynamic equations ofmotion
governing the time-evolution of the crack opening dis-
placements. For dynamic problems, an explicit time-
integration procedure is devised to efficiently update
the material state, subject to a set of internal friction-
less contact constraints to prevent material inversion.
The efficacy of the proposed modeling framework is
investigated through several benchmark dynamic frac-
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ture problems runwithin the explicit finite element code
DYNA3D.

Keywords Continuum damage mechanics · Smeared
crack approach · Finite deformation · Cohesive-zone
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1 Introduction

Thenumericalmodelingof fracture in thefinite element
method (FEM) poses several significant challenges
which have spawned a plethora of competing method-
ologies. Because the underlying continuum theory does
not admit strong discontinuities in the trial solution
space for the displacement field, various enhancements
to the classical theory have been developed, the major-
ity of which may be lumped into two primary cate-
gories: models which represent cracks in a discrete
sense, andmodels which employ a diffused representa-
tion of fracture throughmaterial damage and softening.

Notable modeling approaches belonging to the for-
mer category include: the extended finite element
method (X-FEM) (Moës and Belytschko 2002), and
cohesive zone models (CZM) inserted at inter-element
boundaries (Xu and Needleman 1994; Camacho and
Ortiz 1996; Ortiz and Pandolfi 1999) or embedded
within locally enriched finite element domains (E-
FEM) (da Costa et al. 2009; Armero and Linder 2008;
Kim and Armero 2017). The aforementioned strate-
gies offer several advantages: they handle crack track-
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ing through the resolution of discrete crack paths, and
achieve good accuracy at coarser levels of discretiza-
tion.

In contrast, diffused crack modeling approaches
encompass: continuum damage mechanics (CDM)
(Ambroziak and Kłosowski 2007), strong disconti-
nuity approaches (SDA) (Oliver et al. 1999; Armero
and Linder 2009), phase-field methods (PFM) (Franc-
fort and Marigo 1998; Borden et al. 2012; Hofacker
and Miehe 2013), and smeared crack models (SCM)
(Rashid 1968). Despite advances in various discrete
crack modeling methods, compelling justifications for
the continued use and development of diffused crack
modeling techniques still exist: because they operate
primarily at the level of the constitutive model, they are
generally more computationally efficient, more easily
implementedwithin existing commercial finite element
frameworks, and readily compatible with different dis-
cretization methods and element formulations.

SCM and CDM are regarded as closely related
methodologies, in the sense that fracture and material
separation are approximated by a degradation of the
constitutive response in a determined failure direction
(Armero and Oller 2000). CDM typically presumes
that material damage manifests in the form of dis-
tributed micro-crack networks. To correctly represent
such phenomena while maintaining a consistent dis-
sipation of energy, the ensuing damage field must be
regularized to avoid spuriousmesh-dependent localiza-
tionwithin a zoneof vanishingly small size (Ambroziak
and Kłosowski 2007). In contrast, SCM seeks to rep-
resent individual cracks at the continuum scale which
manifest as strongdiscontinuities in the regularized dis-
placement field.

A key disadvantage of SCM concerns the phe-
nomenonof stress locking (Rots et al. 1985;Rots 1988),
wherein the constrained orientations of the damage
planes within the continuum leads to the development
of non-physical stresses in the elements surrounding
the crack path. Stress locking may be viewed as a defi-
ciency in the local kinematics used to represent the
displacement discontinuity. Degrading the material in
an isotropic fashion partially overcomes this issue, but
results in a nonphysical degradation of the transverse
strength of the material, and may lead to an incorrect
prediction of the crack path biased by the mesh design
(Cervera and Chiumenti 2006).

Recent modeling efforts for meta-materials and
composites have further motivated the development

of SCM approaches to account for anisotropy and
complex material behavior that can be coupled more
directly to the fracture phenomenology. For example,
in materials such as fiber reinforced composites, per-
vasive failure at the micro-scale is more appropriately
represented in a diffused sense, while larger cracks are
more amenable to a discrete representation. In such
cases, it is potentially advantageous to allowa transition
between discrete and smeared representations of cracks
(Lu et al. 2019), facilitated by a statement of energetic
equivalence between damage and fracture dissipation
mechanisms (Mazars and Pijaudier-Cabot 1996).

Notably, the recently proposed deformation gradi-
ent decomposition (DGD) approach of Leone (2015)
enables generic coupling of an embedded CZM to an
underlying bulk constitutive model within a modular
SCM framework. The approach postulates an addi-
tive decomposition of the deformation gradient due
to a discontinuous displacement enrichment, closely
resembling the kinematic enhancements employed by
SDA/E-FEM. In contrast to such enhancements which
are typically introduced and solved for at the element
level, the displacement jumps are instead solved for
within the constitutive modeling framework, such that
traction continuity across the cracked continuum inter-
face is effectively enforced in a point-wise sense. The
chosen deformation gradient-based decompositionwas
also demonstrated to overcome issues of stress lock-
ing under large shearing deformations which otherwise
manifest nonphysical stresses in conventional strain-
based SCM approaches with fixed crack directions.
The modularity of the DGD approach offers several
distinct advantages for the modeling of failure in com-
plicated materials at finite strains and was success-
fully applied to emulate kink-band propagation within
fiber reinforced composites (Bergan and Leone 2016).
However, the use of an embedded extrinsic CZM in
this setting introduces many of the numerical problems
inherent to such models, such as traction locking and
time-discontinuity of the constitutive stress during the
instantaneous transition to separation (Papoulia et al.
2003). Moreover, inertial effects during crack opening
are presently neglected within this framework.

The presently proposed SCM framework may be
viewed as an extension of theDGD approach to accom-
modate multiple (up to 3) intersecting cracks, as well
as localized inertial effects due to crack opening. As in
the original DGD approach, the treatment of disconti-
nuities is addressed within the constitutive framework,
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involving a coupled internal solution procedure for the
opening displacements which locally enforce traction
equilibrium across each cracked interface, subject to a
set of additional frictionless contact constraints. In the
general case, the resulting inequality-constrained non-
linear system of equations must be solved implicitly
in an iterative fashion (e.g., using a Newton-Raphson
procedure within an overarching active set strategy).
However, if inertial effects are considered relevant and
are incorporated within the modeling framework, the
traction equilibrium conditions give rise to decoupled
equations of motion governing the time-evolution of
each crack, each of which may be efficiently updated
using an explicit time integrator.

The primary advantages of the proposed methodol-
ogy are that: it is computationally efficient; it remains
suitable at finite strains; it accommodates the devel-
opment of multiple orthogonal cracks, and thus par-
tially alleviates the effects of stress locking; it accounts
for inertial effects which are potentially relevant in
the modeling of dynamic fracture propagation; and it
permits the incorporation of complicated constitutive
models within a modular framework.

The remainder of this paper is organized as fol-
lows: Sect. 2 provides an overview of the chosen kine-
matic idealization for a homogenized continuum with
multiple discrete cracks; Sect. 3 presents the generic
constitutive modeling framework motivated by ther-
modynamic arguments and Sect. 3.3 proposes an effi-
cient update procedure for the explicit time-evolution
of dynamic crack models incorporating inertial effects;
Sect. 4 provides a specific example of a model incorpo-
rating plasticity and brittle fracture formulated within
the proposed framework, followed by a numerical eval-
uation of the resultingmodel on anumber of benchmark
test problems in Sect. 5 and Sect. 6 concludes with a
discussion of the obtained results, limitations of the
modeling framework, and intended future work.

2 RVE idealization, kinematics, and inertia of
embedded cracks

In continuum damage mechanics (CDM), the repre-
sentation of a damaged region of material consists of
envisioning a representative volume element (RVE)
whose macroscopic deformation state is characterized
by the continuum deformation gradient F. Generically,
the continuum RVE may be regarded as consisting of

two distinct phases: the solid (or bulk) phase, and the
void (or crack) phase. In the reference configuration of
the material, the crack phase is presumed to occupy a
set of zero measure, such that the initial mass density
of the RVE is equal to that of the solid phase.

The majority of CDM approaches regard the precise
arrangement and orientation of cracks within the RVE
as microscopic details which are represented in a dis-
tributed, or homogenized sense via one or more dam-
age parameterswhich serve to degrade themacroscopic
properties of the material. In contrast, the present SCM
idealization considers the explicit representation of a
finite number of discrete cracks in the form of strong
discontinuities. Each such crack is regarded as distinct
and planar, passing through the centroid of the unde-
formed RVE, and fully separating the solid material
into two halves of equal volume.

Consequently, the arrangement of the solid con-
stituent is such that the bulk material deforms homo-
geneously (almost everywhere) according to the bulk
deformation gradient Fb, which depends implicitly
upon the orientations and opening displacements of
each crack in the material. The relative opening dis-
placements of each such crack are regarded within the
present framework as internal state variables belonging
to the macroscopic constitutive model.

When represented in this fashion, the RVE-scale
fractures are dissociated from—and agnostic of—the
discretization at the continuum scale, thereby circum-
venting the difficulties inherent to discrete fracture
modeling approaches which rely upon element- or
nodal-enrichments to the displacement field or splitting
of discrete fractures along inter-element interfaces.

2.1 Geometric idealization of the RVE domain

Within the proposed modeling framework, a represen-
tative volumeΩ ⊂ R

3 is presumed to havefinite extent,
encompassing a material neighborhood with its cen-
troid at X̄ = 1

|Ω|
∫
Ω
X dΩ . The uncracked geometry

of the bulk material is idealized as an ellipsoidal region
with possibly unequal axes. This stands in contrast with
the work of Leone (2015), wherein the RVE domain is
idealized as a rectangular cuboid.

Thegeometric characteristics (orientation anddimen-
sions) of the ellipsoidal RVE associated with a given
material point are informedby the chosendiscretization
method (e.g., the isoparametric element Jacobian), or
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approximated with a minimum knowledge of the mate-
rial point’s volume.

The metric tensor G characterizing the ellipsoidal
geometry of the RVE domain can be expressed in terms
of the ellipsoid’s principal axes gi and corresponding
diameters di :

G =
3∑

i=1

(
di
2

)2

gi ⊗ gi . (1)

The volume of the ellipsoid is computed as

|Ω| = 4

3
π

√
det(G). (2)

Within Ω , the bulk material is idealized as being
intersected by a total number of Ncracks fracture planes
passing through the centroid of theRVE. For each crack
index c ∈ {1, . . . , Ncracks}, let Γc denote the discrete
fracture surface with corresponding unit normal Nc

defined in the reference configuration of the material
(refer to Fig. 1). The surface area of the ellipse formed
by the intersection of Γc with Ω is given by

|Γc| = π

√
det(G)

||Nc||G , (3)

where ||Nc||G ≡ √〈Nc,Nc〉G is the induced norm of
the inner product 〈Nc,Nc〉G ≡ Nc · G · Nc.

For a given crack plane Γc, its associated character-
istic RVE fracture length scale is defined as �c ≡ |Ω|

|Γc| ,
which may be expressed in terms of the induced norm:

�c = 4

3
||Nc||G . (4)

2.2 Kinematics of a homogenized continuum with
multiple discrete cracks

Let the macroscopic deformation of the continuum
RVE be denoted F = ∇x̄, arising from the continuous
deformation field x̄ = χ(X, t) supplied by the chosen
discretization method (i.e. the interpolated finite ele-
ment displacement field).

WithinΩ , the inhomogeneousmotion of the cracked
solid material is characterized by the following discon-

Fig. 1 Depiction of a representative volume Ω with embedded
discontinuities in its reference (left), damaged/intermediate (bot-
tom), and deformed (right) configurations

tinuous deformation field:

x = xb +
Ncracks∑

c=1

1

2
H (Nc)uc, (5)

where xb is the homogeneous part of the bulk mate-
rial motion, uc ∈ R

3 are the (assumed constant) rela-
tive opening displacement vectors for each crack, and
H (Nc) denotes the discontinuousHeaviside step func-
tion:

H (Nc) =
{−1 ∀ (X − X̄) · Nc < 0

+1 ∀ (X − X̄) · Nc ≥ 0
. (6)

The macroscopic deformation gradient F may be
regarded as a homogenization of ∇x over Ω , i.e.

F = 1

|Ω|
∫

Ω

∇x dΩ. (7)

From (5) and (7) it follows that F may be expressed in
the form of an additive decomposition:

F = Fb +
Ncracks∑

c=1

uc
�c

⊗ Nc, (8)
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where

Fb ≡ 1

|Ω|
∫

Ω

∇xb dΩ, (9)

denotes the (assumed homogenous) deformation gra-
dient in the bulk material, and each crack displacement
vectoruc is effectively homogenized over its associated
characteristic RVE fracture length scale �c.

For notational convenience, the following matrices
with variable dimension are defined:

U ≡ [
u1 . . . uNcracks

]
, (10)

� ≡
⎡

⎢
⎣

�1 . . . 0
...

. . .
...

0 . . . �Ncracks

⎤

⎥
⎦ , (11)

Q ≡ [
N1 . . . NNcracks

]T
, (12)

where U is a 3 × Ncracks matrix whose columns con-
tain the individual crack displacement vectors, � is an
Ncracks × Ncracks matrix whose diagonal entries are the
characteristic length scales associated with each crack,
and Q is a Ncracks × 3 matrix whose rows contain the
crack normal vectors. The additive decomposition from
(8) is succinctly expressed in terms of the above matri-
ces as:

F = Fb + U�−1Q, (13)

implicitly accounting for a variable number of cracks.
Alternatively, F may be multiplicatively decom-

posed into a sequence of deformation processes due
to homogenized damage (represented via Fd ) and bulk
material deformation (via Fb), in analog to the decom-
position proposed by Lee (1969) in the setting of finite
deformation elasto-plasticity:

F = FbFd , Fd ≡ 1 + Ũ�−1Q, (14)

where Ũ = Fb−1
U, such that the columns of Ũ consti-

tute the “co-rotational” opening displacements ũc for
each crack, i.e.

Ũ ≡ [
ũ1 . . . ũNcracks

]
. (15)

Figure 1 depicts the configurational arrangement of
the fractured bulk material following each deformation
process.

Note that two crackswith normalsN1 andN2 defined
orthogonal to one another in the reference configu-
ration will not necessarily remain orthogonal in the
deformed configuration of the RVE. While this aspect
of the model may affect the resulting fracture behavior
of the material, its impact is expected to be relatively
minor in cases where the bulk material undergoes only
modest distortional deformations.

2.2.1 Unique determination of kinematic state
variables

In the proposed modeling framework, Ũ and Q are
retained as internal kinematic state variables. For a
known damaged state of the material expressed via
Ũ (and Q), the damage deformation gradient Fd may
be directly determined from (14). Conversely, if Fd

is known, Ũ is required to be uniquely determined
by an appropriately defined inverse relationship. This
requirement ultimately facilitates the developments in
Sect. 3.2, entailing the specification of independent
traction-separation laws associated with each embed-
ded crack.

Denote byQ† the matrix pseudo-inverse ofQ. If all
crack orientations are distinct and Ncracks ≤ 3, then
QQ† = 1Ncracks×Ncracks . Under the aforementioned con-
ditions, the individual crackdisplacements are uniquely
determined via

Ũ =
(
Fd − 1

)
Q†�. (16)

Provided QQT is non-singular (when all crack ori-
entations are sufficiently distinct), the pseudo-inverse
may be computed via

Q† = QT
(
QQT

)−1
. (17)

If Ncracks = 3,Q† reduces to thedirect inverseQ−1, and
in the special casewhere all crack normals aremutually
orthogonal (encompassing the case when Ncracks = 1),
the pseudo-inverse of Q is simply its transpose QT .

2.2.2 Frictionless contact constraints

To properly account for the conditions of crack closure,
internal contact constraints must be enforced such that
thematerial does not invert under compressive loading.
To accommodate these conditions, a set of inequality
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gap constraint equations enforcing frictionless contact
under the conditions of crack closure are associated
with each relative opening displacement vector such
that

gc = 1

�c
ũc · cof(Fd

c−1) ·Nc ≥ 0 ∀c = 1, . . . , Ncracks,

(18)

where the opening of each crack is presumed to occur
in sequence, and the damage deformation gradient Fd

c
immediately following the opening of crack c assumes
the following recursive form:

Fd
c = Fd

c−1 + 1

�c
ũc ⊗ Nc, Fd

0 = 1. (19)

By thematrix determinant lemma, it may be shown that

gc = det(Fd
c ) − det(Fd

c−1) ≥ 0, (20)

thereby enforcing that the incremental change in vol-
ume following the sequential opening of each crack
must be non-negative.

The chosen representation of the kinematic inequal-
ity constraints expressed in (18) gives rise to associ-
ated KKT multipliers pc ≥ 0 ∀c which physically cor-
respond to the contact pressure across each interface.
The resulting KKT conditions are thus

gc ≥ 0, pc ≥ 0, pc gc = 0 ∀c = 1, . . . , Ncracks.

(21)

2.3 Internal kinetic energy associated with the
damage deformation process

Consider the material motion xd = χd(X)∀X ∈ Ω

associated with the damage deformation process:

xd = X +
Ncracks∑

c=1

1

2
H (Nc) ũc, (22)

whose homogenized deformation gradient yields:

Fd = 1

|Ω|
∫

Ω

∇xd dV . (23)

This motion characterizes the irrotational, rigid sepa-
ration of the bulk material across all of its embedded
fracture planes, inducing no homogenous deformation
in the solid phase.

For elasto-dynamics problems, the corresponding
velocity field

ẋd =
Ncracks∑

c=1

1

2
H (Nc) ˙̃uc, (24)

has zeromean value overΩ , and is therefore decoupled
from the homogenized motion ˙̄x = ẋb. Consequently,
the relative separation of the damaged material gener-
ates no kinetic energy via T̄ ≡ 1

2ρ
˙̄x · ˙̄x which would

otherwise give rise to inertial body forces at the scale
of the original continuum (i.e. finite element) problem.

Nonetheless, the relative crack opening velocities
˙̃uc may become arbitrarily large, and contribute to a
form of kinetic energy via 1

2ρ ẋd · ẋd measurable at
sub-RVE length scales, whose homogenization overΩ
is denoted:

T d ≡ 1

|Ω|
∫

Ω

1

2
ρ ẋd · ẋd dV . (25)

Henceforth, T d is referred to as the “internal kinetic
energy density,” and is assumed to be exclusively asso-
ciated with the damage deformation process.

The vastmajority of continuumdamagemodels gen-
erally assume T d = 0, but this overlooks the poten-
tial importance of localized inertial effects in dynami-
cally driven fracture processes and imposes discretiza-
tion size limits. Moreover, the consideration of internal
kinetic energy within the proposed modeling frame-
work aids in regularizing the constitutive relations
governing damage evolution—a feature which will be
exploited in Sect. 3.3 to devise a stable and efficient
material update procedure.

Assuming that the bulk material density ρ remains
spatially constant over Ω , the homogenized internal
kinetic energy reduces to:

T d = ρ

8

Ncracks∑

a,b=1

( ˙̃ua · ˙̃ub) 1

|Ω|
∫

Ω

H (Na)H (Nb) dV .

(26)
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As demonstrated in Appendix 1, the homogenized
integral products 1

|Ω|
∫
Ω
H (Na)H (Nb) dV can be

reasonably well-approximated by the following inner
product:

1

|Ω|
∫

Ω

H (Na)H (Nb) dV ≈ 16

9

〈
Na

�a
,
Nb

�b

〉

G
, (27)

and the internal kinetic energy density may therefore
be expressed in terms of previously defined tensorial
quantities:

T d(Ḟd) = 2ρ

9
tr

(
ḞdG(Ḟd)T

)
, (28)

where the time-rate of Fd is equivalently expressed as

Ḟd = ˙̃U�−1Q. (29)

For the special case where the crack orientationsNc

are aligned with the principal axes of G, a relatively
simple and convenient form for T d arises which yields
the following partition into separable kinetic energy
contributions from each crack:

T d(Ḟd) =
Ncracks∑

c=1

T c( ˙̃uc), T c( ˙̃uc) = 1

2

mc

(�c)2
˙̃uc · ˙̃uc,

(30)

where mc = ρ
(

�c

2

)2 ∀c, and it follows that

d

dt

∂T d

∂Ḟd
=

Ncracks∑

c=1

mc
¨̃uc
�c

⊗ Nc. (31)

3 Generalized constitutive framework

The preceding section focused exclusively on the kine-
matics of the idealizedRVEdomain.Up to this point, no
specification has been made regarding the constitutive
behaviors associatedwith the bulkmaterial phase or the
embedded cohesive cracks. In what follows, a modu-
lar constitutive modeling framework is established in
which the decomposed deformation measures Fb and
Fd are ascribed to independently defined constitutive
responses associated with the bulk and void phases,
respectively.We begin by postulating a statement of the

total potential energy collectively stored by the mate-
rial which exploits the chosen kinematic decomposi-
tion, giving rise to distinct bulk and damage free ener-
gies. The development at this stage is entirely generic
and makes no specification of the chosen idealizations
for either the bulk or cohesive constitutive behaviors.
Particular examples of the implemented framework are
considered later on in Sect. 4.

3.1 Derivation of constitutive relations

Suppose that the free energy per unit initial RVE vol-
ume attributable to the bulk material is expressed as
ψb(Fb), while the free energy per unit surface area
associated with each cracked interface in the material
is expressed as Ψc(Fd)∀c = 1, . . . , Ncracks.

The total (homogenized) free energy per unit RVE
volume ψ̄ is related to the free energy in the combined
media (including internal kinetic energy) via

∫

Ω

ψ̄ dV =
∫

Ω

ψb dV+
Ncracks∑

c=1

∫

Γc

Ψc d A+
∫

Ω

T d dV .

(32)

Assuming homogeneity of all quantities within their
respective domains of integration:

ψ̄ = ψb + ψd + T d , (33)

where

ψd(Fd) ≡
Ncracks∑

c=1

Ψc

�c
(34)

denotes the total homogenized damage strain energy
per unit volume.

From theClausius-Duhem inequality (under isother-
mal conditions, and subject to the internal contact con-
straints), the total dissipation in the material is given
by

D = τ : L − ˙̄ψ ≥ 0, (35)

balancing the rate of change in the stored free energy ψ̄

with the rate of external work. The macroscopic Kirch-
hoff stress τ is work-conjugated with the homogenized
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94 B. D. Giffin, E. Zywicz

velocity gradient L, these being the measures of defor-
mation and stress supplied/required by the numerical
discretization (i.e. finite element) method.

Given the chosen multiplicative decomposition of
the deformation gradient in equation (14), the total
velocity gradient L = ḞF−1 is additively decomposed
as

L = Lb + FbLdFb−1
, (36)

where

Lb ≡ ḞbFb−1
, Ld ≡ ḞdFd−1

. (37)

It follows that

D =
(

τ − ∂ψb

∂Fb
FbT

)

: Lb

+
(

FbT τFb−T −
[
∂ψd

∂Fd
+ d

dt

∂T d

∂Ḟd

]

Fd T
)

: Ld .

(38)

For arbitrary, independent rates of deformation Lb

and Ld , the procedure of Coleman and Noll (Lubliner
1972, 1973) is used to infer the expression for the
macroscopic Kirchhoff stress:

τ = ∂ψb

∂Fb
FbT , (39)

and the conditions governing dynamic traction equilib-
rium across all embedded cohesive interfaces:

∂ψd

∂Fd
+ d

dt

∂T d

∂Ḟd
= FbTP, (40)

where P = τF−T is the macroscopic first Piola-
Kirchhoff stress tensor.

The expression provided by equation (40) contains

an inertial term d
dt

∂T d

∂Ḟd
associated with the relative

opening motion of all embedded cracks. If the inter-
nal kinetic energy T d assumes the general form given
by equation (30), the inertial term appears as:

d

dt

∂T d

∂Ḟd
= 4ρ

9
F̈dG. (41)

Alternatively, if inertial effects are considered negligi-
ble (T d ≈ 0), then the traction equilibrium conditions

under quasi-static conditions are recovered:

∂ψd

∂Fd
= FbTP. (42)

If ψb(Fb,qb) and ψd(Fd ,qd) additionally depend
upon independent sets of internal variables qb and qd ,
then the dissipation function ultimately appears as:

D = −∂ψb

∂qb
· q̇b − ∂ψd

∂qd
· q̇d ≥ 0. (43)

For example, these additional dissipation terms are rel-
evant to the formulation of plasticity in the bulk phase
(where qb corresponds to the plastic strain), or damage
in the cohesive interfaces (where qd comprise one or
more cohesive damage parameters).

Crucially, the chosen ordering of the bulk and dam-
age deformation processes ensures that the macro-
scopic Kirchhoff stress τ is directly equal to the Kirch-

hoff stress in the bulk material τ b ≡ ∂ψb

∂Fb
FbT . More-

over, the macroscopic Cauchy stress σ is obtained by
a simple scaling of the (effective) Cauchy stress in the
bulk material σ b:

σ = 1

Jd
σ b, (44)

where Jd ≡ det(Fd) ≥ 1 guarantees a reduction in the
effective stress due to crack expansion.

In spite of the scaled reduction of the effective stress
by 1/Jd , the bulk material is still capable of sustaining
stresses transverse to the failure directions. This is evi-
denced more clearly by examining the net differential
force df = σ · cof(F) · NdA acting upon an internal
surface with initial normal N and differential area dA.
Consider the case where a single crack exists such that
Fd = 1+�−1

1 ũ1⊗N1 and cof(Fd) = Jd1−�−1
1 ũ1⊗N1.

For all transverse directions N perpendicular to the
crack direction N1, the differential force is seen to be
df = σ b · cof(Fb) · NdA, such that transverse forces
are altogether sustained by the material. This stands in
contrast with other SCM approaches which induce an
isotropic degradation of the material stiffness, render-
ing such methods incapable of supporting transverse
loads.
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3.2 Specialization for potential-based cohesive
traction-separations laws

Let each cohesive potential Ψc(ũc) depend upon its
corresponding co-rotational opening displacement ũc.
The associated cohesive traction vector t̃c ≡ ∂Ψc

∂ũc
across a given cracked interface in the damaged (inter-
mediate) configuration of the RVE is presumed to
be derived from a generic potential-based cohesive
traction-displacementmodel, as suggested byOrtiz and
Pandolfi (1999).

Accordingly, one may show:

∂ψd

∂Fd
= T̃dQ†T , (45)

where the columns of the 3×Ncracks matrix T̃d ≡ ∂ψd

∂Ũ
consist of the individual cohesive traction vectors asso-
ciated with each crack, namely:

T̃d = [
t̃1 . . . t̃Ncracks

]
. (46)

Thedynamic traction equilibrium relations expressed
by equation (40) may be rearranged with the aid of
equations (29), (41), and (45) to provide an expression
for the acceleration of all co-rotational crack displace-
ments:

¨̃U = 9

4

1

ρ

[
FbTP − T̃dQ†T

]
G−1Q†�. (47)

For the special case where all Nc are mutually
orthogonal and aligned with the principal directions of
the characteristic length tensor G, the separable equa-
tions of motion for each crack are obtained:

ρ �c

4
¨̃uc + t̃c = FbTP · Nc ∀c = 1, . . . , Ncracks. (48)

Henceforth, it is assumed for the sake of simplicity that
the conditions of mutual crack orthogonality are satis-
fied, such that equation (48) remains valid.

3.2.1 Failure initiation criterion

Let t̃∗ = FbTP · N∗ denote the traction acting upon a
candidate crack planewith normalN∗ that is orthogonal
to all other existing cracks (i.e.N∗ ·Nc = 0 ∀c). A new
crack is presumed to form when the normal compo-
nent of the candidate traction σ ∗ = t̃∗ ·N∗ exceeds the

critical stress at rupture initiation σ f (a model parame-
ter). This assumes mode I fracture initiation associated
with brittle material behavior, as will be explored in the
remainder of this work.

Among all candidate crack normal directions, the
one which maximizes the expression for the normal
traction σ ∗ is obtained via maximization of the follow-
ing Rayleigh quotient:

NNcracks+1 = arg max
N∗∈R3

N∗ · (Q⊥FbTPQ⊥) · N∗

N∗ · N∗ , (49)

where the sub-space projection operatorQ⊥ is defined:

Q⊥ ≡ 1 −
Ncracks∑

c=1

Nc ⊗ Nc. (50)

The solution to the above is equivalent to the canon-
ical maximum principal stress failure criterion, such
that new crack normal directions will coincide with
the direction of maximum principal stress in the

followingprojected (and symmetrized) tensor:Q⊥sym(FbTP)Q⊥.

3.3 Explicit constitutive update procedure

Consider a discretization in time t . A modular proce-
dure is sought for the purpose of efficiently updating the
macroscopic state of the material from time tn to tn+1.
Several alternatives are possible: if inertial effects are
considered negligible, the quasi-static traction equilib-
riumconditions givenby equation (42)maybe solved at
the constitutive level for the updated crack opening dis-
placements; otherwise, if inertial effects during crack
opening are included by the model, the equilibrium
conditions arising from equation (40) must be solved.
When solved implicitly for the updated opening dis-
placements, either approachwill necessitate an iterative
Newton-Raphsonprocedure to enforce traction equilib-
rium, subject to the inequality gap constraint equations
(18). This may result in an untenable computational
overhead within the constitutive update procedure.

Alternatively, a fully explicit algorithm applied to
the dynamic equations supplied by (40) offers a more
efficient solution strategy, albeit at the expense of
conditional stability in the constitutive update. If the
time steps taken during the finite element analysis are
already sufficiently small (such as for applications in
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explicit dynamics), the stability requirements of the
constitutive update become less onerous and do not
necessitate further or severe reductions in the existing
time step size. The remainder of this section outlines
the resulting explicit update procedure implemented
and explored in this work.

First, the crack opening equations of motion given
by equation (48) are solved directly for the crack accel-
erations ¨̃uc|tn at time tn . These in turn may be used to
update the independent crack opening displacements
in time via an explicit Newmark algorithm:

˙̃uc|tn+1/2 = ˙̃uc|tn−1/2 + ¨̃uc|tn Δtn, (51)

ũc|tn+1 = ũc|tn + ˙̃uc|tn+1/2 Δtn+1/2, (52)

where Δtn+1/2 ≡ tn+1 − tn and Δtn ≡ tn+1/2 − tn−1/2

with tn+1/2 ≡ 1
2 (tn+1 − tn).

Next, the internal contact constraints are enforced
using a two-step predictor-corrector approach. Dur-
ing the predictor step, the unconstrained crack dis-
placements are integrated from time tn to tn+1 accord-
ing to the Newmark time-integration scheme previ-
ously described, and assuming that the contact pres-
sures pc|tn = 0 ∀c remain inactive. During the sub-
sequent corrector step, the internal contact gap con-
straints from equation (18) are explicitly enforced (in
sequence) by retractions along the return directions
nc = cof(Fd

c−1) · Nc:

ûc = ũc|tn+1 · nc
nc · nc , (53)

˙̃uc|tn+1/2 ← ˙̃uc|tn+1/2 − ûc
Δtn+1/2

nc, (54)

ũc|tn+1 ← ũc|tn+1 − ûc nc. (55)

These modifications are only carried out if the normal-
ized displacement gap ûc < 0 is negative, signaling
violation of the gap constraint.

Once the crack opening displacements have been
determined, the end-step kinematic state of the mate-
rial is fully specified, and the constituent bulk and cohe-
sive models may be independently updated in a modu-
lar fashion. Finally, the failure initiation criterion from
equation (49) is checked to see if a new crack should
be instantiated.

The resulting explicit constitutive update procedure
outlined below helps to illustrate the modularity of the
established framework, in that any preferred choices
for the bulk or cohesive material behavior can be used
interchangeably.

1.) Solve for the crack accelerations ¨̃uc|tn using equa-
tion (48).

2.) Given the storedhistoryvariables for ũc|tn , ˙̃uc|tn−1/2 ,
integrate the trial mid-step crack velocity and end-
step crack displacement using equations (51) and
(52), respectively.

3.) Loop over all cracks in sequence, and compute the
displacement gap ûc from equation (53). If ûc < 0:

3a.) Correct the mid-step crack velocity and end-
step crack displacement via equations (51) and
(52), respectively.

4.) Given F|tn+1 and the updated end-step displace-
ments ũc|tn+1 , compute Fd |tn+1 and Fb|tn+1 from
equation (14).

5.) Update the stress in the bulk phase using Fb|tn+1 .
6.) Check for failure using equation (49), and condi-

tionally insert and initialize a new cohesive inter-
face.

7.) Update the stress in each cohesive interface using
ũc|tn+1 .

The ensuing algorithm is conditionally stable, and
is subject to the following restrictions on the choice of
stable time step:

Δtn+1/2 <

√
ρ

λc,max
∀c = 1, . . . , Ncracks. (56)

where λc,max denotes the largest eigenvalue of the

acoustic stiffness tensor ∂2ψ̄
∂ũc⊗∂ũc

. For isotropic mate-
rials, λc,max may be reasonably approximated as
λc,max ≈ Mb + Ec, where Mb = κb + 4

3μ
b is the

P-wave modulus of the bulk material, and Ec denotes
the secant stiffness of the embedded cohesive model.

If the initial secant stiffness Ec of the chosen cohe-
sive model is large relative to Mb, then a severe restric-
tion is imposed upon the resulting stable time step
needed to update the embedded crack openingdisplace-
ments. To circumvent this limitation, a modified CZ
model is proposed in Sect. 4.2, wherein the effective
initial cohesive stiffness Ec is proportional to Mb. If
the proposed explicit update framework is employed
within a globally explicit dynamic finite element pro-
cedure, then the ensuing constraint imposed upon the
stable time step size by equation (56) will be compara-
ble to that of the time step used by the globally explicit
time-stepping scheme. As such, the material may be
updated in a manner which does not incur a significant
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computational overhead due to the potential need for
sub-incrementation. Instead, thematerialmay be stably
updated using the selected global time step size.

In particular: for the modified CZ model proposed
in Sect. 4.2, it was observed that the stable time step
size required by the constitutive update procedure was
roughly twice as small as the global time step, owing
to the fact that λc,max ≈ 2Mb at the onset of failure. To
ensure stability of the update procedure, two alterna-
tive remedies are proposed: the global time stepmay be
reduced to satisfy the local stability requirements of the
explicit constitutive update procedure; or the relative
mass density used to compute the crack accelerations
in equation (48) may be artificially increased, tanta-
mount to a local form of selective mass augmentation.
Henceforth, the latter strategy is employed. Increasing
the density of the material by a corresponding factor of
2 was sufficient to resolve concerns related to local
stability in the constitutive update procedure, with-
out adversely impacting the physical behavior of the
model.

4 Example constitutive formulation

Herein, a specific example of a material model for-
mulated within the framework described in Sect. 3 is
provided. The choice of bulk and cohesive constitutive
models are described in the following sections.

4.1 Hyperelastic bulk material model formulation

A simple hyperelastic model consistent with a com-
pressible Neo-Hookean solid is chosen from (Pence
and Gou 2015). The elastic free energy ψb in the bulk
phase assumes the following form:

ψb(Fb) = κ

2

[
Jb

2 − 1

2
− log Jb

]

+ μ

2

[
tr(b̄b) − 3

]
,

(57)

where Jb ≡ det(Fb), and b̄e ≡ Jb
− 2

3FbFbT . The
parameters κ and μ denote the (undamaged) elastic
bulk and shear moduli of the material, respectively.

From Eq. (39), the resulting macroscopic Kirchhoff
stress (equivalent to the Kirchhoff stress in the bulk

material) arises as:

τ = τ b = κ

2

[
Jb

2 − 1
]
1 + μ

[

b̄b − 1

3
tr(b̄b)

]

. (58)

Thus, the Cauchy stress is computed via σ = J−1τ b

with J ≡ det(F).
In spite of the relative simplicity of the chosen hyper-

elastic model, more complicated hyperelastic formula-
tions accommodating plasticity or visco-elastic behav-
ior (Simo and Hughes 2000) are readily compatible
within the proposedmodeling framework. The inherent
modularity of the bulk constitutive component facili-
tates the use of preexistingmaterialmodel implementa-
tions possessing a virtually arbitrary degree of behav-
ioral complexity. This feature of the framework will
be explored in future work relevant to the modeling of
materials which exhibit a large degree of compressive
ductility, but relatively brittle fracture behavior under
tensile loading (e.g., pressed metal powder compos-
ites).

4.2 Embedded cohesive traction-separation model

To represent the degradation of stiffness and the dis-
sipation of energy due to the formation of discrete
cracks, an appropriate traction-separation law must be
chosen to represent the cohesive failure of the embed-
ded interfaces. As suggested by Leone (2015) for the
DGD approach, virtually any cohesive model may be
employed for this purpose, but numerical considera-
tions impose practical limitations on this choice.

Most cohesive zone models proposed in the liter-
ature (refer to Park and Paulino (2011) for a repre-
sentative survey) may be categorized into two groups:
intrinsic (initially elastic) and extrinsic (initially rigid)
models. Intrinsic models must assume the location and
orientation of cracks within the problem domain a pri-
ori (e.g., across weak material interfaces whose failure
is anticipated, such as in a laminated composite). By
comparison, extrinsic models may be inserted into the
domain and initialized dynamically during the analysis
upon failure initiation.

If the presence or orientation of fractures is not
known a priori, extrinsic cohesive zones models are
preferred. However, because extrinsic CZ models pos-
sess an initially infinite cohesive stiffness to guarantee
continuity of the stress during the transition to failure,
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they are susceptible to issues of poor numerical stability
and ill-conditioning. Specifically, the large initial stiff-
ness of extrinsicCZmodels imposes a severe restriction
on the allowable stable time step size for the explicit
constitutive update scheme proposed in Sect. 3.3. This
can be avoided by imposing a finite value of initial
stiffness upon failure initiation, albeit at the expense
of introducing a discontinuous stress-strain response at
the onset of failure—an issue discussed at length by
Papoulia et al. (2003).

To circumvent this shortcoming in the context of the
presently proposedmodel framework, a supplementary
dissipation mechanism is introduced within an extrin-
sic CZM to aid in transitioning from an initially rigid
state to a damaged elastic state while preserving stress
continuity at the onset of failure. A novel energy dis-
sipation mechanism is proposed which remains active
only during the initial stages of failure evolution, after
which the model transitions to a traditional traction-
separation model akin to the one described by Ortiz
and Pandolfi (1999).

Henceforth, all subscripts denoting the crack index
c are omitted, and the subsequent developments are
assumed to pertain to a single cohesive interface. Con-
sider the postulated expression of the stored energy
Ψ (ũ) per unit of fracture surface area:

Ψ (ũ) ≡ φσ f ũn + 1

2
(1 − D)

E

�
ū2. (59)

In the above, the effective opening displacement ū is
defined as

ū ≡
√
ũ2n + β2ũ2s , (60)

where ũn ≡ ũ · N and ũs ≡ √
ũ · ũ − ũ2n denote the

normal and transverse opening displacements, respec-
tively. The model parameter β denotes the ratio of
the normal and in-plane characteristic fracture length
scales, φ, D ∈ [0, 1] are internal damage parameters,
E is the initial (undamaged) elastic modulus of the sur-
rounding bulk material (a finite value), and σ f is the
normal failure stress at rupture. The primary novelty in
the above expression regards the addition of the term
φσ f ũn which encodes the initial traction at rupture,
assuming a normal failure mode. As noted by Papoulia
et al. (2003), this augmentation guarantees time conti-
nuity of the ensuing tractions at the onset of failure but
avoids the issue of traction locking by requiring that

the encoded initial traction acts strictly in the normal
direction.

The resulting expression for the cohesive traction
vector t̃ ≡ ∂Ψ

∂ũ is derived as

t̃ = φσ fN+ (1− D)
E

�

{
(1 − β2)ũnN + β2ũ

}
. (61)

At the onset of failure, it is assumed that φ = 1, D = 0,
and ũ = 0 such that the initial traction is t̃ = σ fN.

Immediately following the onset of failure, only the
failure parameter φ is allowed to degrade while the
damage parameter D is held fixed, i.e., φ̇ ≤ 0 and
Ḋ = 0. Failure is allowed to progress until such time as
φ = 0, signaling the transition to conventional cohesive
damage evolution via D such that Ḋ ≥ 0 and necessar-
ily φ̇ = 0. In either case, satisfaction of the effective
traction-based failure constraint is imposed:

fd = t̄ − t̄ f (ū) ≤ 0, (62)

where the effective failure stress t̄ f is defined by a sim-
ple exponential softening model:

t̄ f (ū) = σ f e
− σ f

Gc ū, (63)

where Gc denotes the total fracture energy per unit sur-
face area (in the undeformed configuration), and the
effective traction t̄ is evaluated via

t̄ =
√
t̃2n + β−2 t̃2s , (64)

where t̃n ≡ t̃ ·N and t̃s ≡
√
t̃ · t̃ − t̃2n denote the normal

and transverse cohesive traction components, respec-
tively.

When φ > 0, a direct solution for the diminished
value of φ is obtained via:

φ = E

�σ f

⎡

⎣−ũn +
√(

t̄d(ū)

E
�

)2

− β2ũ2s

⎤

⎦ . (65)

If the discriminant in the above expression becomes
negative, or if the resulting value of φ is negative, then
no feasible solution for φ > 0 exists. In such cases,
φ is set equal to zero, and the damage parameter D is
evolved to enforce fd ≤ 0, as is done in traditional
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Fig. 2 The resulting RVE stress vs. strain curve using the pro-
posed embedded cohesive zonemodel, with unloading/reloading
paths at different levels of degradation indicated via dashed lines

cohesive damage formulations; if Ḋ > 0:

D = 1 − t̄ f (ū)

Eū
�. (66)

Otherwise, if a solution for φ > 0 exists such that
φ̇ ≤ 0, this new value is used to update φ while main-
taining D = 0.

The intuitive behavior of the model immediately
after failure initiation may be characterized by a bi-
linear response in the elastic range, followed by soft-
ening along the failure envelope, as depicted in Fig. 2.

It should be noted that the outlined cohesive zone
modeling approachmerely aims to stabilize the explicit
update procedure, rather than to introduce a secondary
dissipation mechanism which attempts to reproduce
experimental observations. At the moment, a justifi-
cation of the model as reproducing certain physical
behaviors under crack growth would constitute a post-
rationalization. Further investigationwould be required
to assess the validity of the model in this regard.

Nonetheless, the behavior of the proposed model
under monotonic loading remains identical to the
purely damage-based model, and rapidly reduces to
the aforementioned model following the onset of fail-
ure. For these reasons, it suffices to assert that the pro-
posed modifications yield only minor differences from
the original damage-based extrinsic traction-separation
model, and it therefore may be irrelevant to critique the

Fig. 3 Uni-axial extension problem setup

physical validity of the alternative dissipation mecha-
nism.

5 Model demonstration and evaluation

The proposed modeling framework was implemented
within the DYNA3D finite element code (Zywicz et al.
2021), and a variety of simulations were explored to
simultaneously verify the model’s numerical imple-
mentation, validate its usage in several benchmark
dynamic fracture problems, anddemonstrate themodel’s
ability to accommodatemulti-directional failure.Atten-
tion is restricted to problems involving brittle material
behavior that may be adequately characterized by the
constitutive idealization presented in Sect. 4.

5.1 Single-element verification problem

Todemonstrate the dynamic behavior of themodelwith
the inclusion of internal kinetic energy, a simple one-
dimensional verification problem consisting of a single
element subjected to uni-axial extension is considered.

The problem setup comprises a single hexahedral
element with side length h, as depicted in Fig. 3. The
element is fully constrained and subjected to a constant
uni-axial (engineering) strain rate ε̇ > 0. The resulting
uni-axial stress-strain behavior of the model is com-
pared in a range of tests spanning a series of decreas-
ing values for the assigned mass density ρ, strain rate
ε̇, and element size h. The corresponding parameteri-
zations for each study are summarized in Table 1.

The dimensionless values for the Young’s modu-
lus E = 10.0, Poisson’s ratio ν = 0.0, initial failure
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Table 1 Variable parameterizations for the uni-axial verification
problem

Series 1 Series 2 Series 3

ε̇ = 0.8, h = 1.0 ρ = 0.001, h = 1.0 ρ = 0.001, ε̇ = 0.8

ρ = 0.001 × 40 ε̇ = 0.8 × 20 h = 1.0 × 20

ρ = 0.001 × 4−1 ε̇ = 0.8 × 2−1 h = 1.0 × 2−1

ρ = 0.001 × 4−2 ε̇ = 0.8 × 2−2 h = 1.0 × 2−2

ρ = 0.001 × 4−3 ε̇ = 0.8 × 2−3 h = 1.0 × 2−3

ρ = 0.001 × 4−4 ε̇ = 0.8 × 2−4 h = 1.0 × 2−4

stress σ f = 0.1, fracture surface energy Gc = 0.003,
and fracture length scale ratio β = 1.0 are consistent
between all variations of the uni-axial extension test.

The results obtained for each parametric series are
presented separately in Fig. 4. In each such study,
decreasing values of ρ, ε̇, or h are examined. The antic-
ipated outcome of each series is convergence to quasi-
static behavior—i.e. the stress-strain response that one
would expect to obtain in the limit of vanishing inter-
nal kinetic energy. The corresponding rates of ener-
getic convergence in each variable may be surmised
from equation (28), where it is readily observed that
T d = O(ρ ε̇2 h2) for the uni-axial extension problem.

The relative significance of inertial effects in the
local stress-strain response of a given element with
dimension h will henceforth be characterized by the
dimensionless energetic ratio υ:

υ ≡ T̃ d(ρ, ε̇, h)

Gc/h , (67)

where Gc/h measures the regularized cohesive energy
density per unit RVE volume, and T̃ d ≈ ρ ε̇2 h2 pro-
vides an estimate of the internal kinetic energy density
based upon the external rate of loading ε̇. For values
of υ � 1, inertial effects are deemed negligible in
comparison with the cohesive behavior of the material
during rupture. For values of υ approaching or exceed-
ing a ratio of 1, the inclusion of internal kinetic energy
becomes potentially relevant to account for the local
dynamics of crack opening.

For all three parametric series, energetic conver-
gence toward quasi-static behavior is evidenced by
the attenuated amplitude of the oscillatory post-failure
stress response with decreasing values of ρ, ε̇, h. In
each series, decreasing a given parameter value by the

(a)

(b)

(c)

Fig. 4 Stress-strain results for the uni-axial extension problem
employing the parameterizations presented in Table 1
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Table 2 Comparison of variable parameterizations and their resulting energetic ratios υ (from equation 67) for the uni-axial verification
problem

Series 1 Series 2 Series 3

ε̇ = 0.8, ρ = 0.001, ρ = 0.001,
h = 1.0, h = 1.0, ε̇ = 0.8,
ρ = 10−3 × 4N ε̇ = 0.8 × 2N h = 1.0 × 2N

N υ N υ N υ

0 0.21333 0 0.21333 0 0.21333

−1 0.05333 −1 0.05333 −1 0.02667

−2 0.01333 −2 0.01333 −2 0.00333

−3 0.00333 −3 0.00333 −3 0.00042

−4 0.00083 −4 0.00083 −4 0.00005

indicated factor (4 for ρ, 2 for ε̇ and h) results in an
anticipated reduction of the transient stresswave ampli-
tude by a factor of 2, and an increase in wave frequency
by this same factor. Table 2 further illustrates how the
energetic ratio υ characterizes the relative influence
of internal kinetic energy on the ensuing stress-strain
response, with values of υ � 1 converging toward
locally quasi-static behavior within a single element.

To ensure the consistent dissipation of fracture sur-
face energy, diminishing the element size h additionally
results in a commensurately greater amount of energy
per unit volume that must be locally dissipated within
the homogenized material RVE. The relative increase
in regularized fracture energy per unit volume with
decreasing h is reflected in Fig. 4c, wherein the steady
state post-failure softening slope is progressively flat-
tened for diminishing values of h.

Concerning the post-failure behavior of themodel: it
is evident that the measured uni-axial stress within the
RVE may exceed the failure stress by an amount pro-
portional to the transient stress wave amplitude. This
“dynamic over-stress” phenomenon manifests within a
single element due to the inclusion of internal kinetic
energy, combinedwith the chosen idealization of local-
ized cohesive failure as occurring across a singu-
lar embedded interface. While this effect is appar-
ently non-physical, it is nonetheless consistent with
the behavior of conventional CZ modeling approaches
for dynamic fracture, wherein the elements adjacent to
a cohesive interface may experience dynamic stresses
that exceed the failure stress.

As a supplementary observation: auxiliary sources
of energy dissipation within the bulk material phase
(e.g., due to plasticity or viscous effects) will atten-

uate the transient portion of the post-failure stress
response without artificially retarding the steady state
crack opening rate.

5.2 Dynamic crack growth rate validation test

The dynamic fracture experiments of Ravi-Chandar
and Knauss (1984) examined the rate of crack growth
inHomalite 100 sheets placed under time-varying load-
ing conditions. These experiments were simulated by
Chin et al. (2018) in an effort to reproduce comparable
rates of crack growth using a CZM approach. To this
end, a similarly motivated validation test for the pro-
posedmodeling approach is investigated under variable
mesh refinement, with the intent of justifying the use of
internal kinetic energy for dynamic fracture problems.

The test considers the specimen geometry depicted
in Fig. 5 under approximately plane stress conditions
with a plate of thickness of 4.8 mm, consistent with
the test setup described by Ravi-Chandar and Knauss
(1982). The crack faces are subjected to an externally
applied traction σ̄ (t) with loading history shown in
Fig. 6. Beginning at t = 0.0 µs the traction is linearly
increased to 10.0 MPa over the first 25.0 µs of dynamic
loading. The traction is then held constant until the
simulation is terminated at t = 150.0 µs. This loading
history is consistent with the larger load case investi-
gated by Chin et al. (2018), and falls within the higher
range of loading rates considered by Ravi-Chandar and
Knauss (1984), wherein the rate of crack growth is
expected to remain constant.

Elastic material properties for Homalite 100 are
taken from Ravi-Chandar and Knauss (1982), namely:
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Fig. 5 Testing arrangement for the experiment of Ravi-Chandar
and Knauss (1984)

Fig. 6 Loading history for the applied crack face traction σ̄ (t)
as a function of time t

E = 4.55 GPa, ρ = 1230.0 kg/m3, ν = 0.31.
Although the results presented by Ravi-Chandar and
Knauss (1984) demonstrate an apparent rate-dependent
fracture toughness for Homalite, a rate-invariant set of
cohesive parameters are chosen consistent with those
used by Chin et al. (2018): σ f = 30 MPa, and
Gc = 75 J/m2 (β = 1.0). Comparable cohesive param-
eters have been used by Yu (2001) to investigate the
dynamic fracture behavior of Homalite 100, yielding
qualitative consistency with experimental data.

Contemplating the results obtained in Sect. 5.1, the
transient effects due to the presence of internal kinetic
energy are expected to be diminished at sufficiently
refined mesh resolutions. A valid question concerns
the extent to which this mesh-dependent behavior arti-
ficially affects the simulated rate of crack growth over
a range of different mesh refinement levels. To inves-
tigate this question further, the specimen geometry is

Fig. 7 Simulated crack growth rates under varying mesh refine-
ment; representative experimental results from Ravi-Chandar
and Knauss (1984)

Table 3 Simulated crack growth rates and initiation times across
a range of mesh refinement levels

Average Crack
crack growth initiation
rate (m/s) time (μs)

h = 6.25 mm 336 86

h = 3.125 mm 437 49

h = 1.5625 mm 490 31

h = 0.78125 mm 582 26

h = 0.520833 mm 620 23

h = 0.390625 mm 635 22

discretized uniformly with hexahedral finite elements
of approximately equal dimension h, and the simu-
lated results are compared across a sequence of nested
mesh refinements with h = 6.25 mm, h = 3.125 mm,
h = 1.5625 mm, h = 0.78125 mm, h = 0.520833
mm, and h = 0.390625 mm.

The results of the numerical study are presented in
Fig. 7 and Table 3, wherein it is observed that the sim-
ulated rates of crack growth are roughly constant over
the duration of the test across all mesh refinement lev-
els. Experimental data obtained at a similar loading rate
is provided for the sake of comparison, however it is
noted that the precise rate of loading for this experiment
is not provided by Ravi-Chandar and Knauss (1984). It
therefore suffices tomake only qualitative comparisons
with the experimental results.
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Differences in the estimated average rate of crack
growth (determined by a linear fit of the data shown in
Fig. 7) are observed at variable levels of mesh refine-
ment. Faster rates of crack growth are obtained at finer
discretizations, ultimately converging toward an aver-
age crack growth rate approaching 650 m/s.

According to Rice et al. (1968), the fracture process
zone size R for the chosen material parameterization
is estimated as R = 0.6594 mm. Consequently, mesh-
size dependent behavior is anticipated (and observed)
for levels of mesh refinement with h > R. This is
further evidenced by the fact that at mesh resolu-
tions coarser than h = 0.78125 mm, damage actively
evolves in only a single element encompassing the pro-
cess zone.At finer resolutions, damage actively evolves
within a band of elements spanning the dimension of
the process zone. Specifically: at h = 0.78125 mm,
damage evolves within a zone spanning 1-2 elements,
whereas at h = 0.390625 mm the process zone spans
roughly 3 elements. As evidenced by the results shown
in Table 3, sufficient refinement of the process zone
is required to achieve convergence in the simulated
results.

To investigate the effect that the inclusion of internal
kinetic energy T d had on the simulated rate of crack
growth at coarser levels of refinement, T d was artifi-
cially decreased in a separate study to emulate the limit-
ing condition T d → 0; an additional scaling factor was
applied to the mass density ρ utilized in the expression
for T d , whereas the original (unscaled) mass density
was used to assemble the (diagonalized) finite element
mass matrix. As shown in Fig. 4a, sufficient reduction
of the applied scaling factor recovers the limiting case
T d → 0 as ρ → 0. Following this investigation, it was
observed that the omission of internal kinetic energy
had little to no impact on the resulting crack growth
behavior across all levels of mesh refinement.

Indeed, for the chosen material parameters, element
size h = 6.25 mm, and approximate opening strain
rate ε̇ = 70 s−1, the energetic ratio from equation (67)
was estimated as υ = 0.02. For the problem under
consideration, it therefore suffices to conclude that the
inclusion of internal kinetic energy does not apprecia-
bly impact the resulting dynamic fracture characteris-
tics of the model at levels of mesh refinement sufficient
to resolve the process zone size. The apparent differ-
ences with respect to mesh refinement are evidently the
consequence of inadequate resolution of the effective
process zone size in the material.

Crack initiation is also observed to occur at pro-
gressively earlier times under mesh refinement, con-
verging toward an initiation time of 20 μs. This con-
verged value is consistent with the experimental results
of Ravi-Chandar and Knauss (1984). Differences in
the initiation time at different mesh refinement levels
can be partially attributed to the sharp variation in the
near-tip stress fields which are only sufficiently well-
resolved in a highly refined mesh. For coarse meshes,
the stresses in the elements surrounding the crack tip
are less concentrated than the stresses at the crack tip,
as determined by the theory of linear elastic fracture
mechanics. The use of a maximum principal stress-
based failure initiation criterion consequently results in
the delayed onset and progression of cracking at coarse
mesh scales. Nonetheless, this artifact of the numerical
discretization does not significantly impact the ensuing
rate of crack growth.

5.3 Kalthoff–Winkler experiment

The experiment of Kalthoff and Winkler (1987) is a
common benchmark problem for various numerical
fracture modeling approaches, serving primarily as a
means of demonstrating the mesh bias (or lack thereof)
of a particular model.

The test consists of a 9 mm thick notched 18Ni1900
maraging steel plate with geometry shown in Fig. 8,
and the chosen material properties: ρ = 8000.0 kg/m3,
E = 190.0 GPa, ν = 0.3, σ f = 2000.0 MPa,
Gc = 2.2 × 104 J/m2 (β = 1.0). The cylindrical
impactor is modeled as a rigid body with a total mass
of roughly 1.57 kg, a radius of 25.0 cm, and an ini-
tial velocity of 32.0 m/s. Following impact, fracture is
expected to initiate at the base of the vertical notches
in the specimen, emanating at an angle of roughly 70◦
away from the vertical plane.

The simulated results using a uniform hexahedral
mesh with an average element size of h = 0.357 mm
are shown in Fig. 9. The color plots depict the extent
of embedded cohesive damage D in the specimen via a
scalar parameter ranging from0 to1,where 0 represents
a fully undamaged material state and 1 corresponds to
a fully damaged state. Brittle cracking is observed at a
somewhat shallower angle than the anticipated experi-
mental result of 70◦ on account of the model’s inherent
mesh bias. Though not shown here, the orientation of
cracking is observed to occur at angles approaching 90◦
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Fig. 8 Testing arrangement for the experiment of Kalthoff and
Winkler (1987)

Fig. 9 Simulated results for the Kalthoff–Winkler experiment
at 90 µs after impact

– in alignment with the edges of the mesh. The influ-
ence of mesh orientation on crack path trajectory is a
well-known issue with local damage models which has
been discussed in other works, with various remedies
proposed; for example, Cervera and Chiumenti (2006)
provide a detailed explanation of this phenomenon and
propose a remedy in the form of a crack tracking algo-
rithm. Nonetheless, the results obtained using the cur-
rent approach are encouraging in sufficiently refined
meshes, demonstrating lesser mesh bias with decreas-
ing element size.

5.4 Dynamic Brazilian test

Yu et al. (2004) conducted numerical simulations using
CZM of dynamic Brazilian tests on ceramic specimens
and compared the results against experimental data col-

lected by Rodriguez et al. (1994) and Gálvez et al.
(1997).

Ruiz et al. (2000) pursued a similar investigation
of the CZM approach to simulate dynamic Brazil-
ian tests on granite specimens. Their investigations
sought to demonstrate the apparent rate-dependent fail-
ure strength of brittlematerials at variable rates of load-
ing. Their findings indicate that this behavior is natu-
rally obtained by CZM and does not require the use of
a rate-dependent traction-separation law.

The numerical investigations conducted herein seek
to confirma similar rate-dependent behaviorwhich nat-
urally arises from a rate-independent embedded cohe-
sive model. Additionally, the dynamic Brazilian test
demonstrates the behavior of the proposed model in
the presence of pervasive failure and fragmentation
and highlights the importance of allowing for multi-
ple intersecting cracks at a given material point.

A similar test setup as described in Yu et al. (2004)
and depicted in Fig. 10 is utilized, employing a 2-
dimensional plane strain representation of the sam-
ple. A sample diameter of D = 8.0 mm and thick-
ness W = 1/3 mm were used, and the chosen mate-
rial properties were consistent with the parameteriza-
tion of A98 alumina (98% Al2O3) estimated by Yu
et al. (2004), i.e. ρ = 3877.0 kg/m3, E = 366.0 GPa,
ν = 0.3, σ f = 179.0 MPa, Gc = 98.0 J/m2 (β = 1.0).
The material is assumed to exhibit predominantly brit-
tle behavior, with little or no plasticity. The bearing
strips are assigned purely elastic properties with the
same material parameters used for the A98 alumina
specimen. Frictionless contact constraints are imposed
between the specimen and the bearing strips.

The motion of the incident and transmitter bars are
modeled approximately as rigid boundary conditions
imposed upon the bearing strips. The incident bar is
assigned a constant applied velocity of v = 12.0 m/s
for the duration of the analysis, whereas the transmitter
bar is held fixed.

The simulated results were obtained using a regular
hexahedral mesh with an average element diameter of
h = 0.1 mm, which is comparable to the degree of
mesh resolution utilized by Yu et al. (2004).

The results at different analysis times are depicted
in Fig. 11. As in the previous example, the color plots
depict the extent of embedded cohesive damage D ∈
[0, 1]. Elements which exceed a critical crack strain
value of 100% are deleted from the analysis, thereby
indicating the formation of distinct fragments. The
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Fig. 10 Experimental setup for the dynamic Brazilian test

resulting patterns of fracture closely emulate the exper-
imental results observed byGálvez et al. (1997), aswell
as the simulated results obtained by Yu et al. (2004).
A single medial fracture is present at the peak load,
followed by the development of several parallel cracks
along the central column of the specimen, and perva-
sive cracking under the bearing strips.

Following the stated methodology employed by Yu
et al. (2004), the transmitted load P (measured as the
net contact force acting between the sample and the
bearing strip affixed to the transmitter bar) was used to
estimate the tensile stress across the specimen’s medial
plane via

σ = 2P

πWD
, (68)

whose time-rate of increase was further used to esti-
mate the strain rate in the sample prior to failure:

ε̇ = 1

E

∂σ

∂t
. (69)

From the above estimates, the variable tensile strength
of the sample under different loading rates was com-
pared against the experimental results of Gálvez et al.
(1997), and the simulated results of Yu et al. (2004).
The results are summarized in Table 4, demonstrating
notable similarities between the proposed method and
the simulated results obtained by Yu et al. (2004).

Additionally, a comparison was made between dif-
ferent analyses which allowed for either a single crack
or multiple intersecting cracks to develop (up to three)
at each material point. The results depicted in Fig. 12

(a)

(b)

Fig. 11 Depiction of cohesive damage at different analysis times
for the dynamic Brazilian test

Table 4 Estimated tensile strength of A98 specimen at variable
strain rates, compared against the experimental results of Gálvez
et al. (1997), and the simulated results of Yu et al. (2004)

Strain rate Tensile strength
Test (s−1) (MPa)

Experiment 92×10−8 179

Experiment 77 285

(Yu et al. 2004) 80 256

Proposed method 72 253

demonstrate the role that the allowance of multiple
cracks plays in the simulated results. The pattern of
damage observed in the model with multiple permitted
cracks exhibits behavior similar to the failure patterns
noted by Zhou et al. (2014) for granite specimens: a
relatively narrow crushed strap of material develops
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(a)

(b)

Fig. 12 Comparison of single vs. multiple cracks permitted at
each material point

due to parallel center cracks, accompanied by crushed
zones of material near the supports.

In contrast, the pattern of damage observedwhen the
model is constrained to allow only a single crack per
material point exhibits diffuse levels of damage along
a wider medial band through the specimen. The dif-
fused extent of damage in this case appears to be the
result of stress locking (Rots et al. 1985; Rots 1988),
and is an apparent consequence of the chosen (effec-
tively uni-directional) failure model permitting only a
single crack. Common remediation strategies involve
an isotropic degradation of the material stiffness under
progressive failure, allowing the orientation of cracks

to rotate, or accommodating multiple discrete cracks
(Rots and Blaauwendraad 1989). The multiple crack
approach adopted in this work aids in conditionally
degrading the transverse stiffness of the fracturedmate-
rial, particularly in regions of the mesh which exhibit
pervasive failure, ultimately yielding more physical
results less prone to stress locking.

6 Conclusion

The smeared crack modeling framework proposed in
this work offers several improvements over the related
DGD approach of Leone (2015), notably: the internal
traction equilibrium conditions and macroscopic stress
state of the model are established via rigorous thermo-
dynamic arguments, and multiple mutually orthogonal
cracks at a single material point are permitted, which
proves essential in mitigating the effects of stress lock-
ing.

To facilitate the efficient use of the proposed model
in explicit dynamic simulations for dynamic fracture
problems, a dynamic regularization of the equations of
motion governing cohesive crack opening was intro-
duced, resulting in an explicit constitutive update pro-
cedure. Unlike other artificial forms of (viscous) regu-
larization, the proposeddynamic regularization scheme
ismotivated on physical grounds. The results presented
in Sect. 5.1 demonstrate that the influence of local crack
inertia diminishes under mesh refinement, but may
become potentially significant if the internal kinetic
energy density is large compared to the cohesive frac-
ture energy of the material (e.g., at coarser discretiza-
tion levels, larger length scales, or sufficiently high
strain rates). For the problems considered in Sects. 5.2
and 5.4, the inclusion of crack opening inertial effects
did not appreciably impact the dynamic fracture char-
acteristics of thematerial for these problems.While the
driving intent behind the inclusion of internal kinetic
energy in the present work was to facilitate a more effi-
cient constitutive update procedure, future investiga-
tions will seek to examine situations in which these
inertial effects become relevant to the dynamics of
crack growth.

As with conventional CZMs, sufficient resolution
of the fracture process zone is required to obtain
mesh-independent results. However, even with suffi-
cient refinement, the proposed model exhibits simi-
lar issues of mesh bias seen in other SCM formula-
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tions predicated on a local form of damage evolution.
Potential remediation strategies include: supplemen-
tary non-local regularization procedures, use of less
biased meshes, crack tracking algorithms, or enhanced
local kinematics to better represent crackopening.Con-
tinuing work aims to further investigate and resolve
these deficiencies.
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Asimplified evaluationof integral products ofHeav-
iside functions

Recall From Eq. (26) the expression for the total inter-
nal kinetic energy of the cracked continuum idealiza-
tion, restated below:

T d = ρ

8

Ncracks∑

a,b=1

( ˙̃ua · ˙̃ub) 1

|Ω|
∫

Ω

H (Na)H (Nb) dV .

(70)

The primary difficulty in evaluating the above con-
cerns the computationof the integrals

∫
Ω
H (Na)H (Nb) dV

containing products ofHeaviside functions. Herein, the
aforementioned integral products are evaluated approx-
imately by assuming an idealized geometric distribu-
tion of material within the RVE domain Ω .

In particular, consider the case where Ω is approx-
imated as an ellipsoidal domain obtained through an
affine mapping J from a reference sphere with unit vol-
ume. Let the volume of the ellipsoidal domain corre-
spond to |Ω| = det(J). The directed area dac = nc da
of anymedial crack plane passing through the reference

spherewith circular area da = 3
√

9π
16 and unit normalnc

is transformed via Nanson’s relation into the directed
area dAc = Nc d Ac of a corresponding medial crack
plane passing though the ellipsoidal domain with area

Fig. 13 Two-dimensional depiction of the ellipsoidal idealiza-
tion forΩ with principal semi-diameters ri ; the ellipsoidalwedge
W12 is defined by the two unit normals N1 and N2, such that a
corresponding spherical wedge may be defined between n1 and
n2 in the reference sphere

d Ac = |Γc| and normal Nc, i.e.

dAc = cof(J) · dac. (71)

Referring to Fig. 13, the volume of an ellipsoidal
wedge (denoted |W12|) formed by the intersection of
Ω with two half spacesX ·N1 ≥ 0 andX ·N2 ≥ 0 may
be computed as the transformed volume of the cor-
responding spherical wedge defined in the reference
sphere, such that

|W12| = π − cos−1(n1 · n2)
2π

|Ω|, (72)

A reasonable approximation to the above over the
complete range of values for the inner product
n1 · n2 ∈ [−1,+1] is given by

|W12| ≈ 1 + n1 · n2
4

|Ω|. (73)

Given the chosen idealization for the RVE domain,
the Heaviside integral products may be directly evalu-
ated via

∫

Ω

H (Na)H (Nb) dV = 4|Wab| − |Ω|. (74)

Exploiting the approximation given by equation (73),
the above reduces to a bilinear product expressed in
terms of the metric tensor G defined in Sect. 2.1:

∫

Ω

H (Na)H (Nb) dV ≈ 16

9

Na

�a
· G · Nb

�b
|Ω|. (75)
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