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Abstract The ductile fracture has been one of the

most important topics in various branches, such as the

automotive, maritime or energy industry. Many

approaches have been developed under certain

assumptions. The present work focuses on bringing

together the microstructural- and phenomenological-

based ductile fracture modelling under large plastic

deformations, room temperature and quasi-static

monotonic loading. The complex yield criterion

dependent on three stress invariants with a deviatoric

associated flow rule was coupled with several

advanced multiaxial ductile fracture criteria. The

models were calibrated for the 2024-T351 aluminium

alloy and implemented within the commercial explicit

finite element code of Abaqus. Two additional tests,

which were not covered within the calibration proce-

dure, were simulated to demonstrate good predictabil-

ity of the onset of cracking and its propagation,

modelled by the element deletion technique. It was a

small punch test and a three-point bending test of a

randomly notched bar.

Keywords Crack initiation � Dynamics � Damage �
Failure � Material softening � Slant fracture

1 Introduction

Failure predictions aim to increase the safety of

machine elements, optimize manufacturing processes

or investigate the behaviour of structures in accidents

(Cerik et al. 2019; Talemi et al. 2019). Non-destruc-

tive testing has to be employed for the inspection of

parts, when inner flaws occur, while numerical

simulations are an effective tool in predicting those

discontinuities. Manufacturing costs can decrease

when metal forming operations are optimized (Gachet

et al. 2015). Apart from the products, the tools can also

be analysed (List et al. 2012). However, cracking can

also be optimized in processes such as machining or

cutting, where it is intended (Wang and Liu 2016). The

computations may be useful when there is a shortage

of material available or the material is vintage or

hazardous, such as irradiated. The design of a new

material and its application in various services, such as

ballistic protection (Xiao et al. 2019b), may also be of

interest. Immediate cost savings are apparent, but

future liability problems can be avoided with the help

of numerical simulations as well. Nevertheless, it
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should be noted that the computations cannot ever

fully replace the experiments.

Another step forward was the use of digital image

correlation (Erice et al. 2018). It is useful in the

calibration and verification stage (Park et al. 2018). It

should be noted that utilization is mainly in sheet

metal applications with the biaxial stress state and

major strains observable on the material surface (Mu

et al. 2020). However, cracks often initiate inside the

material in many cases, so another option has to be

sought, such as computed tomography (Roth et al.

2018).

Isotropic hardening is often utilized in ductile

fracture, while it is generally insufficient to predict the

springback (Lin et al. 2020). In addition to kinematic

hardening, directional distortional hardening may be

used (Lee et al. 2019). Another approach may be

crystal plasticity (Scherer et al. 2019) or probabilistic

modelling (Tancogne-Dejean et al. 2019).

The first influence on the ductile fracture was

attributed to the stress state conventionally repre-

sented by the first principal stress. Proposed criteria

were quite simple and usually one-parametric as

proposed by Ko et al. (2007). Although the criteria

were usually dimensionless, the use of stress triaxiality

has started to prevail as published by Bao and

Wierzbicki (2004), who also concluded that there is

a cut-off stress triaxiality gc ¼ �1=3, below which the

damage parameter does not accumulate and, therefore,

there is no fracture. It is probably a correct assumption,

but it was proved that the value is material dependent

and can be lower than �1=3 (Tutyshkin et al. 2014).

Finally, the complex dependency on the stress triax-

iality was just one step before the Lode dependency

was acknowledged. Wilkins et al. (1980) proposed a

criterion depending not only on the hydrostatic

pressure but also on the deviatoric stress state,

assuming that the fracture strain decreased with

increasing shear load. However, it took much longer

before the Lode dependency was widely accepted

within the ductile fracture community. Then it even

took its place within the porosity-based models (Xue

2008). Moreover, the lowest ductility at generalized

shear also implies that the cut-off plane should be

convex, which has not been much regarded in the

literature yet. It will be further addressed accordingly.

Bai and Wierzbicki (2010) later proposed a more

sophisticated (extended Mohr–Coulomb) criterion

with a low number of material parameters related to

fracture. Lou et al. (2014) introduced a criterion with a

changeable cut-off inspired by the criterion proposed

by Cockroft and Latham (1968). Kubı́k et al. (2018)

introduced a slight modification to this criterion

independently and simultaneously with Xiao et al.

(2018), which considered the fixed material parameter

(causing the cut-off plane shape to be fixed) as another

material parameter used for fitting. Finally, Lou et al.

(2017) introduced another material parameter into the

cut-off in order to better govern the dependence on the

deviatoric stress state measure. Although the material

parameters were already calibrated altogether, there

was still a prescribed restriction on the cut-off stress

triaxiality. Therefore, the material parameter can still

be regarded as fixed or semifixed in such a case. Roth

and Mohr (2014) proposed a (Hosford–Coulomb)

criterion in a way similar to that of Bai andWierzbicki

(2010). Last but not least, the significant influence of

plasticity non-associativity on the ductile fracture was

demonstrated by Vobejda et al. (2022).

The foundation of continuum damage mechanics

was laid by Kachanov (1958), who formulated the

concept of effective stress and introduced the weak-

ening function, which is zero at the moment of fracture

and unity for the undamaged material. Lemaitre

(1985) formulated the coupling within the framework

of the thermodynamics of irreversible processes and

introduced the damage strain energy release rate.

Chaboche (1981) introduced anisotropic damage, for

which Murakami and Ohno (1981) proposed a proce-

dure for symmetrizing the effective stress. Based on

that, Chow and Wang (1987) proposed an anisotropic

model in the scope of approach proposed by Lemaitre

(1985), later followed within the thermodynamically

consistent framework by Brünig (2002) or Besson

(2010). Kattan and Voyiadjis (2001) decomposed the

damage into two parts related to voids and cracks,

respectively. Xue (2007) assumed that the flow stress

of a matrix is greater than the conventional flow stress

of the material containing flaws and introduced the

weakening exponent in order to relate the micro and

macro behaviour. In addition to that, Xue (2007) also

proposed a non-linear damage accumulation and

symmetric ductile fracture criterion.

The so-called post-initiation softening is another

technique when the damage is partially coupled with

elastic–plastic behaviour, which means that damage

accumulation is driven by plastic deformation, and in

turn, the elastic behaviour and constitutive law is
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42 F. Šebek et al.



influenced by the amount of damage after some

threshold (Li and Wierzbicki 2010; Paredes et al.

2018; Keim et al. 2020). It was introduced because it is

challenging to reproduce the slant fracture with the

phenomenological ductile fracture criteria, which are

uncoupled. It should be noted that all described

solutions are mesh dependent. Moreover, the loss of

ellipticity and subsequent localization occur when

coupled models are employed. This may be solved by

nonlocal regularization (Seidenfuss et al. 2011;

Andrade et al. 2011; Baltic et al. 2020).

2 Material testing

The whole experimental campaign was carried out on

the wrought aluminium alloy 2024-T351. Heat treat-

ment designates that the material was solution heat-

treated, stress-relieved and then naturally aged (the

influence of aging on plasticity and ductile fracture

was investigated by Jung et al. (2022) for a different

aluminium alloy), while stress relief was achieved by

stretching the metal by 1.5 to 3.0% of deformation.

There was no straightening after stretching. Although

this aluminium alloy with the face-centred cubic

structure does not exhibit extensive necking, many

tests have been conducted in the scope of ductile

fracture (Papasidero et al. 2014; Hartlen and Doman

2019). Each batch is unique and the results may vary

significantly. Flow curves from various sources with

considerable scatter even in such a limited range are

plotted in Fig. 1, where r is the equivalent stress and ep
is the equivalent plastic strain. To avoid combining

data from various sources as in Khan and Liu (2012),

Li et al. (2021), Quach et al. (2020), and to eliminate

the influence of microstructure or even to misinterpret

the behaviour of the real material, the experimental

campaign has been set up and the material was

supplied by Feropol as a cold-rolled plate with

dimensions of 1500 9 1000 9 20 mm.

The chemical composition given in Table 1 is the

result of three repeated measurements using Spectru-

mat GDS 750 obtained by glow discharge optical

emission spectroscopy (Šebek et al. 2018).

The reference block of material was cut from the

plate and the weight was measured using the analytical

balance with 1 mg readability, resulting in a density of

2770 kg 9 m–3. The block was used for non-

destructive measurement of the wave velocity by the

OLYMPUS 38DL PLUS ultrasonic thickness gauge

with M110 contact transducer. The Poisson’s ratio of

0.34 was calculated knowing Young’s modulus

(72,500 MPa from the standard tensile tests performed

further) and the average wave velocity of

6347 m 9 s–1 (Šebek et al. 2018).

The level of anisotropy was low from a macro-

scopic point of view in such a bulk material, as

demonstrated by the final shape of the post-mortem

sample from the transverse direction after the tensile

test (Fig. 2), which was obtained using the SEM

Tescan LYRA3 XMH (Šebek et al. 2019). Therefore,

the material was considered isotropic for the finite

element modelling and all specimens were manufac-

tured in the same direction, which showed minimal

scatter in the displacements to fracture (Fig. 2).

Furthermore, a moderate Portevin–Le Chatelier effect

was observed in the tensile tests between 5 and 6 mm

of elongation (Fig. 2).

The crack was initiated either on the surfaces of the

specimens or inside the specimens within this study, as

discussed further. However, all specimens had the

process zone, where the crack appeared sooner or

later, prepared in the same quality. The surface

roughness of 0.4 lm was prescribed in the detailed

drawings, but much lower values between 0.078 and

0.102 lm were measured on a representative speci-

men using the BrukerContourGT-X8 Non-Contact 3D

Optical Profiler. Therefore, the surfaces of the process

zones were prepared very carefully so that the surface

roughness could not influence the results.

All tests were performed under quasi-static loading.

There were conducted 5 tensile tests of smooth (strain

rate approximately from 0:0005/s to 0:001/s on 30 mm

gauge length) and 3 notched (strain rate approximately

of 0.0005/s on 30 mm gauge length) cylindrical

specimens, 3 tensile (strain rate approximately of

0:0005/s on 30 mm gauge length) and 3 torsional

(strain rate approximately of 0:001 rad/s for 646

Hydraulic Collet Grip—the stiffness of the system

influenced the torque response as discussed further)

tests of notched tubular specimens and 2 compression

tests of notched cylinders (strain rate approximately of

0:0009/s on height 18 mm). The detailed description

of all experiments can be found in Kubı́k et al. (2018)

and is not repeated within the present study, as it is in
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Fig. 1 Scatter in flow curves published by Bai et al. (2006), Wierzbicki et al. (2005), Seidt and Gilat (2013), Papasidero et al. (2015)

and Xiao et al. (2019a)—for the reference strain rate and room temperature

Table 1 Chemical composition of 2024-T351 (Šebek et al. 2018)

Element Si Fe Cu Mn Mg Cr Zn Ti Ni Pb Sn

Composition (wt%) 0.07 0.25 4.3 0.52 1.71 0.00 0.01 0.04 0.00 0.00 0.00
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Fig. 2 Results of 5 standard tensile tests in the transverse direction (left) and post-mortem specimen showing minimum ellipticity

(right) (Šebek et al. 2019)
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the rest of the article, where only new information is

presented unless otherwise stated.

3 Material modelling

All computations were performed in Abaqus 2019.

The mesh dependency was treated using the same

element size of 0.075 mm within the gauge section in

all numerical simulations. The mapped mesh was

created as depicted in Fig. 3, where the smooth

cylindrical specimen is omitted because the mesh

layout is obvious, when a 3 9 15 mm was modelled.

All tests were modelled using axial symmetry with

CAX4R four-node bilinear quadrilateral elements

with reduced integration and hourglass control, apart

from torsion and compression, which were modelled

in three dimensions with C3D8R eight-node linear

brick elements with reduced integration and hourglass

control. The upper tubular part of the torsional

specimen, which did not undergo any deformation,

was meshed with elements of a size of 0.2 mm so as

the parts of the notched cylinder, modelled with

respect to the vertical and horizontal planes of

symmetry, at a distance of 1.5 mm from the notch.

Furthermore, R3D4 four-node bilinear quadrilateral

rigid elements with the size of 0.2 mm were used for

the tool in the upsetting test, where the friction

coefficient of 0.05 was applied (the punch is not shown

in Fig. 3). The friction coefficient was identified on the

basis of deformation—barrelling and stick and slip

regions. Duration of the simulated tests was shortened

to 0.1 s and the mass scaling with the time increment

of 1 9 10–7 s was used for torsion and compression to

speed up the calculations, while the kinetic energy was

checked to be negligible compared to the total energy.

3.1 Model of elasticity

The isotropic elastic model of the material was

adopted, as mentioned earlier. The material parame-

ters used for the computations are given in Table 2

along with the physical property needed for the

calculations within the explicit finite element method,

which was utilized due to its conditional stability

allowing crack initiation and propagation by means of

element deletion. In such a case, the implicit algorithm

would not be capable of convergence.

3.2 Model of plasticity

The isotropic plastic behaviour was assumed, as

discussed earlier. All parts of the plasticity model

are introduced in the following subsections.

3.2.1 Isotropic hardening law

All the following yield criteria will share the same

hardening law at the axisymmetric tension condition.

The flow curve was identified with the standard tensile

test of a smooth cylindrical specimen. First, engineer-

ing strains and stresses were recalculated in true

quantities up to the ultimate tensile strength (Fig. 4).

Beyond that, the curve was extrapolated and the

Fig. 3 Meshed specimen with highlighted crack initiation

location: a cylindrical with R13 notch for tension (largest

diameter of 16 mm), b cylindrical with R6.5 notch for tension

(largest diameter of 16 mm), c cylindrical with R4 notch for

tension (largest diameter of 16 mm), d cylindrical with notch for

compression (largest diameter of 12 mm), e tubular with R4

notch for tension (largest diameter of 16 mm), f tubular with R4
notch for torsion (largest diameter of 15 mm)—not in a mutual

scale
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inverse calibration was employed until the satisfying

match between the average experiment and computa-

tion was achieved. The calibrated multilinear flow

curve is depicted in Fig. 4 and is named as conven-

tional. There is also a flow curve of the matrix, which

will be introduced later within this section as a result

of the adopted plasticity damage approach.

3.2.2 Von Mises yield criterion with associated flow

rule

The yielding occurs when the second invariant of

deviatoric stress tensor reaches a critical value. The

yield function may be written as

f ¼ r� ry; ð1Þ

where ry is the yield stress. Equivalent stress is defined
as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
s : sð Þ

r

; ð2Þ

where s is the deviatoric stress tensor and : is the

double dot product. The associated flow rule is given

by

of

or
¼ 3

2

s

r
; ð3Þ

where r is the stress tensor. It should be noted that

the outward normal is not unity when the above

formulation is adopted. Finally, the increment of the

plastic multiplier is explicitly written as

Dk ¼ rt � ry
3Gþ H

; ð4Þ

where rt is the trial stress, G is the shear modulus and

H is the plastic modulus.

3.2.3 Kroon–Faleskog yield criterion with associated

flow rule

Kroon and Faleskog (2013) proposed a yield function

(Kroon–Faleskog hereinafter), which was dependent

on the second and third invariants of deviatoric stress

tensor. The yield function is formulated as follows

f ¼ r� kry; ð5Þ

where k is the yield function correction

Table 2 Elastic characteristics and specific mass utilized within computations (Šebek et al. 2018)

Young’s modulus (MPa) Poisson’s ratio (–) Density (kg 9 m–3)

72,500 0.34 2770

Fig. 4 Engineering and true stress–strain curves with highlighted necking point (left) and calibrated (extrapolated) conventional

multilinear flow curve (right)
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k ¼ 1� l 1� n2
� � 1þ n

1
a

0

1� n2
� �

1
aþn

1
a

0

0

@

1

A

a

¼ 1� l sin2 3hLð Þ 1þ n
1
a

0

sin
2
a 3hLð Þ þ n

1
a

0

 !a

; ð6Þ

where l, n0 and a are the material parameters and n
and hL are the normalized third invariant of deviatoric

stress tensor and Lode angle defined in Appendix 1.

The associated flow rule is given by the derivative of

the yield function as

of

or
¼ 3

2

s

r
� 3

dk
dn

k
2
3

2

s

r
� 3
2

s

r
� I � n

3

2

s

r

� �

; ð7Þ

where � is the dot product and I is the identity matrix

and the derivative is

dk

dn
¼

2l 1þ n
1
a

0

	 
a

n
1
a

0n

1� n2
� �

1
aþn

1
a

0

	 
aþ1
: ð8Þ

Note that the first term in Eq. (7) is analogical to

Eq. (3). Furthermore, the Kroon–Faleskog yield cri-

terion is symmetric with respect to generalized shear

n ¼ 0ð Þ, which implies that the yield correction

function is an even function, so k nð Þ ¼ k �nð Þ. It

simplifies to the von Mises yield criterion when l ¼ 0

and roughly approaches the Tresca yield criterion

when l ¼ 1�
ffiffiffi

3
p
�

2, yet with round corners, unlike

the Tresca yield criterion exhibiting a singularity. The

plastic multiplier increment was calculated similarly

to Eq. (4) according to the following expression

Dk ¼ rt � kry
3Gþ kH

; ð9Þ

containing only the yield correction function addi-

tionally. The yield criterion was implemented into

Abaqus using the Vectorized User MATerial

(VUMAT) subroutine. Then, the inverse calibration

was used towards the experiments in generalized shear

(tension and torsion of the notched tube). Calibrated

material parameters are given in Table 3 with the yield

locus depicted in Fig. 5 compared to the von Mises

one, where rI, rII and rIII are the principal stresses not
ordered according to the magnitude.

The curvature was checked to ensure that the yield

surface is convex according to the expression for polar

coordinates in the form

j ¼
r2 þ 2 dr

dhL

	 
2

�r d
2
r

dh2L

r2 þ dr
dhL

	 
2
� �3

2

[ 0; ð10Þ

where r is the radial coordinate of the cylindrical

coordinate system dependent on the Lode angle

through the yield correction function as

r ¼ k

ffiffiffi

2

3

r

ry: ð11Þ

The respective derivatives are

dr

dhL
¼ dk

dhL

ffiffiffi

2

3

r

ry

¼ �3l
1þ n

1
a

0

	 
a

n
1
a

0

sin
2
a 3hLð Þ þ n

1
a

0

	 
aþ1
sin 6hLð Þ

ffiffiffi

2

3

r

ry;

ð12Þ

d2r

dh2L
¼ d2k

dh2L

ffiffiffi

2

3

r

ry ¼ 9l
1þ n

1
a

0

	 
a

n
1
a

0

sin
2
a 3hLð Þ þ n

1
a

0

	 
aþ1

aþ 1

a

sin
2
a 3hLð Þ

sin
2
a 3hLð Þ þ n

1
a

0

4 cos2 3hLð Þ � 4 cos2 3hLð Þ þ 2

 !

ffiffiffi

2

3

r

ry:

ð13Þ

Finally, the curvature was modified for easier

plotting according to Kroon and Faleskog (2013) as

j ¼
ln 1þ

ffiffi

2
3

q

ryj
	 


ln 2ð Þ : ð14Þ

The smoothness of the yield surface is ensured

when the curvature is finite, which is satisfied as well.Table 3 Calibrated material parameters for Kroon–Faleskog

yield criterion (Šebek et al., 2018)

l (–) n0 (–) a (–)

0.123 0.180 4.000

123

Multiaxial ductile fracture criteria coupled with non-quadratic non-prismatic yield surface 47



3.2.4 Bai–Wierzbicki yield criterion with deviatoric

associated flow rule

Bai and Wierzbicki (2008) proposed a yield criterion

dependent on the stress triaxiality g (defined in

Appendix 1) and the normalized third invariant of

deviatoric stress tensor. Due to easier implementation,

the yield correction function was introduced as in the

case of Kroon–Faleskog yield criterion as

k ¼ 1� cg g� g0½ �
� �

cs þ ca � cs½ � c� cmþ1

mþ 1

� � �

;

ð15Þ

where g0 is the initial stress triaxiality (serving as

another material parameter), cg, cs and m are the

material parameters and c is the function of the

deviatoric stress tensor as

c ¼
ffiffiffi

3
p

2�
ffiffiffi

3
p sec

1

3
arcsin n½ �

� �

� 1

� �

¼
ffiffiffi

3
p

2�
ffiffiffi

3
p sec

p
6
� hL

	 


� 1
	 


: ð16Þ

It should be noted that the secant is an even

trigonometric function. Therefore, Bai andWierzbicki

(2008) used sec hL � p=6ð Þ. Finally, ca is the function
distinguishing between the tension and compression as

ca ¼
ct if n� 0

cc if n\0

�

; ð17Þ

where ct and cc are the material parameters. It should

be noted that Vershinin (2017) pointed out that Bai and

Wierzbicki (2008) calibrated material parameters,

which do not satisfy the convexity condition, and

mistakenly assumed that r ¼ ry, which is not the case
for the yield criteria dependent on the stress triaxiality

and/or deviatoric stress tensor. The original yield

criterion was later corrected by Ghazali et al. (2020) as

well. Nevertheless, the deviatoric associated flow rule

is given by Bai and Wierzbicki (2008) using the chain

rule as

of

or
¼ or

or
þ rycg cs þ ca � cs½ � c� cmþ1

mþ 1

� � �

og
or

� ry 1� cg g� g0½ �
� �

ca � csð Þ 1� cmð Þ oc
or

;

ð18Þ

where the first derivative is analogous to the one in

Eq. (3)

or
or

¼ 3

2

s

r
; ð19Þ

Fig. 5 Calibrated Kroon–Faleskog yield criterion in Haigh–Westergaard space (right) and compared to von Mises one on deviatoric

plane (left) (Šebek et al., 2018)
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og
or

¼ 1

3

I

r
� 3

2

s

r2
g; ð20Þ

oc
or

¼ 3
ffiffiffi

3
p

2�
ffiffiffi

3
p tan 1

3
arcsin n½ �

� �

cos 1
3
arcsin n½ �

� �

1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p

3

2

s � s
r2

� I

3
� ns
2r

� �

:

ð21Þ

It should be noted that the equivalent plastic strain

increment is perpendicular to the yield loci in the

deviatoric (octahedral) plane only, so it is different

from the yield surface outward normal. Therefore, it is

named as the deviatoric associativity of the flow rule.

This may be assumed when the plastic dilatancy is

negligible and the plastic incompressibility is desired.

It is achieved when the first term is eliminated from

Eq. (20). The yield criterion simplifies into the von

Mises one when either cg ¼ 0 and ct ¼ cs ¼ cc ¼ 1 or

m ¼ 0. It becomes the yield criterion proposed by

Drucker and Prager (1952) when cg 6¼ 0 while either

ct ¼ cs ¼ cc ¼ 1 or m ¼ 0. Finally, it closely

approaches the Tresca yield criterion when cg ¼ 0,

cs ¼
ffiffiffi

3
p
�

2, ct ¼ cc ¼ 1 and m ! 1. The plastic

multiplier was calculated according to the same

equation, as in the case of the previous yield criterion,

Eq. (9). The yield criterion was implemented in

Abaqus using the VUMAT as in the previous case.

Then, the inverse calibration was used for all exper-

iments. Calibrated material parameters are in Table 4,

while the yield locus is depicted in Fig. 6 and

compared to the von Mises one.

The convexity of the yield surface depends on four

material parameters ct, cs, cc and m, and not just the

first three, as stated by Bai andWierzbicki (2008), who

used a set of material parameters that do not satisfy the

convexity condition. Lian et al. (2013) derived a

simple criterion for convexity,
ffiffiffi

3
p �

2� cs=ca � 1,

which is independent of the material parameter m,

which should be a positive integer. For full control, the

curvature was calculated and checked again according

to Eqs. (10) and (11) with the following derivatives

dr

dhL
¼ dk

dhL

ffiffiffi

2

3

r

ry ¼ �1þ cg g� g0½ �
� �

ca � csð Þ
sin

p
6
� hL
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The requirement on the finite curvature was satis-

fied, so the yield surface is smooth.

3.2.5 Comparison of calibrated yield criteria

The modified curvatures of all calibrated yield criteria

are compared in Fig. 7. All computations have been

performed using the conventional flow curve (Fig. 4)

so far. Responses from all standard tensile tests are

depicted in Fig. 8. As expected, all predicted force

responses were almost identical for the standard

tensile test, which was utilized for estimating the

conventional flow curve. Only the Bai–Wierzbicki

yield criterion with deviatoric associated flow rule

produced slightly lower responses, although ct ¼ 1:00

(Table 4). However, the deterioration is negligible

overall, because the yield criterion improved the

remaining tensile tests of notched cylindrical speci-

mens (Fig. 9) and had globally the lowest error

(Table 5). It was 16% compared to 21% for Kroon–

Faleskog and 43% for von Mises yield criteria with

associated flow rules. Therefore, the Bai–Wierzbicki

yield criterion with deviatoric associated flow rule,

which is the most complex one, will be utilized within

further computations.

The errors were computed according to

100
X Fe � Fcj j

Fe
; ð24Þ

where Fe and Fc are the forces from the experiment

and the computation, respectively, while all responses

were sampled with 200 points. All errors are summa-

rized in Table 5, while all remaining responses are

depicted in Fig. 9. It should be noted that unfortu-

nately no sensor was used for torsion, which resulted

Table 4 Calibrated material parameters for Bai–Wierzbicki

yield criterion (Kubı́k et al., 2018)

g0 (–) cg (–) ct (–) cs (–) cc (–) m (–)

0.20 0.09 1.00 0.88 1.01 20.0
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in a slightly different elastic range in Fig. 9f due to the

stiffness of the gripping system.

3.3 Model of damage

The nonlinear damage accumulation is one of the key

features to the possible solution of the problems with

non-proportional loading, although there have been

some doubts (Park et al. 2020) or other modelling

approaches (He and Huo 2018; Fincato and Tsutsumi

2019). Lemaitre and Dufailly (1987) described eight

different methods of measuring damage by destructive

and non-destructive methods covering the fractogra-

phy and variation of the following quantities: density,

ultrasonic wave propagation, cyclic plasticity

response, tertiary creep response, microhardness,

electrical potential and finally, the variation of

Young’s modulus, which is employed in the article.

Other methods of investigating the evolution of

damage lie in non-proportional tests, usually con-

ducted on notched tubular or cylindrical specimens

under biaxial loading (tension–torsion) and following

Fig. 6 Calibrated Bai–Wierzbicki yield criterion in Haigh–Westergaard space (right) and compared to the vonMises one on deviatoric

plane (left) (Kubı́k et al., 2018)

Fig. 7 Modified curvature of calibrated yield criteria Fig. 8 Force responses for the standard tensile test and

simulations with all plasticity models considered (Kubı́k et al.

2018)
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numerical analysis (Papasidero et al. 2015; Derpenski

et al. 2018). The problem is that damage accumulates

at one material point when the specimen is pulled, but

once the specimen is twisted, damage accumulation

Fig. 9 Force responses for experiments and simulations with all plasticity models considered, except for the standard tensile test

(Kubı́k et al. 2018)
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continues at a different location, which is not critical in

the first stage of loading during tension. Theoretically,

better results could be obtained by two-step tests (Basu

and Benzerga 2015; Thomas et al. 2016), which

consist of pulling the specimen from one geometry

until the fracture and then the same specimen until a

prescribed deformation. Once the test is interrupted

at this deformation, the specimen is machined into a

new geometry, resulting in a different stress state,

and pulled until the fracture. Cortese et al. (2016)

incorporated fracture strain into the damage accu-

mulation power law, which is micromechanically

questionable, as completely different damage accu-

mulation behaviour may occur in very close loca-

tions. The exponent may be greater than one in one

location and lower than one in the other (for a

notched cylindrical specimen, for example), there-

fore, the damage accumulation would be decelerat-

ing in one location while rapidly accelerating in the

other, which could be quite close to each other.

However, the most promising appears to be the

biaxial loading of a cruciform specimen (Gerke

et al. 2019; Brünig et al. 2022). When carefully

prepared, there is no problem with migrating critical

location or with machining between the two steps,

which may introduce undesirable effects.

As mentioned above, Young’s modulus degrada-

tion served to calibrate the following nonlinear

damage accumulation (Šebek et al. 2018)

D ¼ q1

Z

eD

0

dep
Cm þ ef

þ q2 1� q1ð Þ
Z

eD

0

ep
Cm þ ef

� �q2�1
dep

Cm þ ef
; ð25Þ

where q1 and q2 are material parameters (related to the

double damage curve), while q2 [ 0 must always be

satisfied, Cm is the additional material parameter

relating the micro and macro perspective of the

damage indication, eD is the accumulated equivalent

plastic strain foragiven loadingpath, ep is the accumu-

lated equivalent plastic strain (not to be confused with

its instantaneous variant) and ef is the fracture strain,
which may be dependent on the stress state measures.

The non-linear law degenerates into linear, when

either q1 ¼ 1 or q2 ¼ 1 and becomes polynomial, as

the law proposed by Xue (2007) when q1 ¼ 0. The

damage accumulation rate may be decelerating when

either 0\q1\1 and 0\q2\1 or q1 [ 1 and q2 [ 1,

or accelerating, when 0\q1\1 and q2 [ 1 or q1 [ 1

and 0\q2\1 (Šebek et al. 2018).

All simulations have been performed with the

conventional flow curve (Fig. 4) up to this point. From

now on, the multilinear flow curve of the matrix was

deployed in the following form (Šebek et al. 2018)

~r ¼ 1þ ep
� �

ry; ð26Þ

so that finally, the yield function was used in the

following form

f ¼ r� 1� Db
� �

1þ ep
� �

kry; ð27Þ

where b is the weakening exponent in the term, which

is responsible for the material softening within the

approach of continuum damage mechanics. All dam-

age-related parameters are summarized in Table 6,

while detailed information is given in Šebek et al.

(2018), including the experiments and calibration

procedure. Finally, the points for ductile fracture

criteria calibration were obtained through integration

with respect to non-linear damage accumulation,

which is summarized in Kubı́k et al. (2018) and is

Table 5 Deviations

between experiments and

simulations with all

plasticity models

considered (Kubı́k et al.

2018)

Specimen Von Mises (%) Kroon–Faleskog (%) Bai–Wierzbicki (%)

Tensile smooth cylindrical 0 0 1

Notched cylindrical with R13 3 3 2

Notched cylindrical with R6.5 7 6 4

Notched cylindrical with R4 4 3 1

Upsetting notched cylindrical 2 4 2

Tensile notched tubular 15 3 4

Torsional notched tubular 12 2 2

Sum 43 21 16
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not given here in detail, as it is not a primary goal of

this article.

3.4 Model of failure

Three ductile fracture criteria were selected so that a

broad range of possibilities could be examined. The first

was the extended Mohr–Coulomb criterion (Bai and

Wierzbicki 2010) using directly the Bai–Wierzbicki

yield criterion (the full version was therefore consid-

ered), then the model proposed on a different basis by

Lou et al. (2017), and finally the KHPS2 criterion

(Šebek et al. 2018). The minimum of constrained

nonlinear multivariable target function was found using

the created optimization problem structure that included

the initial guess of material parameters and their lower

and upper bounds, where appropriate.

3.4.1 Extended Mohr–Coulomb criterion

The following polynomial law inspired by the Hol-

lomon one may be adopted as

rf ¼ kKenf ; ð28Þ

where rf is the fracture stress, K is the strength

coefficient and n is the strain hardening exponent.

Then, the extended Mohr–Coulomb criterion will be

the one proposed by Bai and Wierzbicki (2010) and

slightly modified by Kubı́k et al. (2018) as

ef ¼
K

M2

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þM2
1

3

r

cos
1

3
arcsin n½ �

� �

þM1 gþ 1

3
sin

1

3
arcsin n½ �

� �� 

 !" #1
n

;

ð29Þ

where M1 and M2 are the material parameters. It is

slightly different from what was proposed by Bai and

Wierzbicki (2010), because it uses the yield correction

function exactly without any simplifications. More-

over, Eq. (29) is not formally correct, as the stress–

strain relationship is used in the multilinear form with

respect to Eq. (26) and not according to the form based

on Hollomon’s power law used for the conversion

from the stress-based space to the strain-based one.

Finally, the cut-off stress triaxiality is

gc ¼ � 1

M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þM2
1

3

r

cos
1

3
arcsin n½ �

� �

� 1

3
sin

1

3
arcsin n½ �

� �

: ð30Þ

The first constraint gc � ga\0, where ga is the

average stress triaxiality used for the calibration,

ensures that there is no negative fracture strain, which is

physically unreal and common to all criteria utilized

within this article. The second constraint M1 [ 0

ensures that the cut-off plane will be convex. The

strength coefficient may even be omitted (set equal to

unity) and the strain hardening exponent may be

considered as another material parameter for calibra-

tion along with M1 and M2, which gives more

flexibility to the criterion (Šebek et al. 2016, 2018).

Nevertheless, such an approach was not pursued in the

present article. It should be noted that it does not seem

to be of importance when two material parameters

remain to be calibrated.

Equation (28) was fitted to the conventional flow

curve, so the approach is consistent as all simulations for

calibration were done using that constitutive law, while

the fracture stress was considered an equivalent stress,

the yield correction function equal to one and the

fracture strain an equivalent plastic strain. Calibrated

material parameters are altogether given in Table 7. It

may be pointed out that even the simplest polynomial

law is often capable of a good fit. Therefore, more

complicated formulas (Fig. 1) are not necessary.

3.4.2 Lou–Huh criterion

The Lou–Huh criterion is the one proposed by Lou

et al. (2017) in the form that reads

ef ¼ K3

2
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where h i are the Macaulay brackets and K1; . . .;K5 are

the material parameters with a condition that

Table 6 Calibrated damage-related parameters (Šebek et al.,

2018)

q1 (–) q2 (–) Cm (–) b (–)

0.54 4.00 0.28 1.10
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K4 6¼ � 1

2
� 3

2
K5: ð32Þ

Furthermore, the cut-off stress triaxiality is

gc ¼ �K4

ffiffiffi

3
p

� tan � 1
3
arcsin n½ �

� �

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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3
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q � K5: ð33Þ

The correct calibration is enforced by the constraint

gc � ga\0 and the convexity of the cut-off plane,

discussed further, is reached by the condition K4 [ 0.

The constraint gc ¼ �0:5 at n ¼ �1 was posed in

order to obtain the cut-off in a reasonable range, as the

criterion is too flexible without that condition. It is a

similar approach to the one presented by Lou et al.

(2017) or Lou and Yoon (2017). Finally, all material

parameters are presented in Table 8.

3.4.3 KHPS2 criterion

The KHPS2 criterion proposed by Šebek et al. (2018)

has a hyperbolic shape, while the foci of rectangular

hyperbolas obey a quadratic dependency on the

normalized third invariant of deviatoric stress tensor.

The fracture strain reads

ef ¼
1

2

G4

g� gch i þ
G5

g� gch i

� �

� G6

g� gch i

� 

n2

þ 1

2

G4

g� gch i �
G5

g� gch i

� �

nþ G6

g� gch i ; ð34Þ

where G1; . . .;G6 are the material parameters. The

parabolic cut-off stress triaxiality is

gc ¼ � G3 þ
G1 � G3

2
� G2

� �

n2 � G1 � G3

2
n� G2:

ð35Þ

The first three material parameters, G1; . . .;G3, are

the additive inverses of the cut-off plane distance in

the stress triaxiality, as illustrated in Fig. 10. The last

three material parameters have to be positive,

G4; . . .;G6 [ 0, because those influence the vertices

of rectangular hyperbolas (highlighted by red circles

in Fig. 10). To properly calibrate the criterion, the

constraint gc � ga\0 has to be satisfied along the

convexity of the cut-off stress triaxiality required by

the condition posed on the signed curvature in the

Cartesian coordinates as

j ¼
d

2
gc

dn2

1þ dgc
dn

	 
2
� �3

2

¼ � G1 � 2G2 þ G3ð Þ

1þ G1 � 2G2 þ G3½ �nþ G1�G3

2

� �2
	 
3

2

[ 0:

ð36Þ

This can be solved more easily using the second

derivative of a function. Therefore, the cut-off is

convex if

d2gc
dn2

¼ � G1 � 2G2 þ G3ð Þ[ 0; ð37Þ

Fig. 10 Graphical representation of individual material param-

eters of the KHPS2 criterion

Table 7 Calibrated material parameters for the extended

Mohr–Coulomb criterion

K (MPa) n (–) M1 (–) M2 (MPa)

789.1 0.190 0.187 334.2

Table 8 Calibrated material parameters for the Lou–Huh

criterion

K1 (–) K2 (–) K3 (–) K4 (–) K5 (–)

1.965 0.855 0.261 1.579 –0.026

123
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which is consistent with Eq. (36). It was discussed

earlier that this cut-off shape is more natural when

expecting lower ductility for generalized shear

n ¼ 0ð Þ than for axisymmetric tension or compression.

Nevertheless, this is contrary to how it is used

sometimes (Gao et al. 2010; Lou and Yoon 2017).

All calibrated material parameters are summarized

in Table 9.

3.4.4 Comparison of calibrated ductile fracture

criteria

The fracture strains predicted by all calibrated ductile

fracture criteria are compared to the fracture strains

used for fitting (obtained by a hybrid experimental–

computational method) in Fig. 11. All criteria resulted

in similar prediction in general. It is surprising that the

extended Mohr–Coulomb criterion, which has only

two material parameters, performed comparable to

other criteria. However, the performance of the Lou–

Huh criterion with five material parameters could have

been slightly better if the negative cut-off stress

triaxiality had gone into the thousands, which was

omitted in the end as it was probably unrealistic. The

circles represent the tensile notched cylindrical spec-

imens, the squares represent the upsetting notched

cylindrical specimen, the hexagrams represent the

tensile notched tubular specimen and the diamonds

represent the torsional notched tubular specimen in

Figs. 11, 12, and 13.

The states of plane stress and cut-off stress triax-

ialities are compared in Fig. 12, where r1, r2 and r3
are the first (maximum), the second (middle) and the

third (minimum) principal stresses. The regions of

plane stress with the corresponding zero principal

stresses are highlighted in Fig. 12 too.

All calibrated ductile fracture criteria with respec-

tive calibration points are depicted in Fig. 13. It can be

seen that both the extended Mohr–Coulomb and Lou–

Huh criteria have more flat cut-off planes than the

KHPS2 criterion. Furthermore, the extended Mohr–

Coulomb criterion has a cut-off plane further in the

negative stress triaxiality.

4 Application

The material model developed above is applied to

small punch testing and three-point bending to reveal

predictability. These two experiments were not

included in the calibration procedure. The quantitative

and qualitative assessments were carried out.

4.1 Small punch testing

Three small punch test (Šebek et al. 2019) was

prepared mainly in accordance with the ASTM

standard (E3205 2020), although it was carried out

prior to the first publication of the standard. Testing

was carried out using the Zwick Z250 Allround-Line,

tCII, with the Zwick multiXtens extensometer and a

loading rate of 1 mm/min. The detailed drawing of the

apparatus with the specimen penetrated by a cemented

carbide ball is given in Fig. 14a–e. The responses are

given in Fig. 14f (Šebek et al. 2019).

The long cylindrical rod with a diameter of

8� 0:02 mm was machined with a surface roughness

of 0.4 lm. Discs of 0:6� 0:02 mm thickness were cut

from that rod by electrical discharge machining. Then,

grinding was applied using sandpapers with roughness

of P600, P1200 and P2000. Finally, polishing with 3

and 1 lmgrain-sized diamond paste was used until the

Table 9 Calibrated material parameters for the KHPS2

criterion

G1 (–) G2 (–) G3 (–) G4 (–) G5 (–) G6 (–)

0.952 1.315 0.502 0.329 0.204 0.403

Fig. 11 Comparison of the predicted and observed fracture

strains for all calibrated ductile fracture criteria

123

Multiaxial ductile fracture criteria coupled with non-quadratic non-prismatic yield surface 55



required thickness of 0:5� 0:005 mm was achieved

(Šebek et al. 2019).

The simulation time was 0.1 s, while the mass

scaling was introduced with the time increment of 1�
10�7 s to save some computational time of explicit

finite element analysis. The kinetic energy was

negligible when compared to the total one, so the

quasi-static loading was maintained. The specimen

was discretized with C3D8R elements having a size of

0.075 mm in the central zone (Fig. 15). The ball and

tools were meshed with R3D4 elements with the size

of 0.025 mm. The friction coefficient of 0.1 was used

after the numerical analysis of its role.

The experimental and computational responses

(Fig. 16) represent a quantitative measure. The Lou–

Huh criterion with the material parameters given in

Table 8 overpredicted the force response. Therefore, it

was recalibrated with a constraint gc ¼ �1 at n ¼ �1,

which was different from the one applied in Sect.

3.4.2. Unfortunately, it led to a severely overpredicted

force response. An even worse result was achieved

when the recalibration was performed again, but

without any constraints this time. This recalibration

yielded in an unreal cut-off stress triaxiality around

�8� 104 (this is why the constraints have to be

applied), but quite surprisingly in a fit better approx-

imately by 10% in total. Therefore, the material

parameters were finally kept as originally calibrated

(Table 8). Unlike the Lou–Huh criterion, the extended

Mohr–Coulomb and KHPS2 criteria underestimated

the maximum force. Finally, more compliant

responses were obtained from experiments, which

can be attributed to the stiffness of the measuring chain

(similarly as in the case of torsion in Fig. 9). No

contact sensor was used for torsion, while the exten-

someter was some distance from the specimen in the

Fig. 12 Comparison of the plane stress states and cut-off stress triaxialities with points used for fitting and calibrated fracture criteria
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Fig. 13 Calibrated ductile fracture criteria with the points used for fitting
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case of small punch testing. Therefore, it may be more

convenient to use a measuring rod under the specimen

as suggested by the ASTM standard (E3205 2020).

The fracture surfaces in Fig. 17 correspond to the

three specimens that were tested. The observations

were made after performing the tests with the use of

the field emission SEM ZEISS Ultra Plus equipped

with an auto-emission cathode (Šebek et al. 2019). All

computational fracture surfaces were obtained from

three different moments corresponding to the respec-

tive punch displacements. The extended Mohr–

Coulomb and KHPS2 criteria performed in a similar

manner. The Lou–Huh criterion predicted more radial

cracks and late cracking, which is especially apparent

for a punch displacement of 0.752 mm (Fig. 17). A

similar amount of elements was removed by all

criteria.

4.2 Three-point bending

The three-point bending was another test for the

validation of calibrated criteria. Zwick Z250 All-

round-Line, tCII, with the Zwick multiXtens exten-

someter and a loading rate of 2 mm/min were used.

The specimen had several randomly located notches,

which caused an asymmetrical deflection. The detailed

drawing is in Fig. 18 together with the force responses

of the two specimens. The punch had a radius of

5 mm. The supports had a span of 160 mm and the

Fig. 14 Small punch testing: a punch, b clamping die, c ball, d specimen, e receiving die, f force responses

Fig. 15 Finite element mesh layout for the small punch test

specimen

Fig. 16 Experimental and computational force responses for

small punch testing up to the largest displacement
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same radius as the punch. The specimens were placed

on the supports so that the largest hole was centred

(Kubı́k et al., 2019).

The first sensor arm was stationary and touched the

fixed test machine frame, while the second sensor arm

was placed on the edge of the surface notch closer to

the larger hole, as highlighted in Fig. 18. A bounce of

the sensor arm was observed on the force–displace-

ment responses (Fig. 18). It occurred immediately

after the rupture, when the energy was released and the

crack propagated. The bounce can be recognized by

the part of the response where the displacement is

decreasing, which would otherwise be irrational. It

should be noted that the bouncing of the sensor arm

was captured by the optical measurement described

later as well.

The crack initiated at the notch surface location I, as

depicted in Fig. 19. It propagated laterally and inward

along the path II until the first section failed. After

some additional loading, the secondary cracking

initiated at the notch surface location III and propa-

gated the same way as in the case of the first cracking.

The lateral rupture was finalized with shear lips

(Fig. 19).

Again, the C3D8R element was deployed with a

size of 0.075 mm in the regions of potential cracking.

These regions with mapped mesh were surrounded by

a free mesh with an element size of 0.2 mm, which

finally transformed into the structured coarse mesh of

2 mm element size in the remote areas (Fig. 20). The

element size of 0.075 mm was along the width

everywhere. The punch and supports were modelled

as rigid bodies with R3D4 elements. The punch had a

size of 0.075 mm and the supports had the same size

along the width, but 0.5 mm in the circumferential

direction. There were approximately two million

nodes in total. The simulation time was 0.1 s. There

was a sudden drop in force for this bi-failure test,

which could lead to some oscillations. In order to

avoid excessive vibrations, the time increment of 5�
10�8 s was enforced—that is twice lower than in other

simulations where the mass scaling was deployed, but

still providing a sufficient decrease of the computa-

tional time, which was several weeks using the

standard personal computer. The punch had a pre-

scribed velocity, contrary to other simulations, where

the displacements and rotations were exploited. It

should be noted that no symmetry was used, as in the

case of small punch testing.

The force responses are compared in Fig. 21. It is

clear that the extended Mohr–Coulomb criterion

predicted the failure of the first section slightly earlier,

but the onset of the second one accurately, which is

contrary to the Lou–Huh and KHPS2 criteria. How-

ever, all criteria predicted very slow secondary crack

growth, while it was rapid in experiments similar to

the first failure. Moreover, the shocks may be spotted

in the responses occurring after the first cracking,

when a sudden drop of force appeared. These are due

to the dynamic nature of the crack propagation and its

representation by the explicit finite element calcula-

tion algorithm. The sudden change from quasi-static

bFig. 17 Damage parameter fields from computations for all

ductile fracture criteria compared to the experimentally

obtained micrographs

Fig. 18 Detailed drawing of the specimen (left) and force responses of the three-point bending test (right)
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behaviour to the dynamic propagation is followed by

parasitic oscillations, which could be treated only at

the expense of much higher computational demands.

This with secondary cracking was better captured by

Hu et al. (2021) using the variational phase-field

model with coalescence dissipation. On the other

hand, Hu et al. (2021) did not predict shear lips.

The fracture surfaces from the experiment and

numerical simulations are shown in Fig. 22. All

criteria predicted a small slant fracture, but only in

the first stage of cracking. Furthermore, the compu-

tationally predicted shear lips were smaller than those

observed experimentally. Additionally, Lou–Huh and

KHPS2 criteria exhibited some unusual crack propa-

gation in the final stage, forming a shallow groove.

S
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r 
li

p
s

I

II

III

IV

Fig. 19 Fractured specimen after the three-point bending test (Kubı́k et al. 2019)

Support

Punch

SupportPunch

A
B

C

Fig. 20 Assembly (top) and detail (bottom) of the notched meshed block for the three-point bending test
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There is a significant difference compared to Kubı́k

et al. (2019), who used a simpler plasticity model—

Kroon–Faleskog yield criterion—with almost the

same fracture criteria (there are slight differences in

the formulation of the extended Mohr–Coulomb and

Lou–Huh criteria) and reported very pronounced shear

lips closer to reality and even in the second stage of

cracking. On the other hand, it seems to be a trade-off,

since the accuracy in force response was worse,

probably given by a less accurate plasticity model

(Kroon–Faleskog), which probably influenced the

appearance of fracture surfaces extensively, while

still not being that different fromBai–Wierzbicki yield

criterion (Table 5).

Finally, the digital image correlation was done to

evaluate the performance of the model. The test was

recorded with the mono digital camera Basler

acA2000-165um with a resolution of 2048 9 1088

px. The images were captured with a frame rate of 10

fps. A speckle pattern was created on the surface by

Fig. 21 Three-point bending force responses from experiments

and computations with all ductile fracture criteria

1.000.920.830.750.670.580.500.420.330.250.170.080.00

Lou–Huh

Experiment Extended Mohr–Coulomb

KHPS2

Fig. 22 Fracture surfaces from experiments compared to those obtained computationally with all ductile fracture criteria, where the

field of damage parameter is displayed
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spraying black on the white background so that the

displacements could be calculated with Mercury

RT 9 64 2.6. The grid spacing was 3 px, while the

size of 1 px was 0.058 mm. This validation concerns

mainly the plasticity as it was executed prior to the

fracture. The contours may look the same for all cases

in Fig. 23, but there are minor differences due to the

coupled approach, where damage and plasticity

mutually influence each other. There was a good

conformity between the experimental observation and

calculations for the instant corresponding to the

deflection of 4.5 mm (highlighted by the vertical

black dashed line in Fig. 21).

In addition to digital image correlation, the hori-

zontal strain component was plotted in Fig. 24 along

three paths highlighted in Fig. 20 to quantitatively

compare the simulations with the experiment. The

biggest difference was for path B (primary cracking),

while path C exhibited the best conformity with

experiment (Fig. 24) for the KHPS2 criterion. The

13.411.39.277.195.113.030.94–7.38 –5.30 –3.22 –1.14

Extended Mohr–CoulombExperiment

Lou–Huh KHPS2

Sensor arm

Punch Punch

PunchPunch

Fig. 23 Field of horizontal strain component in percent obtained using the digital image correlation from the experiment compared to

the numerical simulations with all ductile fracture criteria
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strains were computationally overpredicted because

the concentration was probably not sufficiently cap-

tured by the optical method. It could be due to a poor

adhesion of the pattern in the instant close to the metal

failure (large strains).

5 Conclusions

The present paper deals with the ductile fracture under

quasi-static monotonic loading and room temperature.

The aluminium alloy 2024-T351 from one heat (melt)

was studied. It was found that it is pressure and Lode

dependent for both plasticity and failure. Two Lode-

dependent plasticity yield criteria were calibrated, but

the one with pressure dependency resulted in better

responses when compared to the experiments. Then,

the non-linear damage accumulation law was cali-

brated by means of loading–unloading (semi-cyclic)

tests of smooth cylindrical specimens. Finally, three

ductile fracture criteria were calibrated to six exper-

iments that covered tensile notched cylindrical spec-

imens, tensile and torsional notched tubular specimens

and upsetting notched cylindrical specimen. The final

part of this work focuses on a successful application of

calibrated models to two distinct tests. It is composed

of small punch testing and three-point bending.

Computation of the first test revealed a good confor-

mity with the experiments regarding both quantitative

and qualitative measures. The latter of the two

validation tests was more complicated as it exhibited

a bi-failure mode of rupture. The force responses of

the three-point bending were in a very good corre-

spondence with the experimental observation, as well
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Fig. 24 Horizontal strain component in percent from simulation with the KHPS2 criterion for three normalized paths compared to the

result obtained using the digital image correlation from the experiment
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as the fracture surfaces and the strains evaluated by the

digital image correlation on the specimen surface prior

to the first cracking onset.
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Appendix 1: Characterization of the stress state

A geometrical representation may be realized within

the Cartesian coordinate system of principal stresses

not ordered according to the magnitude – the Haigh–

Westergaard space. The space cannot be formed with

principal stresses ordered according to the magnitude,

as r1 ¼ r2 ¼ 0 MPa and r3 ¼ 1 MPa are inadmissi-

ble, for example. Otherwise, only one sextant would

be needed in the deviatoric plane. The Cartesian

coordinate system is illustrated together with cylin-

drical r; hL; zð Þ and spherical q; hL;uð Þ coordinate

systems in Fig. 25, where z is the axial coordinate, q is

the radial coordinate of the spherical coordinate

system and u is the polar angle.

First, stress triaxiality ranging �1\g\1 is

defined as

g ¼ I1

3
ffiffiffiffiffiffiffi

3J2
p ; ð38Þ

where I1 is the first invariant of stress tensor and J2 is

the second invariant of deviatoric stress tensor. Then,

the polar angle ranging 0\u\p can be written as

Fig. 25 Geometrical representation of the stress state with

various variables in the Haigh–Westergaard space

Fig. 26 Graphical

representation of the

measures of the deviatoric

stress state
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u ¼ arccotan
3
ffiffiffi

2
p g

� �

: ð39Þ

The deviatoric or octahedral plane is any plane

perpendicular to the axis of the first and seventh

octants (perpendicular to the hydrostatic axis where

rI ¼ rII ¼ rIII). A special case of such a plane is the

rendulic or p plane, which above the perpendicularity

to the hydrostatic axis also contains the origin of the

Haigh–Westergaard space (Fig. 25). The normalized

third invariant of deviatoric stress tensor ranging

�1� n� 1 can be defined as

n ¼
ffiffiffiffiffi

27
p

2

J3

J
3
2

2

; ð40Þ

where J3 is the third invariant of deviatoric stress

tensor. Then, other deviatoric state variables may be

defined. The Lode angle ranging 0� hL � p=3 is

hL ¼ 1

3
arccos nð Þ: ð41Þ

Then, a similar measure is the azimuth angle

written as

hA ¼ hL �
p
6
; ð42Þ

ranging �p=6� hA � p=6. The azimuth angle can

be normalized as

h ¼ � 6

p
hA; ð43Þ

so the range is �1� h� 1. Then, the Lode param-

eter has the same range as the normalized Lode angle

�1� L� 1, with the following definition

L ¼
ffiffiffi

3
p

tan � p
6
h

	 


: ð44Þ

Finally, all deviatoric stress state measures are

graphically represented in Fig. 26 under the condition

of plane stress, where r is the stress.
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