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Abstract In a recent contribution, Kumar et al. (J
Mech Phys Solids 142:104027, 2020) have introduced
a comprehensive macroscopic phase-field theory for
the nucleation andpropagationof fracture in linear elas-
tic brittle materials under arbitrary quasistatic loading
conditions. The theory canbe viewed as a natural gener-
alization of the phase-field approximation of the varia-
tional theory of brittle fracture of Francfort andMarigo
(J Mech Phys Solids 46:1319–1342, 1998) to account
for the material strength at large. This is accomplished
by the addition of an external driving force—which
physically represents the macroscopic manifestation
of the presence of inherent microscopic defects in the
material—in the equation governing the evolution of
the phase field. Themain purpose of this paper is to con-
tinue providing validation results for the theory by con-
fronting its predictions with direct measurements from
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three representative types of experimentally common
yet technically challenging problems: (i) the indenta-
tion of glass plates with flat-ended cylindrical indenters
and the three-point bending of (ii) U-notched and (iii)
V-notched PMMA beams.
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1 Introduction

In the first part of a recent contribution, Kumar et al.
(2020) have argued that any formulation that aims at
providing a completemacroscopic theory of nucleation
and propagation of fracture in homogeneous elastic
brittle materials must account for three material inputs:

i. the elasticity of the material,
ii. its strength at large1, and
iii. its critical energy release rate.

1 By strength we refer to the general definition of strength
introduced by Kumar et al. (2020), which we recall here for the
reader’s convenience. When any piece of the elastic brittle mate-
rial of interest is subjected to a state of monotonically increas-
ing uniform but otherwise arbitrary stress, fracture will nucleate
from one or more of its inherent defects at a critical value of the
applied stress. The set of all such critical stresses defines a sur-
face in stress space. In terms of the Cauchy stress tensor σ , we
write F(σ ) = 0. This definition generalizes the various notions
of ‘tensile’ and ‘shear’ strength that were proposed on the heels
of the introduction of the stress tensor (Cauchy 1823)
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This is because—based on the myriad of experimen-
tal observations that have been amassed over the past
hundred years on numerous nominally brittle ceramics,
metals, and polymers alike—Kumar et al. (2020) posit
that nucleation of fracture

• in the bulk (under uniform states of stress) is gov-
erned by the strength of the material,

• from large2 pre-existing cracks is governed by the
Griffith competition between the elastic energy and
fracture energy,

• from boundary points, be them smooth or sharp,
and small pre-existing cracks is governed by the
interaction among the strength, the elastic energy,
and the fracture energy of the material,

while propagation of fracture

• is, akin to nucleation from large pre-existing cracks,
also governed by the Griffith competition between
the elastic and fracture energies.

The term homogeneous merits explicit clarification. It
refers, in the usual manner, to materials for which the
above three inputs i through i i i can be considered as
intrinsic properties and thus independent of the geome-
try of the structural problem at hand. This requires that
the underlying heterogeneities in the material, includ-
ing its inherent defects from which fracture may orig-
inate, must be “much smaller” than the characteristic
length scale of the structure and the scale of variation
of the applied loads. At present, the precise meaning of
the qualifier “much smaller” has been well established
only for the first of the above three material inputs, and
this just for linear elastic materials. For those, direct
calculations show that the elasticity of heterogeneous
materials wherein the length scale of the underlying

Footnote 1 Continued
by numerous pioneers of continuum mechanics including Lamé,
Clapeyron, Tresca, and Mohr; see, e.g., the historical account on
rupture of solids in the classic monograph by Love (Love 1906;
Section 83). We also note that it has long been recognized that
a Griffith criterion alone cannot predict nucleation in general.
Attempts to model nucleation of fracture near a notch front in
terms of a “tensile” strength at a critical distance from the front
combined with a critical energy release rate can be found, for
instance, in (Leguillon 2002).
2 “Large” refers to large relative to the characteristic size of
the underlying heterogeneities in the material under investiga-
tion. By the same token, “small” refers to sizes that are of the
same order or just moderately larger than the sizes of the hetero-
geneities.

heterogeneities is a mere 4 times smaller than the struc-
tural size can already be treated effectively as homoge-
neous; see, e.g., Drugan and Willis (1996). The situa-
tion for the strength and the critical energy release rate
is more delicate and not yet settled. Numerous efforts
have been and continue to be devoted to gaining insight
into the latter; see, e.g., the works of Gao and Rice
(1989), Bower and Ortiz (1991), Cox and Yang (2006),
Hossain et al. (2014), Hsueh and Bhattacharya (2016),
Schneider (2020), Michel and Suquet (2022). On the
other hand, much less work has been dedicated to pin-
pointing when the strength of a material may be con-
sidered as an intrinsic property, presumably because of
the technical difficulties of carrying out experiments
where the sizes of the inherent defects—both within
the bulk and on the boundary of any given piece of
material—are controlled with sufficient accuracy, and,
on the theoretical front, also because of the lack of
appropriate mathematical definitions of defects and of
their homogenization.

In the most basic setting, that of homogeneous
isotropic linear elastic brittle materials, the argument
of Kumar et al. (2020) entails precisely that any formu-
lation that aims at providing a complete macroscopic
theory of nucleation and propagation of fracture must
incorporate as material inputs the stored-energy func-
tion

W (E) = μ trE2 + λ

2
(trE)2 (1)

describing the elastic response of the material, the
strength surface

F(σ1, σ2, σ3) = 0 (2)

describing its strength under arbitrary uniform stress
conditions, and the critical energy release rate

Gc (3)

describing the growth of crackswithin it.Making use of
standard notation, the coefficientsλ andμ in expression
(1) stand for the first and second Lamé moduli of the
material. In expression (2), σ1, σ2, σ3 stand for the
eigenvalues of the Cauchy stress tensor σ , that is, the
principal Cauchy stresses. Because of the assumption
of material isotropy invoked here, the dependence on
σ enters only via σ1, σ2, σ3.

At this point, it is important to emphasize that stan-
dardized tests to measure the elastic material constants
λ and μ and the critical energy release rate Gc for a
given material of interest have long been available and
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can nowbe readily carried out with conventional equip-
ment; see, e.g., Chapter 6 in the monograph by Zehn-
der (2012). By contrast, it is extremely difficult to carry
out experiments that probe the entire space of uniform
stresses in order to measure the entire strength surface
(2) for a given material of interest. Indeed, most of the
experimental strength data available in the literature
is narrowly restricted to uniaxial tensile and compres-
sive strength when the state of uniform stress is of the
form σ = diag(σ1, 0, 0) with σ1 > 0 and σ1 < 0. To
a lesser extent, there is also strength data available for
themore general subset of plane-stress conditionswhen
σ = diag(σ1, σ2, 0), which includes as a special case
shear strength data when σ2 = −σ1; see, e.g., Chapter
10 in the book by Munz and Fett (1999) and references
therein. Another key difference between λ, μ, Gc, and
the strength surface (2) is that the latter is inherently
stochastic. This is because the strength at amacroscopic
material point depends on the nature of the underlying
defects from which fracture initiates, and this is known
to exhibit a stochastic spatial variation in any given
piece of material. This spatial variation is most acute
when comparing material points within the bulk of the
given piece with material points on its boundary, since
different fabrication processes or boundary treatments
(such as polishing or chemical treatments) can dras-
tically affect the nature of boundary defects vis-à-vis
those in the bulk.

In the latter part of their contribution, having pin-
pointed the above-enumerated requirements, Kumar
et al. (2020) introduced a comprehensive macroscopic
theory of nucleation and propagation of fracture—
regularized, of phase-field type—in linear elastic brit-
tle materials under arbitrary quasistatic loading condi-
tions that incorporates directly (1), (2), (3) as the mate-
rial inputs. The theory corresponds to a generalization
of the phase-field regularization (Bourdin et al. 2000)
of the variational theory of brittle fracture of Franc-
fort and Marigo (1998), which in turn corresponds to
the mathematical statement of Griffith’s fracture pos-
tulate in its general form of energy cost-benefit anal-
ysis (Griffith 1921). In the footstep of Kumar et al.
(2018a), the generalization amounts: (i) to considering
the Euler–Lagrange equations of the standard phase-
field regularization—and not the variational principle
itself—as the primal model and (ii) to adding an exter-
nal driving force in the Euler–Lagrange equation gov-
erning the evolution of the phase field to describe the

macroscopicmanifestation of the presence of the inher-
ent defects in the material, that is, its strength at large.

As a first validation step, Kumar et al. (2020) also
provided in their paper direct comparisons between
predictions obtained from the theory and experimen-
tal results on a wide range of materials (titania,
graphite, polyurethane, PMMA, and alumina) under
loading conditions that spanned the full range of frac-
ture nucleation settings (within the bulk, from large
pre-existing cracks, boundary points, and small pre-
existing cracks).

The main purpose of this paper is to continue pro-
viding validation results for the theory of Kumar et al.
(2020). We do so by confronting its predictions with
representative experimental results for the nucleation
and propagation of fracture in indentation and notch
problems. We focus in particular on the indentation of
glass plates with flat-ended cylindrical indenters and
the three-point bending of U-notched and V-notched
PMMA beams. The rationale for our choice is twofold.
On the one hand, these types of problems are very com-
mon in the experimental literature. On the other hand,
their analysis is technically challenging because of the
singular or high-gradient elastic fields that they feature
prior to the nucleation of fracture. We begin in Sects. 2
and 3 by summarizing the general fracture theory of
Kumar et al. (2020) and its specialization to the proto-
typical case of Drucker–Prager strength surfaces. We
then present its application in Sects. 4, 5, and 6 to the
indentation, U-notch, and V-notch problems, respec-
tively.We close by recording some concluding remarks
in Sect. 7.

2 The revisited phase-field approach to brittle
fracture

Consider a structure made of an isotropic linear elas-
tic brittle material, with stored-energy function (1),
strength surface (2), and critical energy release rate (3),
that occupies an open bounded domain � ⊂ R

3, with
boundary ∂� and unit outward normal N, in its unde-
formed and stress-free configuration at time t = 0. At
a later time t ∈ (0, T ], due to an externally applied
displacement u(X, t) on a part ∂�D of the bound-
ary and a traction t(X, t) on the complementary part
∂�N = ∂� \ ∂�D, the position vector X of a material
point moves to a new position specified by

x = X + u(X, t)
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in terms of the displacement field u. We write the
infinitesimal strain tensor as

E(u) = 1

2
(∇u + ∇uT ).

In response to the same externally applied mechanical
stimuli that result in the above-described deformation,
cracks can also nucleate and propagate in the structure.
Those are described in a regularized fashion by the
order parameter or phase field

v = v(X, t)

taking values in [0, 1]. Precisely, v = 1 identifies
regions of the sound material, whereas, in the limit
as ε ↘ 0, 0 ≤ v < 1 identifies regions of the material
that have been fractured.

According to the theory of Kumar et al. (2020), the
displacement field uk(X) = u(X, tk) and phase field
vk(X) = v(X, tk) at any material point X ∈ � and
discrete time tk ∈ {0 = t0, t1, . . . , tm, tm+1, . . . , tM =
T } are determined by the system of coupled partial
differential equations (PDEs)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Div

[

v2k
∂W

∂E
(E(uk))

]

= 0, X ∈ �,

uk = u(X, tk), X ∈ ∂�D,
[

v2k
∂W

∂E
(E(uk))

]

N = t(X, tk), X ∈ ∂�N

(4)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε Gc�vk = 8

3
vkW (E(uk)) − 4

3
ce(X, tk) − Gc

2ε
,

if vk(X) < vk−1(X), X ∈ �

ε Gc�vk ≥ 8

3
vkW (E(uk)) − 4

3
ce(X, tk) − Gc

2ε
,

if vk(X) = 1 or vk(X) = vk−1(X) > 0, X ∈ �

vk(X) = 0, if vk−1(X) = 0, X ∈ �

∇vk · N = 0, X ∈ ∂�

(5)

with u(X, 0) ≡ 0 and v(X, 0) ≡ 1, where ∇uk(X) =
∇u(X, tk), ∇vk(X) = ∇v(X, tk), �vk(X) = �v(X,

tk), and where ε > 0 is a regularization or localization
length and ce(X, t) is a driving force whose specific
constitutive prescription depends on the particular form
of the strength surface (2). In the next section, we spell
out a specific form for ce(X, t) for the prototypical case
of Drucker–Prager strength surfaces.

Remark 1 The localization length ε in equations (4)–
(5) is just a regularization parameter that is void of
any further physical meaning. In practice, it should be
selected to be smaller than the smallest characteristic

length scale in the structural problem at hand. Numeri-
cal evidence of the independence of the solution of (4)–
(5) on ε was reported in Section 4.3 in (Kumar et al.
2020) for problems involving nucleation in the bulk
under states of uniform stress, nucleation from large
and small pre-existing cracks, as well as for problems
involving propagation of cracks.As anAppendix to this
paper, for completeness, we report further results illus-
trating this independence within the context of the spe-
cific boundary-value problems analyzed in this work.

Remark 2 The inequalities in (5) embody the classical
assumption also adopted here that fracture is a purely
dissipative and irreversible process. As elaborated in
Section 2 of Kumar et al. (2018a), however, a general-
ization that would account for the possibility of heal-
ing is straightforward; see also Francfort et al. (2019).
From an implementation point of view, we make use
of a penalty method to enforce the irreversibility of
the phase field v(X, t); see Remark 4 in Kumar et al.
(2020).

Remark 3 On their own, Eqs. (4) and (5) are second-
order elliptic PDEs for the displacement field u and
the phase field v. Accordingly, their numerical solu-
tion is amenable to a standard finite-element staggered
scheme in which (4) and (5) are discretized with finite
elements and solved iteratively one after the other at
every time step tk until convergence is reached. All
the simulations presented in this paper are generated
with such a scheme. A FEniCS implementation of the
scheme3 is available in GitHub.

3 The external driving force ce for
Drucker–Prager strength surfaces

In practice, as alluded to above, the strength surface (2)
of a given material of interest is only partly known. In
fact, often times, only its uniaxial tensile and compres-
sive strengths are freely available in the literature. To
deal with this lack of experimental results, one usually
resorts to the use of a model that can fit and extrap-
olate the available strength data to the entire stress
space. In all the simulations that we present below,
among a plurality of possibilities—see, e.g., Rankine
(1857), Drucker and Prager (1952), Bresler and Pister

3 https://github.com/adityakr42/FEniCS_Fracture_Kumar
_Lopez-Pamies.
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(1958), Willam and Warnke (1975), and Christensen
et al. (2002) to name a few—we make use of Drucker–
Prager strength surfaces:

F = √
J2 + γ1 I1 + γ0 = 0. (6)

In this expression,

I1 = tr σ = σ1 + σ2 + σ3,

J2 = 1

2
tr σ 2

D = 1

6

(
(σ1 − σ2)

2 + (σ1 − σ3)
2+

(σ2 − σ3)
2
)

, (7)

where σ D = σ − 1/3 (tr σ ) I, and γ0 and γ1 are two
material constants. In the sequel, we shall calibrate
these constants with the uniaxial tensile and compres-
sive strengths, say σts and σcs, of the given material.
They then specialize to

γ0 = − 2σcsσts√
3(σcs + σts)

and

γ1 = σcs − σts√
3(σcs + σts)

.

Remark 4 The two-material-parameter strength sur-
face (6), originally introduced by Drucker and Prager
(1952) to model the yielding of soils, is arguably the
simplest model that is capable of describing reasonably
well the strength of many nominally brittle materials;
see Chapter 10 in Munz and Fett (1999) and Section 2
in Kumar et al. (2020), for instance.

Having settled on the choice of Drucker–Prager
strength surfaces (6), we follow the blueprint provided
byKumar et al. (2020) for constructing external driving
forces ce and set

ce(X, t) =ĉe(I1, J2; ε)

=βε
2

√
J2 + βε

1 I1 + βε
0+

⎛

⎝1 −
√

I 21
I1

⎞

⎠

(
J2
2μ

+ I 21
6(3λ + 2μ)

)

, (8)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βε
0 = δε 3Gc

8ε

βε
1 = −

(
(1 + δε)(σcs − σts)

2σcsσts

)
3Gc

8ε
+

σts

6(3λ + 2μ)
+ σts

6μ

βε
2 = −

(√
3(1 + δε)(σcs + σts)

2σcsσts

)
3Gc

8ε
+

σts

2
√
3(3λ + 2μ)

+ σts

2
√
3μ

,

I1 and J2 stand for the invariants (7) of the Cauchy
stress

σ (X, t) = v2
∂W

∂E
(E(u))

and, hence, read as

I1 = (3λ + 2μ)v2trE(u) and J2 = 2μ2v4trE2
D(u)

with ED(u) = E(u) − 1/3 (trE(u)) I in terms of the
displacement field u and phase field v, and where δε

is a unitless ε-dependent coefficient whose calibration
needs to be carried out numerically. Precisely, as elab-
orated in Subsection 4.3.2 in Kumar et al. (2020), for
a given set of material constants λ, μ, Gc, σts, σcs,
and a given finite localization length ε, the value of
δε is determined by considering any boundary-value
problem of choice for which the nucleation from a
large pre-existing crack can be determined exactly—
according to Griffith’s sharp theory of brittle fracture
for linear elastic materials (LEFM)—and then by hav-
ing the phase-field theory (4)–(5) with external driving
force (8) match that exact solution thereby determining
δε. The calibration of the parameter δε is what allows
the governing equations (4)-(5) to marry the concept of
strength in the bulk with the concept of Griffith energy
competition at crack singularities.

Remark 5 As required by the construction process laid
out by Kumar et al. (2020), the external driving force
(8) is asymptotically identical in the limit as ε ↘ 0
to that utilized by Kumar et al. (2020) in their com-
parisons with experiments, but differs from it in that
it has an additional correction of O(ε0): its last term

(1 −
√

I 21 /I1)(J2/2μ + I 21 /6(3λ + 2μ)). This addi-
tional correction is non-zero only when I1 < 0 and we
include it here in order to have an improved descrip-
tion of the compressive part (when I1 < 0) of the given
material strength surface (6) for a larger range of finite
values of the localization length ε.
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88 A. Kumar et al.

Fig. 1 The strength surfaces in the (σ1, σ2)-space for stress
states with σ3 = 0 for borosilicate glass (see Sect. 4 below)
and localization length ε = 26 μm, as predicted by the exter-
nal driving force (8) and the external driving force introduced in
Kumar et al. (2020). For direct comparison, the Drucker–Prager
strength surface (6) to which both results converge to in the limit
as ε ↘ 0 is also included

For direct comparison, Fig. 1 shows the cross sec-
tion in the (σ1, σ2)-space for stress states with σ3 = 0
of the strength surface predicted by the external driv-
ing force (8) and that predicted by the external driving
force introduced in Kumar et al. (2020). The results
are shown for the borosilicate glass studied in the next
section for localization length ε = 26 μm. The fig-
ure includes the Drucker–Prager strength surface (6) to
which both results converge to in the limit as ε ↘ 0. It is
plain that the external driving force (8) indeed produces
a better approximation of that Drucker–Prager strength
surface for finite values of the localization length ε.

4 Application to the indentation of glass plates
with flat-ended cylindrical indenters

In this section, we confront the predictions generated
by the fracture phase-field theory (4)–(5) with exter-
nal driving force (8) to the experiments of Moug-
inot and Maugis (1985) for the indentation of borosil-
icate glass plates with flat-ended steel cylindrical
indenters. As schematically depicted in Fig. 2a, these
authors indented 50mm × 50mm × 25.4mm glass
plates with flat punches of six different radii, A =

θ

A

(a)

(b)

Fig. 2 Schematics a of the initial specimen geometry and
applied boundary conditions for the indentation experiments car-
ried out by Mouginot and Maugis (1985) on borosilicate glass
and b of the geometry of the cracks that they observed at large
enough applied displacements u

0.05, 0.10, 0.25, 0.50, 1.00, and 2.50 mm. The spec-
imens were indented at the fixed displacement rate of
u̇ = 0.83 μm/s. Prior to their indentation, the surfaces
of the specimens were abraded with different grades of
abrasive paper or diamond paste. The most complete
set of results that were reported, and hence the one for
which we carry out the comparisons here, pertains to
specimens that were abraded with a 1000 grit silicon
carbide paper (labeled SiC 1000).

Before proceeding with the comparisons per se, it is
pertinent to mention that since the pioneering experi-
ments of Hertz (1882) a multitude of investigators have
studied how fracture nucleates and propagates in many
nominally brittle ceramics, metals, and polymers when
indented; see, e.g., the reviews by Lawn (1998), Guin
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and Gueguen (2019), and references therein. Yet, it
was just very recently that the variational phase-field
approachwas used for the first time to study this kind of
experimentally pervasive problems (Strobl and Seelig
2020). In a nutshell, Strobl and Seelig (2020) first
demonstrated that the variational phase-field model in
its classical form fails to generate results that are con-
sistent with experimental observations. As elaborated
at length in Section 3 of Kumar et al. (2020), the rea-
son for this drawback lies in the fact that the variational
phase-field approach to fracture does not account for
one of the required three basic ingredients to model
fracture nucleation: the strength surface of the mate-
rial. They then proposed a modified phase-field model
where de facto only certain “tensile” part W+(E) of
the elastic energyW (E) is involved in the fracture pro-
cess and where the localization length ε is imparted
physical meaning by tying up its value to the uniaxial
tensile strength of the material at hand. This modified
approach led to much improved predictions, although
not without deficiencies, chief among these being the
inability of the model to deal with arbitrary values of
uniaxial tensile strength. As also elaborated at length
in Section 3 of Kumar et al. (2020), the reason for this
shortcoming lies in the fact that modifications of the
variational phase-field approach to fracture based on
imparting physical meaning to the localization length
ε are incomplete because their purely energetic char-
acter render them incapable of describing strength sur-
faces at large. By construction, the revisited phase-field
formulation (4)–(5) is free of such shortcomings.

4.1 Calibration of the material inputs entering the
theory

Elasticity Based on their own ultrasound measure-
ments, Mouginot and Maugis (1985) determined the
Young’s modulus and Poisson’s ratio of their borosili-
cate glass to be E = 80 GPa and ν = 0.22. We hence
set the Lamé constants to

λ = Eν

(1 + ν)(1 − 2ν)
= 26GPa

and

μ = E

2(1 + ν)
= 33GPa (9)

in our simulations.
StrengthNodirect experimental data on the borosilicate
glass strength was provided by Mouginot and Maugis

Fig. 3 Schematic of the boundary layer Bε wherein the glass
strength is taken to be smaller than that in the bulk because of
the presence of larger defects

(1985). However, they did estimate that the roughness
of the surfaces of the specimens, due to their abrading
treatment, was of a few microns. This size of bound-
ary defects is much larger than the typical nanometer
size of the inherent defects in the bulk of glass. The
strength of the glass on the boundary of the specimens
is thus expected to be significantly smaller than that of
the glass in the bulk of the same specimens. In our sim-
ulations, accordingly, we take the strength of the glass
to be characterized by the piecewise-constant Drucker–
Prager strength surface

F = √
J2 + σcs − σts√

3(σcs + σts)
I1

− 2σcsσts√
3(σcs + σts)

= 0

(10)

with
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
σts = 60MPa
σcs = 1000MPa

, X ∈ Bε

{
σts = 150MPa
σcs = 1000MPa

, X ∈ � \ Bε

, (11)

where Bε is the 2ε-thick boundary layer depicted in
Fig. 3, and where the values of the uniaxial tensile
σts and compressive σcs strengths are estimates from
Fig. 7.29 in the review chapter by Guin and Gueguen
(2019) on mechanical properties of glass, where the
macroscopic strength of glass is related to the size of
its microscopic defects.

Remark 6 The choice of 2ε as the thickness of the
boundary layer Bε is dictated by the fact that smaller
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thicknesses would go undetected by the ε-regularized
theory (4)–(5). On the other hand, numerical experi-
ments show that larger thicknesses do not significantly
alter when or how cracks nucleate.

Remark 7 For definiteness, we do not consider here the
full stochasticity of the strength of the glass.Within the
proposed theory, however, it is a simple matter to do so
by allowing the uniaxial tensile σts and compressive
σcs strengths in the strength surface (10) to take on spa-
tially random values about some averages throughout
the specimens.

Critical energy release rate Mouginot and Maugis
(1985) did not carry out independent experiments to
measure the critical energy release rate of their borosil-
icate glass. However, they did estimate it to be within
the range 5N/m ≤ Gc ≤ 10N/m directly from their
indentation experiments. In our simulations we use the
value

Gc = 9N/m. (12)

In our simulations, furthermore,we idealize the steel
punch as rigid. Also, exploiting symmetry and the fact
that the indenter radii A = 0.05, 0.10, 0.25, 0.50, 1.00,
and 2.50 mm are much smaller than the dimensions
50mm × 50mm × 25.4mm of the glass specimens,
we idealize the problem to be axisymmetric. Recalling
from Section 4.3 in Kumar et al. (2020) that the actual
size of the regularized cracks is given by the relation
ε� = ε/

√
1 + δε and that the coefficient δε depends on

the strengthmaterial constants (11), we set the localiza-
tion length to the sufficiently small piecewise-constant
value

ε =
⎧
⎨

⎩

26μm, X ∈ Bε

7.5μm, X ∈ � \ Bε

(13)

so that ε� is one and the same in the entirety of the speci-
mens. Indeed, for this localization length and the above-
specifiedmaterial parameters, the calibrated coefficient
δε = 14.2 in the boundary layer Bε and δε = 2.62 in
the rest of the domain � \ Bε so that ε� ≈ 6 μm in
the entirety of �. We carry out the simulations in an
unstructured mesh of size h = 1.5 μm ≈ ε�/4 around
the indenter where the cracks are expected to nucleate
and propagate.

4.2 Theory vs. experiments

We are now in a position to deploy the theory (4)–
(5) with external driving force (8), specialized to the
stored-energy function (1) with elastic material con-
stants (9), Drucker–Prager strength surface (10) with
piecewise-constant uniaxial tensile σts and compres-
sive σcs strengths (11), and critical energy release rate
(12), to simulate the indentation experiments of Moug-
inot and Maugis (1985).

Consistent with the experimental observations
schematically depicted in Fig. 2b, irrespective of the
indenter radius A, all the simulations exhibit the fol-
lowing two successive events:

• fracture nucleation occurs roughly in the form of a
ring crack of depth H at a distance R > A away
from the centerline of the indenter at some critical
value ucr of the applied displacement u,

• subsequently, the crack proceeds its propagation,
first rapidly and later on significantly more slowly,
at a roughly constant angle θ with respect to the
surface of the specimen, forming thus a cone crack.

Figure 4 shows representative snapshots of the phase
field v predicted by the theory for the case of the inden-
ter with radius A = 1.00 mm that illustrate the above-
outlined two events. Here, it is important to remark
that the nucleation of fracture occurs in a region where
the stress field is not singular but sharply shifts from
a simple shear stress state at the surface of the speci-
men to a fully triaxial stress state in its adjacent bulk;
for contours of the stress field prior to fracture, see for
instance Chapter 5 in themonograph by Fischer-Cripps
(2007). Nucleation is thus controlled by the strength
surface (10) in the boundary layer Bε of the speci-
men, in particular, the neighborhood around the shear
strength (where σ2 = −σ1 and σ3 = 0) in that sur-
face, and not by the uniaxial tensile strength σts of
the material as often incorrectly suggested in the litera-
ture. Once nucleated, of course, the propagation of the
crack is governed by the Griffith competition between
the bulk elastic energy in the glass and its surface frac-
ture energy.

In addition to the foregoing qualitative description
of the fracture process, Mouginot and Maugis (1985)
reported measurements of the radial locations R where
the cracks nucleated, the critical values Pcr of the
force P exerted by the indenter at which they first
observed a fracture event, the angle θ of the eventual
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Fig. 4 Contour plots of the phase field v predicted by the theory
in the specimen indented with the indenter of radius A = 1.00
mm at five applied displacements u. Part a shows the instance
at which fracture nucleates, while parts b–e show the ensuing
propagation of the nucleated ring crack into a cone crack

(a)

(b)

Fig. 5 Comparison between the predictions of the phase-field
theory and the experiments of Mouginot and Maugis (1985) on
borosilicate glass. a The normalized critical displacement ucr/A
and b the critical force Pcr at which the ring crack nucleates as
functions of the radius A of the indenter. Solid lines interpolating
between the phase-field results are included to aid visualization
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(b)

(a)

Fig. 6 Comparison between the predictions of the phase-field
theory and the experiments of Mouginot and Maugis (1985) on
borosilicate glass.aThe normalized radial location R/A atwhich
the ring crack nucleates and b its depth H as functions of the
radius A of the indenter

cone cracks, as well as of their growing diameter D as
a function of the indenter force P . Figures 5, 6, and
7 present comparisons between the predictions gener-
ated by the phase-field theory and such measurements.
Since Mouginot and Maugis (1985) did not include
results for the critical displacement ucr or the depth

(a)

(b)

Fig. 7 Comparison between the predictions of the phase-field
theory and the experiments of Mouginot and Maugis (1985) on
borosilicate glass. a The growing diameter D of the cone crack
as a function of the force P exerted by the indenter. b The angle
θ of the cone crack as a function of the radius A of the indenter;
the experimental scatter in θ is not included because it was not
reported by Mouginot and Maugis (1985)

H of the ring cracks, Figs. 5a and 6b only present
the predictions from the theory. Also, since Mouginot
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and Maugis (1985) did not make precise what was the
fracture event that they first observed, for definiteness,
the theoretical predictions for Pcr that are plotted in
Fig. 5b correspond to the values of the indenter force
P at which the ring crack nucleates; it is likely that this
event was indeed their first observation since the crack
is several microns in length by then.

0It is plain from these comparisons that the theory
is in good quantitative agreement with all the exper-
imental results. It should be noted, however, that the
critical force Pcr = 0.03 kN measured from the exper-
iments with the smallest indenter of radius A = 0.05
mm is likely too large for the steel punch not to have
yielded (since Pcr/π A2 = 3.82 GPa) and deformed
substantially, as opposed to have remained undeformed
as assumed in the simulations. It is also noteworthy
that the experimental data features quite a bit of scat-
ter, especially for the quantities R/A and Pcr associ-
ated with the nucleation. Presumably, this is because of
the stochasticity introduced by the abrasion treatment
of the surface of the specimens. Again, as noted above,
such a stochasticity can be incorporated in the theory by
having the strength material constants (here, σts and
σcs) in the strength surface (10) to take on spatially
random values about some average. We do not include
examples of such simulations here but, instead, refer the
interested reader to Kumar and Lopez-Pamies (2021)
for examples in the context of nucleation of fracture in
natural rubber where strength stochasticity plays a key
role.

5 Application to the three-point bending of
U-notched PMMA beams

Next, we confront the theory to the experiments of
Gómez et al. (2005) for the three-point bending of U-
notched PMMA beams. Figure 8 shows a schematic of
the initial geometry of the specimens and the applied
boundary conditions. Results were reported for spec-
imens with U notches of two depths, approximately
A = 5 and 14 mm, and seven radii, approximately
R = 0.18, 0.34, 0.52, 0.94, 1.47, 1.97, and 3.98 mm.
The specimenswere subjected to a prescribed displace-
ment u, which was applied at the fixed rate of u̇ = 0.5
μm/s; the corresponding force is denoted by P . With
the objective ofminimizing deviations from linear elas-
tic brittle behavior, all the experiments were carried out
at the low temperature of −60 ◦C.

Fig. 8 Schematic of the initial specimen geometry and applied
boundary conditions for the three-point bending experiments car-
ried out by Gómez et al. (2005) on U-notched PMMA beams at
−60 ◦C

5.1 Calibration of the material inputs entering the
theory

Elasticity Based on their own uniaxial tension tests on
carefully machined cylindrical samples, Gómez et al.
(2005) determined the Young’s modulus and Poisson’s
ratio of their PMMAat−60 ◦C to be roughly E = 5.05
GPa and ν = 0.40. Therefore, the Lamé constants in
our simulations are set to

λ = Eν

(1 + ν)(1 − 2ν)
= 7.21GPa

and

μ = E

2(1 + ν)
= 1.80GPa. (14)

Strength From the same uniaxial tension tests used to
determine the elastic constants, Gómez et al. (2005)
also estimated the uniaxial tensile strength to be
roughly σts = 128MPa. In our simulations, accord-
ingly, we take the strength of the PMMA at −60 ◦C to
be characterized by the Drucker–Prager strength sur-
face (10) with

{
σts = 128MPa
σcs = 256MPa

, (15)

where the compressive strength σcs is set to be twice
as large as the tensile strength σts in accordance with
typical values at room temperature found elsewhere in
the literature.

123



94 A. Kumar et al.

Remark 8 Gómez et al. (2005) stated that theUnotches
were carefully machined in their specimens. We there-
fore assume here that the sizes of the inherent defects
in the bulk and on the boundary of the specimens are
not fundamentally different and hence that the strength
surface (10)with (15) applies to the entirety of the spec-
imens. Much like in the preceding comparisons with
glass, we also adopt in our simulations the idealization
that the strength material constants (15) are determin-
istic as opposed to stochastic.

Critical energy release rate From their own com-
pact and single-edge-notch tension tests, Gómez et al.
(2005) measured the critical energy release rate of their
PMMA at −60 ◦C to be roughly

Gc = 480N/m. (16)

We use this value in our simulations.
We make use of the sufficiently small localization

length ε = 12.5 μm in all our simulations. For such
a localization length and the above-specified mate-
rial parameters, the calibrated coefficient δε in the
external driving force (8) takes the value δε = 2.4.
The size of the regularized cracks is hence given by
ε� = ε/

√
1 + δε ≈ 6.9 μm. We carry out the simula-

tions under plane-strain conditions in an unstructured
mesh of size h = 3μm≈ ε�/5 around and ahead of the
U-notch, where the cracks are expected to nucleate and
propagate. Although the elastic fields are fully triaxial
(neither plane-strain nor plane-stress), the plane-strain
idealization is justified by 3D simulations that show
that the results do not differ significantly from those of
plane strain.

5.2 Theory vs. experiments

All the specimens tested byGómez et al. (2005) showed
a linear force-displacement (P versus u) response fol-
lowed by complete rupture. Figure 9 compares the pre-
dictions generated by the phase-field theory with their
experimental data for the maximum force Pcr reached
in those force-displacement responses, which presum-
ably indicate the points at which fracture nucleated.
The results are shown as a function of the notch radius
R for the two notch depths A = 5 and 14 mm that they
considered.

Two comments are in order. First, the theory is
in good quantitative agreement with the experimental
results. Second, as expected, the results distinctly show

Fig. 9 Comparison between the predictions of the phase-field
theory and the experiments of Gómez et al. (2005) on PMMA at
−60 ◦C for the critical force Pcr at which fracture nucleates as
a function of the notch radius R. Results are shown for the two
notch depths A = 5 and 14 mm

that fracture nucleation transitions from being gov-
erned by the Griffith competition between bulk elastic
energy and surface fracture energy to being governed
by the strength of the material as the notch radius R
increases.

Unfortunately, Gómez et al. (2005) did not include
results on the location of fracture nucleation or details
of its subsequent propagation. According to the the-
ory, irrespective of the notch radius and depth, fracture
nucleation occurs at the tip of the notch and propagates
rapidly (more so the larger the notch radius) along the
center plane of the specimens severing them into two
halves. For completeness, Fig. 10 shows representative
snapshots of the phase field v for the specimen with
notch radius R = 0.94 mm and notch depth A = 5 mm
at two values of the applied displacement u. Figure 10a
shows the instance right after fracture nucleation, while
Fig. 10b shows the instance right before the specimen
is severed into two pieces.

Remark 9 Here, it is important to note that, prior to
nucleation of fracture, the elastic fields ahead of the
notches in U-notched (as well as in V-notched) beams
under three-point bending are fully triaxial with all
principal stresses being positive (σ1, σ2, σ3 > 0). This
implies that it is the part of the strength surface that
lies within the first octant in the space of principal

123



The revisited phase-field approach to brittle fracture 95

Fig. 10 Contour plots of the phase field v predicted by the theory
in theU-notched beamwith notch radius R = 0.94mmandnotch
depth A = 5 mm at two applied displacements u; the plots are
shown only in a region near the notch. Part a shows the instance
at which fracture nucleates on the tip of the notch, while part b
shows the instance at which the specimen is all but severed into
two pieces

stresses—and not solely the uniaxial tensile strength
σts as often assumed in the literature—the part of the
strength that controls nucleation of fracture. By the
same token, nucleation of fracture need not necessar-
ily occur at the notch tip. For instance, for materials
with weak hydrostatic strength, fracture may nucle-
ate within the bulk ahead of the notch tip; see, e.g.,
the experiments of Aranda-Ruiz et al. (2020) on poly-
carbonate. According to the Drucker–Prager strength
surface (10) with (15) assumed here for PMMA at

Fig. 11 Schematic of the initial specimen geometry and applied
boundary conditions for the three-point bending experiments car-
ried out by Dunn et al. (1997) on V-notched PMMA beams

−60 ◦C—for which the hydrostatic strength σhs =
2σcsσts/3(σcs − σts) = 171 MPa is significantly
larger than the uniaxial tensile strength σts = 128
MPa—the nucleation of fracture always occurs at the
notch tip.

6 Application to the three-point bending of
V-notched PMMA beams

Finally, we turn to confronting the theory to the experi-
ments of Dunn et al. (1997) for the three-point bending
of V-notched PMMA beams. A schematic of the initial
geometry of the specimens and the applied boundary
conditions used by these authors is shown in Fig. 11.
They reported results for specimens with V notches
of four depths, A = 1.78, 3.56, 5.33, and 7.11 mm,
and three angles, γ = 60◦, 90◦, and 120◦. The spec-
imens were subjected to a prescribed displacement u
that was applied at the fixed rate of u̇ = 100 μm/s;
the corresponding force is denoted by P . In contrast
to the experiments of Gómez et al. (2005) discussed in
the preceding section, Dunn et al. (1997) performed all
their experiments at room temperature.

6.1 Calibration of the material inputs entering the
theory

Elasticity From their own uniaxial tension tests, Dunn
et al. (1997) determined the Young’s modulus of their
PMMA to be E = 2.3GPa.While they did notmeasure
the Poisson’s ratio, they referred to a private commu-
nication from Ledbetter (1996) to assert that ν = 0.36.
Accordingly, in our simulations, we make use of the
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Lamé constants

λ = Eν

(1 + ν)(1 − 2ν)
= 2.17GPa

and

μ = E

2(1 + ν)
= 0.85GPa (17)

Strength In order to measure the uniaxial tensile
strength of their PMMA, Dunn et al. (1997) also car-
ried out three-point bending of beams without notches.
Those indicated that σts = 124 ± 20 MPa. They did
not report any other strength data. In our simulations,
we take the strength of their PMMA to be characterized
by the Drucker–Prager strength surface (10) with
{

σts = 124MPa
σcs = 248MPa

, (18)

where, for the same reasons invoked in the preceding
section, we have set the uniaxial compressive strength
σcs to be twice as large as the tensile strength σts.

Remark 10 Dunn et al. (1997) mentioned that the
machining of the notches was done carefully and that
optical microscopy revealed no evidence of crazing
ahead of the machined notch tips. In our simulations,
we therefore assume that the strength surface (10) with
(18) applies to the entirety of the specimens, the bulk
as well as the boundaries, including the (macroscopi-
cally) sharp notch tip. Furthermore, exactly as in the
two sets of preceding comparisons, we also adopt here
the idealization that the strengthmaterial constants (18)
are deterministic and not stochastic.

Critical energy release rate Using cracked three-point
bending specimens with the same dimensions depicted
in Fig. 11, Dunn et al. (1997) also measured the critical
energy release rate of their PMMA to be Gc = 394 ±
90N/m. In our simulations we use the value

Gc = 394N/m. (19)

As for the remainder of parameters entering the
simulations, we make use of the localization length
ε = 12.5 μm, which is sufficiently small for this
problem. For such a localization length and the above-
calibrated material parameters, the coefficient δε in
the external driving force takes the value δε = 0.6.
The size of the regularized cracks is hence given by
ε� = ε/

√
1 + δε ≈ 9.9 μm. We carry out the simula-

tions under plane-strain conditions in an unstructured
mesh of size h = 2μm≈ ε�/5 around and ahead of the

Fig. 12 Contour plots of the phase field v predicted by the theory
in the V-notched beamwith notch depth A = 3.56mm and notch
angle γ = 90◦ at two applied displacements u; the plots are
shown only in a region near the notch. Part a shows the instance
at which fracture nucleates on the tip of the notch, while part b
shows the instance at which the specimen is all but severed into
two pieces

V-notch, where the cracks are expected to nucleate and
propagate. The plane-strain idealization, as it was the
case for the U-notched specimens considered above,
was checked to be sufficiently accurate via direct com-
parisons with 3D simulations.
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6.2 Theory vs. experiments

Dunn et al. (1997) indicated that all their speci-
mens showed a linear force-displacement (P versus
u) response followed by complete rupture into two
symmetric pieces. Upon inspection of the mirror-like
smooth fractured surfaces of the post-mortem spec-
imens, they concluded that fracture nucleated at the
notch tip and rapidly propagated along the center plane
of the specimens, this irrespective of the depth and
angle of the notch. All the simulations are in accor-
dance with these observations. For illustration pur-
poses, Figs. 12a and b show representative snapshots
of the phase field v predicted by the theory for the case
of the V-notched beam with notch depth A = 3.56 mm
and notch angle γ = 90◦ just after nucleation and just
before complete rupture.

Figure 13 presents comparisons between the predic-
tions generated by the theory and the measurements of
Dunn et al. (1997) for the critical forces Pcr at which
fracture nucleated. The results are shown as a func-
tion of the notch depth A, normalized by the height
H = 17.8 mm of the specimens, for the three notch
angles γ = 60◦, 90◦, and 120◦ that they investigated. In
addition to the good agreement between the theory and
the experiments, these comparisons show, as expected,
that fracture nucleation transitions from being gov-
erned by the Griffith competition between bulk elastic
energy and surface fracture energy to being governed
by the strength of the material as the notch angle γ

increases.

7 Final comments

Adding to the validation results presented in the com-
panion papers Kumar et al. (2018a, b, 2020) and
Kumar and Lopez-Pamies (2021), where the theory is
confronted to experiments of fracture nucleation and
propagation in silicone elastomers, titania, graphite,
polyurethane, PMMA, alumina, and natural rubber
spanning a broad spectrum of specimen geometries
and loading conditions, the three sets of comparisons
with experiments on glass and PMMA presented in
this work provide further evidence and motivation to
continue investigating the phase-field theory (4)–(5) as
a complete framework for the description of fracture
nucleation and propagation in elastic brittle materials
at large.

(a)

(b)

(c)

Fig. 13 Comparison between the predictions of the phase-field
theory and the experiments of Dunn et al. (1997) on PMMA.
The critical forces Pcr at which fracture nucleates in specimens
with notch angles a γ = 60◦, b γ = 90◦, and c γ = 120◦, as
functions of the normalized notch depth A/H
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The results presented in this work have also made it
plain that more experiments are pressingly needed to
measure the strength surface of materials beyond the
two standard points of uniaxial tensile and compres-
sive strength. Indeed, fracture nucleation occurs more
often than not in regions where the state of stress is
fully triaxial. Any hope of being able to accurately pre-
dict fracture nucleation under general loading condi-
tions appears then to hinge on having a more complete
experimental knowledge of the strength surface of the
materials at hand.
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Appendix: sample results showcasing the indepen-
dence of the phase-field theory (4)–(5) on the local-
ization length ε

In this appendix, as a complement to the results reported
in Section 4.3 in (Kumar et al. 2020), we report sample
results for each of the three classes of boundary-value
problems investigated in the main body of the text that
showcase the independence of the phase-field theory
(4)–(5) on the localization length ε.

Figure 14 provides a comparison between the result
presented in Fig. 4a for the phase field v predicted by
the theory for localization length (13) and that obtained
for the different localization length

ε =
⎧
⎨

⎩

15μm, X ∈ Bε

4.75μm, X ∈ � \ Bε

. (20)

The calibration of the coefficient δε for the values (20)
renders δε = 60 and δε = 6, respectively, which result
in an actual regularized size of the cracks given by ε� =
ε/

√
1 + δε = 1.9μm.This is about three times smaller

than the size of the cracks obtained for the localization
length (13). Yet, it is evident that the results in Figs. 14a
and b are essentially the same.

Next, Fig. 15 presents a comparison between the
critical force Pcr in Fig. 9 predicted by the theory
for notch depth A = 5 mm when using a localiza-
tion length ε = 12.5 μm (solid line) and the corre-
sponding result (dashed line) when using the smaller
localization length ε = 5 μm. In the latter case, the
calibrated value of the coefficient δε turns out to be

δε = 1.15, which results in a regularized crack size of
ε� = ε/

√
1 + δε = 3.4 μm. This is about two times

smaller than the regularized crack size that ensues from
ε = 12.5 μm. Clearly, the results in Fig. 15 for the two
different localization lengths are largely similar to one
another.

Finally, Fig. 16 presents a comparison between the
critical force Pcr in Fig. 13b predicted by the theory
for notch angle γ = 90◦ when using a localization
length ε = 12.5 μm (solid line) and the corresponding
result (dashed line) when using the smaller localization
length ε = 9μm.The calibrated value of the coefficient
δε for the latter case is δε = 35, which results in a
regularized crack size ε� = ε/

√
1 + δε = 1.5 μm that

is about six times smaller than the regularized crack size
that is obtained for ε = 12.5 μm. Consistent with the
two preceding comparisons, a quick glance at Fig. 16
suffices to recognize that the two theoretical predictions
based on different localization lengths are practically
the same.

Fig. 14 Contour plot of the phase field v predicted by the phase-
field theory (4)–(5) for one of the indentation experiments of
Mouginot and Maugis (1985). Part a reproduces the result in
Fig. 4a for localization length (13), while part b shows the cor-
responding result for the different localization length (20)
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Fig. 15 Critical force Pcr predicted by the phase-field theory
(4)–(5) for one of the U-notched beam experiments of Gómez
et al. (2005). The solid line reproduces the result for notch depth
A = 5 mm in Fig. 9 for localization length ε = 12.5 μm, while
the dashed line corresponds to the result for localization length
ε = 5 μm

Fig. 16 Critical force Pcr predicted by the phase-field theory
(4)–(5) for one of the V-notched beam experiments of Dunn et al.
(1997). The solid line reproduces the result for notch angle γ =
90◦ in Fig. 13b for localization length ε = 12.5 μm, while the
dashed line corresponds to the result for localization length ε = 9
μm
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